Ansprechpartner

Dr. Marin Alexe
Telefon:+49 345 558-2705Fax:+49 345 551-1223
Prof. Dietrich Hesse
Telefon:+49 34 5558-2741

Originalpublikation

Chun-Lin Jia, Knut W. Urban, Marin Alexe, Dietrich Hesse, Ionela Vrejoiu
Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3

Verwandte Artikel

Ein Bild der Dipolorientierung in 250 Elementarzellen

Indem die Forscher in der PZT-Probe nun die genauen Positionen der Sauerstoffatome einerseits sowie der Zirkonium- und Titan-Atome andererseits bestimmten, ermittelten sie die Orientierung der Dipole in jeder einzelnen von mehr als 250 Elementarzellen. Die Probe besteht aus dem Querschnitt durch eine PZT-Schicht, die etwa zwanzig Elementarzellen, also gut vierzig Atomlagen, dick ist. Das ferroelektrische Material brachte Ionela Vrejoiu vom Max-Planck-Institut für Mikrostrukturphysik sehr akkurat auf eine einkristalline Strontiumtitanat-Unterlage auf. Diese hatte sie zudem mit einer dünnen Rutheniumoxid-Zwischenlage versehen, um die Grenzfläche zwischen Unterlage und ferroelektrischem Material besser bestimmen zu können. Auch die Grenze zwischen zwei Domänen mit umgekehrter Polarisierung war in der transmissionselektronenmikroskopischen Abbildung der quergeschnittenen Probe genau zu erkennen.

In dieser Kammer stellen die Forscher des Max-Planck-Instituts für Mikrostrukturphysik das ferroelektrische Material PZT mit Hilfe der gepulsten Laser Bild vergrößern
In dieser Kammer stellen die Forscher des Max-Planck-Instituts für Mikrostrukturphysik das ferroelektrische Material PZT mit Hilfe der gepulsten Laser-Abscheidung (PLD) her. Diese Methode ermöglicht es, die Bildung des Materials extrem genau zu kontrollieren.

[weniger]

Dort, wo die Domänengrenze auf die Rutheniumoxid-Zwischenlage stößt, beobachteten die Jülicher Physiker nun etwas Unerwartetes – nämlich eine weitere Domäne von nur wenigen Quadratnanometern, in der die Orientierung des Ensembles der Dipole kontinuierlich um insgesamt 180 Grad dreht – die Wissenschaftler sprechen von einer flux-closure-Domäne. „Solche Domänen kennen wir aus magnetischen Materialien, und für ferroelektrische Materialien haben einige Berechnungen sie ebenfalls vorhergesagt“, sagt Knut Urban. „Aber wir haben sie erstmals direkt beobachtet.“

„Ich habe nicht geglaubt, dass sie existieren“, bekennt Marin Alexe, der die Ferroelektrika am Max-Planck-Institut in Halle erforscht. Dafür hat er auch einen guten Grund: Die Magnetisierung wird von Elektronen getragen und lässt sich mit geringem Energieaufwand in ihrer Richtung verändern. Die Umorientierung der Dipole in Ferroelektrika bedingt dagegen eine Verzerrung oder einen Umbau der Elementarzellen. Solche Veränderungen kosten wesentlich mehr Energie als eine magnetische Umorientierung, weil sie die Symmetrie des Kristalls stören. Eine Drehung um 180 Grad ist noch nachvollziehbar, aber eine schrittweise Verzerrung der Elementarzelle hielten viele Wissenschaftler schlicht für zu energieaufwändig.

Ringförmige Dipolstrukturen ermöglichen dichter gepackte Datenspeicher

„Dass wir den Ringschluss des Dipolflusses und die kontinuierliche Rotation der Dipole jetzt nachgewiesen haben, dürfte auch einen praktischen Nutzen haben“, sagt Dietrich Hesse, einer der beteiligten Forscher am Max-Planck-Institut in Halle. „Offenbar findet die Natur auf diese Weise einen Weg, die Polarisierung auch in Strukturen von weniger als zehn mal zehn Nanometern aufrecht zu erhalten.“ Bislang gingen die Physiker davon aus, dass die Polarisierung in solchen Strukturen zusammenbricht, weil sie zu wenige Dipole enthalten.

Denn Ferroelektrizität ist ein kollektives Phänomen, die Dipole stützen sich also gewissermaßen gegenseitig. Sinkt ihre Zahl unter eine bestimmte Grenze, bringen kleinste elektrische Ladungen, die sich stets an Oberflächen bilden, die Ordnung der Dipole durcheinander. Auf diesen Effekt ist auch zurückzuführen, dass die Polarisierung an der oberen Seite der PZT-Schicht, die das Forscherteam nun untersuchte, verschwunden war. „Wir mussten also bislang davon ausgehen, dass wir die Domänen wegen der Depolarisierung nicht unter die Grenze von 20 mal 20 Nanometer verkleinern können“, sagt Marin Alexe. Genau dies könnte nun doch möglich werden.

„Wir werden nun die genauen Bedingungen untersuchen, unter denen sich Strukturen mit einer ringförmigen Polarisierung bilden“, so Alexe. Die Null und Eins eines Bits ließen sich dann codieren, indem die Dipole mal im Uhrzeigersinn und mal dagegen ausgerichtet werden. „Für entsprechende Untersuchungen haben wir bereits Ideen“, sagt Dietrich Hesse. „Doch bis es Datenspeicher gibt, die pro Quadratzoll dauerhaft mehrere Billionen Datenpunkte speichern, und diese so schnell aufnehmen und abgeben wie ein heutiger Arbeitsspeicher, werden noch einige Jahre verstreichen.“

(PH)

 
Zur Redakteursansicht
loading content