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Abstract

A simple approximate solution to the linear response equations of time-dependent density func-

tional theory (TDDFT) is given. This extends the single-pole approximation (SPA) to two strongly-

coupled poles. The analysis provides both an illustration of how TDDFT works when strong

exchange-correlation effects are present and insight into such corrections. For example, interaction

can cause a transition to vanish entirely from the optical spectrum.
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INTRODUCTION

Ground-state density functional theory (DFT) has been very successful for atoms,

molecules, and solids [1, 2]. Similar success is now being enjoyed by time-dependent DFT

(TDDFT) [3, 4], because of its combination of accuracy combined with low computational

cost [5]. While TDDFT has a huge variety of applications [6], it is low-lying photo-excitations

of molecules that has seen its greatest use [5].

In the present work, we restrict our discussion to linear response of a non-degenerate

ground-state. Just as in ground-state DFT, all many-body effects, i.e., exchange and corre-

lation (XC), are contained in a well-defined functional, the XC kernel [7]. In any practical

calculation, this functional must be approximated. In most calculations, an adiabatic ap-

proximation is made, and the static limit of the kernel is applied. Typical approximations

are then adiabatic local density approximation (ALDA) [7] or generalized gradient approx-

imation, or exact exchange [8–10]. The reliability and accuracy of these approximations to

TDDFT is much less well-understood than it is in ground-state DFT.

One can do many calculations on many systems, in order to gain insight into the accuracy

and reliability of theory, but it can be much more effective to develop simple approximations

to the solution of the TDDFT response problem [11]. A classic example is the single-pole

approximation [12], within which TDDFT yields a simple correction to the KS transition

frequencies which is just the expectation value of the Hartree-XC kernel on the transition

orbitals. While usually accurate [11], the most important feature of this approximation

is the insight it yields into the workings of TDDFT. It yields a first approximation to

TDDFT effects with almost no extra effort beyond a ground-state calculation, and gives a

simple picture for such effects [13]. It has also been shown [11] that, if a transition is only

weakly-coupled to others in the system, one can use this to estimate the XC kernel itself.

Unfortunately, this is rarely the case in practice.

In the present work, we generalize the SPA to a double-pole approximation (DPA), in

which we explicitly solve the TDDFT response equations for exactly two transitions. This

produces a variety of results beyond that of SPA. Most importantly, one can study TDDFT

XC corrections to KS levels when there is strong coupling between levels. But one can also see

when SPA fails, and recover Görling-Levy perturbation theory [14] results for the coupling-

constant expansion of excited states [11]. DPA has recently been successfully applied to
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core-hole interaction in the X-ray absorption spectroscopy of 3d transition metals [15].

DOUBLE-POLE APPROXIMATION

In the matrix-formulation of the TDDFT response equation within the adiabatic approx-

imation, the exact eigenvalues and oscillator strengths can be obtained from the solution of

the following eigenvalue problem [16]

∑

q′

Wqq′(Ω) vq′ = Ω2 vq, (1)

where the matrix W is given by

Wqq′(Ω) = ω2
q δqq′ + 4

√
ωq ωq′ Mqq′(Ω) (2)

and

Mqq′(Ω) =
∫

d3r
∫

d3r′ Φ∗

q(r) K(rr′Ω) Φq′(r
′). (3)

Here ωi is the Kohn-Sham transition frequency and for single particle transitions q (q ≡ k →
j) the shorthand Φq(r) := ϕk(r)ϕ

∗

j(r) has been introduced. The kernel K(r, r ′, ω) consists

of the bare Coulomb interaction and the approximate XC kernel fXC(r, r′, ω):

K(r, r′, ω) =
1

|r − r′| + fXC(r, r′, ω). (4)

Atomic units (e2 = h̄ = m = 1) are used throughout.

We now solve these equations exactly for a 2×2-system, i.e., ignoring coupling to all other

transitions. To simplify the discussion we assume a frequency independent kernel and real

orbitals, i.e. Mqq′ = Mq′q. Thus the relation between matrix elements of Casida’s equation

and the kernel is:

Wii = ω2
i + 4 ωi Mii, W12 = 4

√
ω1ω2 M12. (5)

Next define the average

W =
1

2
(W11 + W22) (6)

and difference

∆W = W22 − W11 (7)

of the diagonal elements. We define a mixing angle by:

tan θ =
2 W12

∆W
, (8)
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choosing the branch between 0 and π. The eigenvalues can then be written succinctly as

Ω2
±

= W ± 1

2

∆W

cos θ
, (9)

while the normalized eigenvectors are

~v+ =













sin θ
2

cos θ
2













, ~v− =













− cos θ
2

sin θ
2













. (10)

The physical oscillator strength can be obtained from the following expression [16]

f± =
2

3
|~xT S−

1

2 ~v±|2, (11)

where

S−
1

2 =













√
ω1 0

0
√

ω2













, ~x =













xKS
1

xKS
2













, (12)

and the xKS
j denote dipole matrix elements of KS orbitals. Given that there are only two

transitions, we give a geometric meaning to the oscillator strengths. Writing

fKS
1 = sin2 αKS, fKS

2 = cos2 αKS (13)

and

f− = sin2 α, f+ = cos2 α, (14)

we find

α = αKS − θ/2, (15)

i.e., the oscillator strengths are represented by a unit vector in 2d space, and the coupling

merely rotates this vector. Note that the Thomas-Reiche-Kuhn (TRK) sum rule (sum of

the oscillator strengths is 1) is obviously preserved.

SINGLE-POLE APPROXIMATION

As mentioned above, the single-pole approximation is a useful approximation to TDDFT

results. We recover SPA results by inserting θ = 0 in our formulas. Thus

ΩSPA
±

=

√

W ± ∆W

2
(16)
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and the oscillator strengths reduce to their KS values.

We can now study the leading corrections to SPA produced by DPA when the coupling

between poles is weak. Writing η = W12/∆W , and assuming η << 1, for the eigenvalues,

we find

Ω± = ΩSPA
±

± W12

2 ΩSPA
±

η + O(η2), (17)

while for the oscillator strengths, we have

f+ = fKS
2 + 2η

√

fKS
1 fKS

2 + O(η2),

f− = fKS
1 − 2η

√

fKS
2 fKS

1 + O(η2). (18)

Note that the corrections to the peak positions are second-order in W12, while the corrections

to
√

f± are first-order. Thus SPA is expected to be much better for peak positions than for

peak heights.

Lastly, we point out that this expansion was deduced for the general case in Ref. [11], and

used (among other things) to identify coefficients in the Görling-Levy expansion of excited-

state energies. Our results here agree with those, but in the special case of transitions to

which DPA applies, yield results that include a resummation of all orders in the adiabatic

coupling constant of density functional theory.

HIGH-FREQUENCY LIMIT

So far we have given exact results for the double-pole approximation. However, in many

cases where DPA applies, there is a further simplification. Usually the two transitions are

closer to each other than any others that couple to the pair. If in addition their frequency

difference is small relative to their mean frequency, for both the interacting and KS systems,

i.e.,

Ω, ω >> ∆Ω, ∆ω, (19)

we find much simpler results, which are very useful for interpretation.

The SPA discussed above reduces to

ΩSPA
±

= ωi + 2 Mii, (i = 1, 2). (20)

In fact, the original SPA was applied for just a forward transition, yielding exactly this result

[12]. In general the symmetric result (sometimes called the small-matrix approximation
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FIG. 1: Interacting and Kohn-Sham spectra as function of frequency (ω1 = 9 eV, M12 = 0.2 eV).

[17, 18]) is preferable. We use the term SPA to mean the symmetric result throughout this

paper.

The mixing angle is given by

tan θ =
4M12

∆ΩSPA
, (21)

i.e., it is the ratio of the off-diagonal matrix elements of the kernel on the scale of the

separation in SPA that matters. We find

Ω± = ΩSPA ± ∆ΩSPA

2 cos θ
. (22)

SPA yields the correct average position of the two lines, but their splitting is greater than

SPA predicts (level repulsion).

ILLUSTRATIONS

To illustrate our results, consider a weak lower-frequency transition (ω1 = 9 eV, fKS
1 =

1/10) and a strong higher-frequency transition (ω2 = 12 eV, fKS
2 = 9/10). We imagine

these have significant diagonal kernel matrix elements M11 = 3 eV, M22 = 2 eV, but are

not strongly coupled to one another, M12 = 0.2 eV. We have plotted the interacting and

KS spectra in Fig. 1. The peaks are Lorentzians of width 0.2, mimicking a measurement of
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FIG. 2: The scaled coupling angle θ/π as function of the position of the lower transition.

finite resolution. Because the coupling is weak, the single-pole approximation is excellent,

and accurately predicts the large shifts in positions. However, SPA wrongly predicts no

variation in oscillator strength. In fact, one can see from the figure that the first peak has

actually lost intensity relative to its KS value.

In the rest of this section, we explore what happens in the DPA model of TDDFT. In

order to emphasize that it is not the absolute magnitude of the off-diagonal matrix element

that is significant, but rather its strength relative to the separation between the peaks, we

now consider all the same parameters, but imagine increasing ω1. In Fig. 2, we plot the

mixing angle as a function of ω1. At ωc = 2 (−3 +
√

69) eV ≈ 10.61 eV, the diagonal

matrix elements Wii match, so that ∆W = 0 and θ = π/2. At that point, the peaks are

a 50:50 mixture of the two KS levels. In that region, the levels are strongly coupled, and

the spectrum distorts mightily from its KS shape. The width of the transition region can

be defined as the change in frequency needed to bring θ from π/4 to 3π/4, and, from Eq.

(21) in the high-frequency limit, is seen to be 4M12 = 0.8 eV here, i.e., proportional to

the off-diagonal element, but quite a bit larger. More significantly, there are tails in the

transition that decay extremely slowly with pole separation. On the contrary, SPA yields a

function that steps from 0 to 1 at ωc.

To see this, in Fig. 3, we plot the interacting levels Ω± as a function of ω1, and observe

the avoided crossing. Note that straight line plots, extrapolated from the limits where ω1 is

either far above or far below ωc, yield extremely accurate results almost everywhere. This

is the SPA result. In fact, from Eqs. (9) and (16), we see that the crossover point is exactly
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given by SPA. Moreover, in the high-frequency limit, Eqns. (20)-(22) yield

|∆Ω|2 = |∆ΩSPA|2 + 16 |M12|2. (23)

So if the off-diagonal matrix elements are small relative to the SPA separation, the true

separation is not much greater; the closest the two levels come is a separation of 4 |M12|,
i.e., they never cross.

But in Fig. 4, we plot the associated oscillator strengths. The effect of coupling is

extremely dramatic. Note first that, for ω1 below the strong coupling region, the bigger

peak is enhanced above its KS value, and the smaller one reduced. This is pole repulsion,

and it is felt even very far from the strong coupling region. This effect is entirely missing

from SPA. Next we see that there is even a critical value ωd (d for dark) at which f− = 0

exactly. This means the lower peak disappears entirely, and all strength is in the upper peak

(Fig. 5)! From Eqs. (15) and (21), we find

∆ΩSPA = g(αKS) |M12| (f1 = 0), (24)

where g(α) = 4/ tan 2α = 16/3 for fKS
1 = 0.1 as is the case here. This yields 8.93 eV,

whereas the exact result is 9.90 eV.

By increasing ω1 just a little more, we come to the position of the avoided crossing ωc (c

for crossing), where θ = π/2. In fact, Eqs. (13)-(15) yield here

f± =
1

2
± 〈fKS〉, (25)

8.0 10.0 12.0 14.0

10.0

15.0

ω1 [ eV ]

Ω, ω

KS
Interacting

FIG. 3: Interacting and Kohn-Sham excitation energies as function of ω1.
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where 〈fKS〉 denotes the geometric mean,
√

fKS
1 fKS

2 . In our case, this yields f− = 0.2 and

f+ = 0.8, respectively, giving the lower peak double its KS weight. In Fig 6, we show the

spectrum for ω1 = ωc, and observe how much it differs from its KS doppelganger. There

appears to be only one peak, but in fact there are still two, although the broadening obscures

this. They are very close together.

The final interesting point is ωe (e for equal), where the interacting oscillator strengths

equal, i.e., both are 1/2. At the equality point, α = π/4, and so θ = π/2 − 2αKS. Again

using the high-frequency limit, Eq. (21), yields

∆ΩSPA = −4 M12 cot(2αKS), (26)

i.e., the same distance above the crossing point, as the amount the point f− = 0 is below.

This yields 12.29 eV, whereas the exact number is 11.02 eV (Fig. 7).

Finally, in Fig. 8, we consider ω1 = 13 eV. Now the oscillator strengths have returned

(almost) to their KS values, but + and − have been reversed. Lastly, we demonstrate the

dependence of these results on the strength of M12 relative to the diagonal elements. We

have so far presented only the case M12 << Mii. But we have argued that it is only the ratio

|M12|/∆ΩSPA that matters. Thus increasing M12 does not change the shape of the curves

(around the turnover point), but only changes the scale on which the action takes place. In

Fig. 9, we change M12 to 1 eV and 2.5 eV, and see this occur. Since the turnover occurs on

a scale of about 4|M12|, almost the entire region has strong coupling for M12 = 2.5 eV.

0.0 5.0 10.0 15.0 20.0 25.0
0.0

0.2

0.4

0.6

0.8

1.0

ω1 [ eV ]

f
KS
Interacting

FIG. 4: Oscillator strengths as function of ω1 .
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FIG. 5: Interacting and Kohn-Sham spectra at the critical value ω1 = ωd ≈ 9.90 eV. All intensity

is in the upper transition.

10.0 12.0 14.0 16.0 18.0 20.0
0.0

0.5
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ω [ eV ]

I(ω)

KS
Interacting

FIG. 6: Interacting and Kohn-Sham spectra for ω1 = ωc ≈ 10.61 eV.

Lastly, we examine this behavior as a function of M12. In Figs. 10 and 11, we repeat the

plot of oscillator strengths versus ω1 for this system, but now with M12 = 1 eV and M12 = 2.5

eV, respectively. We see that the larger values lead to qualitatively similar behavior, but

over a broader frequency scale.

INVERSION

The above sections present the TDDFT response equations in the usual manner. First

solve the ground-state KS problem, finding occupied and unoccupied levels, then calculate
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FIG. 7: Interacting and Kohn-Sham spectra for ω1 = ωe ≈ 11.02 eV, producing equal interacting

oscillator strengths.
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FIG. 8: Interacting and Kohn-Sham spectra for ω1 = 13 eV.

matrix elements of the kernel (with some functional approximation), and calculate the true

transitions and oscillator strengths of your system. However, we are motivated to gain

insight into the excitations, and so we ask the reverse question: Given the experimental

spectrum, what can we learn about the kernel? Inverting our equations to solve for θ yields:

θ = 2 (α − αKS) (27)

Thus, knowledge of the KS oscillator strengths, combined only with the experimental os-

cillator strengths, yields the mixing angle, which measures how strongly the transitions are

mixed! No knowledge of the positions of transitions is needed.
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FIG. 9: The scaled coupling angle θ/π as function of ω1. The plot compares three different regimes

for the off-diagonal matrix element M12.

Solving for the diagonal matrix elements we arrive at

W11 = Ω2 − (∆Ω2/2) cos θ,

W22 = Ω2 + (∆Ω2/2) cos θ, (28)

where Ω2 is the average of Ω2 and ∆Ω2 is the difference, while the off-diagonal matrix element

is

W12 = (∆Ω2/2) sin θ. (29)

Again, the experimental positions combined with the mixing angle are sufficient to determine

the elements of the matrix W . The kernel matrix elements themselves are then found simply,

0.0 5.0 10.0 15.0 20.0 25.0
0.0

0.2

0.4

0.6

0.8

1.0

ω1 [ eV ]

f
KS
Interacting

FIG. 10: Same as Fig. 4, but for the case M12 = 1.0 eV.
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FIG. 11: Same as Fig. 4, but for the case M12 = 2.5 eV.

by using the KS transition frequencies:

Mjj =
Wjj

4 ωj

− ωj

4
(30)

and

M12 =
∆Ω2 sin θ

8
√

ω1ω2

. (31)

These equations provide an exact way to recover the matrix elements Wij of the original

matrix and therefore the matrix-elements Mij of the kernel K solely from the knowledge of

the eigenvalues and the angle θ.

While the above formulas are completely general, in practice strong coupling tends to

occur between neighboring transitions. In those cases, the differences between the two

transition frequencies are often much smaller than the transition frequencies themselves.

Thus we expand in the small parameter ∆Ω/Ω, to find

W11 = Ω
(

Ω − ∆Ω cos θ
)

,

W22 = Ω
(

Ω + ∆Ω cos θ
)

,

W12 = Ω ∆Ω sin θ. (32)

To further extract the matrix elements of the kernel, we assume the KS transitions satisfy

the same requirement, i.e., that the experimental transitions are close to the KS ones on the

scale of the average transition. This yields:

M11 = (Ω − ∆Ω cos θ)/4 − ω1/4,
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M22 = (Ω + ∆Ω cos θ)/4 − ω1/4,

M12 = (∆Ω/4) sin θ. (33)

These simple expressions give the matrix elements directly, once the KS and experimental

information is known. The mixing angle is determined completely by the oscillator strengths,

as in Eq. (27). These expressions were used to analyze X-ray absorption spectra in Ref.

[15].

CONCLUSIONS

To summarize, we have presented the exact formulas that arise from a double-pole ap-

proximate solution to the TDDFT linear response equations. We have shown how these

reduce to the single-pole approximation when the coupling between transitions is weak, and

derived the leading terms in this expansion, finding results consistent with those of Ref. [11].

However, with DPA, we can go beyond that work, by considering strong coupling. We also

derive simpler expressions that are valid when the transitions are of much higher frequency

than the splittings. We illustrated our results, finding (i) that the oscillator strengths can

deviate significantly from their KS values, even when the coupling is very weak, (ii) that

the scale to compare the off-diagonal matrix element to is the splitting in the single-pole

approximation, and (iii) that the weaker peak even vanishes at a special value of the coupling.
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