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Abstract. This chapter briefly reviews progress to date in the density functional the-
ory of time-dependent phenomena. We discuss the fundamental theorems and their
relation to other approaches. Several exact conditions are treated. We review the spe-
cial case of the linear response to a weak external potential and look specifically at
the linear response of the uniform electron gas, which is important for local density
approximations. We discuss recent suggestions for functional approximations, includ-
ing both the local current density approximation and the local-with-memory density
approximation. We review applications of the theory in three situations: Beyond linear
response, linear response, and excitation energies, and conclude with a brief outlook.

1 Introduction and User’s Guide

Density functional theory is the study of the one-to-one correspondence[l] be-
tween an interacting many-body system, and a fictitious non-interacting analog,
the Kohn-Sham system[2], whose equations are much easier to solve numerically.
This mapping is exact in principle, but must be approximated in practice. Over
the last several years, there has been an explosion of interest in density functional
theory, driven largely by its applications in quantum chemistry[3]. This is due
to recent progress in the accuracy of available approximations[4], and because of
the wealth of chemical problems that can be tackled with such a computationally
inexpensive tool[5].

Much of this interest has focussed on the problem of N electrons in the
ground state of an external time-independent potential. Accurate solution to
this problem yields predictions of atomic energies, reaction energies in chem-
istry, cohesive energies in solids, vibrational energies, phonon spectra, activation
barriers, rotational energies, etc. [6]. Much of the other chapters in this book are
devoted to this subject.

But the basic idea of mapping an interacting problem onto a non-interacting
one via the density is extremely general, and has been applied to many cir-
cumstances beyond the original ground-state problem mentioned above. In the
present article, we briefly survey the progress that has been made on the time-
dependent problem. For those less familiar with the time-dependent case, we
emphasize the comparison between it and the static ground-state case. For those
more familiar with the time-dependent case, this article should serve as an up-
date of an earlier, more comprehensive review[7]. Throughout this article, we
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use atomic units, in which e2 = A = m = 1. We also use the shorthand z = (r, t)
for the pair r and ¢, which makes the equations shorter and more legible. In
the remainder of this introduction, we first demonstrate how far time-dependent
density functional theory has come in the last few years (section 1.1), and then
give an overview of each of the remaining sections in this chapter.

1.1 Why time-dependent density functional theory is exciting

To give some feeling for the power of time-dependent density functional theory,
consider the He atom as a prototypical system. From a ground-state point of
view, this system might be regarded as rather dull. Not much chemistry oc-
curs with He.! Furthermore, most physicists are more interested in extended
systems, whether or not they are metallic, superconducting, etc. What can
you do with a ground-state density functional theory of the He atom? You
can examine how well your favorite exchange-correlation energy approximations
perform. Among them might be the local density approximation (LDA)[2], us-
ing the latest uniform gas input[12], and the Colle-Salvetti approximation[13],
an orbital-dependent correlation approximation. You can construct the exact
Kohn-Sham potential[14], examine how good the functional derivative of your
favorite energy approximation is, and argue about the implications[15]. You
might turn on a uniform electric field, and calculate the static polarizability,
or hyperpolarizability[16].

Now consider the He atom when you have a fully time-dependent density
functional theory[17, 18, 19, 20]. In the most dramatic case, you can apply a
strong laser field, whose strength is comparable to the electron-nuclear electro-
static field. You can then watch the system evolve, see if any electrons are ionized,
watch them oscillate back and forth, calculate the induced dipole moment, etc.
You compare results with experiment, or other more computationally demanding
techniques, and find the most reliable functional approximations. You can then
search the vast parameter space of the problem on the computer, guiding the
experimentalists in their search for greater gain, etc. As an example of interest
to the density functional community, Fig. 1 displays the harmonic generation
spectrum of He for a 616 nm, 7 x 10'* W/cm? laser pulse, with and without
correlation[19]. While the overall pattern is the same in both cases, the effect of
correlation reduces the peak heights by a factor of 2 or 3. There are few examples
in the ground-state lexicon where correlation effects are so large.

If the complexity of this application is too much for you, you might wish
to consider the more simple linear response regime, where the external time-
dependent potential is weak relative to the ground-state Kohn-Sham potential.
Then the formalism gives all the response functions as a function of frequency
w, including the static limit (w — 0) as a special case. Such quantities are
related to photoabsorption for our simple He atom[21], bulk and surface plasmon
dispersions for metals[22, 23, 24, 25], etc.

! Although see the recent interest in van der Waals dimers[8, 9, 10, 11].
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Fig.1. Harmonic spectrum of He with and without correlation (see text). The laser
parameters are A = 616 nm and I = 7.0 x 10" W/cm?[19].

To appreciate how sophisticated the frequency dependence of these response
functions is, note that a single response function has poles at all the excitation
energies of the system[26]. Thus a simple application is to extract these energies
from the response function, producing a very natural excited-state density func-
tional theory. Many of the excitation energies of He[27] (and other atoms[28])
have been calculated this way, testing various approximations. Fig. 2 shows the
ezact Kohn-Sham eigenvalues of the He atom|[29] (left-hand side), which typically
lie between the experimental spin-split levels (right-hand side). In the middle,
we show the spin-split levels calculated within linear response time-dependent
density functional theory, using the exact KS potential, and the exchange con-
tribution to the response kernel (defined in section 6.3). Clearly, progress is
being made toward an accurate, reliable calculational scheme for the excitation
energies of a system.
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Fig. 2. Typical excitation energies from the ground-state of He, including the orbital
energies of the exact Kohn-Sham potential (KS), the time-dependent OEP spin-split
correction for exchange only (OEP(fx)), and experiment [27].

1.2 Fundamentals

In section 2 of this chapter, we review fundamental ideas. To find the ground
state energy of He or any other electronic system in density functional theory,
one first establishes the Hohenberg-Kohn theorem[l]. This was done thirteen
years ago for the time-dependent problem by Runge and Gross[30]. Application
of this theorem to a non-interacting system immediately yields the Kohn-Sham
equations[2], which are simply generalized to the time-dependent case.

In the ground state, the energy satisfies a minimization principle, and the
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value of the energy is of great interest in most applications. The time-dependent
analog of the energy is the action, which satisfies a stationarity condition. How-
ever, the action plays a much less significant role in the time-dependent problem,
where its actual value is never of interest, but only its functional derivatives are,
in striking contrast to the ground-state energy.

A fruitful area of progress in the ground-state case has been the relation
of density functional to standard perturbation techniques. The Sham-Schliiter
equation[31] relates the exchange-correlation potential of density functional the-
ory to the exchange-correlation contribution to the self-energy of many-body
theory, which was useful in understanding the difference between the Kohn-
Sham gap and physical gap in bulk semiconductors and insulators. We discuss
the time-dependent generalization of this equation[32].

The optimized effective potential (OEP) formalism has been developed as a
method for calculating the Kohn-Sham potential of explicitly orbital-dependent
functionals[33, 34]. The (highly accurate) Krieger-Li-Tafrate (KLI) approximation[35]
makes this a practical scheme for calculations. We show the time-dependent
equivalent of this approach. This scheme includes exact exchange by construc-
tion, since the Fock integral is an explicit functional of the orbitals. In time-
dependent and excited-state problems, this can be much more important than
in the ground state, given the emphasis on unoccupied orbital energies, in con-
trast to the total ground-state energy.

Lastly in this section, we generalize all results to include spin-dependence.
This is very useful for the accurate treatment of open-shell atoms, e.g., Li.

1.3 Exact conditions

In section 3 of the chapter, we discuss exact conditions satisfied by the time-
dependent exchange-correlation potential. An extremely useful guide to building
accurate approximations to the ground-state energy has been the study of con-
ditions satisfied by ezact functionals. Our next section is rather short, where we
discuss exact conditions which must be satisfied by the time-dependent exchange-
correlation potential. These may be divided into two kinds: those that have a
ground-state analog (e.g., zero net exchange-correlation force and torque[36, 37]),
and those that have not (e.g. translational invariance[38]). The brevity of this
section suggests that much work is yet to be done in this area.

1.4 Linear response

In section 4, we develop the special case of linear response, i.e., what happens
when the time-dependent external potential can be treated as a weak perturba-
tion of the ground state. This is formally analogous to the linear response theory
of the ground-state, only now there is a non-zero frequency w in the perturba-
tion. This leads to a much richer variety of behavior in the response functions.
We introduce the exchange-correlation kernel, which characterizes the devia-
tions from the bare Kohn-Sham response, and discuss its exact restraints. We
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also show the OEP equation for this kernel. We generalize these results to the
response to a time-dependent vector potential[39], which we later need for the
development of a frequency-dependent local density (type) approximation[39].
We end this section with some results for the exchange-correlation kernel of a
uniform gas[40, 41].

1.5 Approximate functionals

In section 5, we present a variety of approximate functionals. These fall into
two broad categories: the majority are LDA-type, using uniform (or slowly-
varying) gas input, and the rest are perturbative in the Coulomb repulsion, e.g.,
exact exchange-only. This mirrors the situation in ground-state density func-
tional theory. The LDA-type appproximations have gone through a very inter-
esting development, in which appreciation of the essential differences between
the time-development in an inhomogeneous system and that in a uniform sys-
tem has been crucial to the construction of approximate functionals. Dobson[38]
observed that the two distinct components of fluid flow, a compressive piece and
a rigid displacement, must have different frequency-dependences, if certain exact
constraints are to be satisfied. This has led to two of the latest approximations:
the local current-density approximation (LCDA) of Vignale and Kohn for the
high-frequency linear response[39], and the local-with-memory density approx-
imation (LMDA) of Dobson, Biinner, and Gross[42], which goes beyond linear
response. Lastly, we discuss a simple exchange-only approximation to the KLI
exchange-correlation kernel, which is used in practical calculations[43].

1.6 Applications, including excitation energies

In section 6.3, we discuss (in more detail than in section 1.1 above) recent appli-
cations of density functional theory. The most exciting is perhaps the phenom-
ena seen when atoms are subjected to superintense laser pulses (section 6.1),
as illustrated in Fig. 1. For these problems, it appears that density functional
theory is the only practical way to perform calculations which include electronic
correlations.

A more standard application of time-dependent density functional theory has
been in the photoresponse of a large variety of electronic systems[44], mostly
in the linear regime. More recent has been the application of linear response
theory to the problem of finding excitation energies[26]. This can be done ex-
actly in principle, since the poles of the interacting susceptibility are at the
true excitation energies of the system. We discuss the accuracy of the various
approximations needed to make this a practical scheme.
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2 Fundamentals

2.1 Hohenberg-Kohn Theorem

The analog of the Hohenberg-Kohn theorem for time-dependent problems is
the Runge-Gross theorem[30]. Consider N non-relativistic electrons, mutually
interacting via the Coulomb repulsion, in a time-dependent external potential.
The Runge-Gross theorem states that the densities n(z) and n'(z) evolving from
a common initial state ¥y = ¥(ty) under the influence of two potentials v(z)
and v'(z) (both Taylor expandable about the initial time to) are always different
provided that the potentials differ by more than a purely time-dependent (r-
independent) function:

v(z) #v'(z) + c(t) - (1)

Thus there is a one-to-one mapping between densities and potentials.
We can prove this theorem by first showing that the corresponding current
densities:

i(@) = @O 5p(x) 12(2)), (2)

where

N
1
_2—ZZV5I'—1'J +8(r —r;)V;) (3)
j=1

is the paramagnetic current density operator, must differ. The equation of motion
for the difference of the two current densities is:

0

5; (@) = (@) —i(Wo| [lp (x), H (t0) — H'(t0)] |20)

= —no(r)V (v(r, to) — ' (v, o)), (4)

t=to

with the initial density
no(r) = n(r, to), (5)

since the Hamiltonians differ only in their external potentials. Repeated use of
the equation of motion yields, after some algebra[7],

k+1
(%) (j(.’L‘) _j'($)) = —n(](l')vfwk(r) (6)

t=to

with

wa(r) = (ﬁ)k (v(z) — /(2)) 7)

ot

t=to

If (1) holds, and the potentials are Taylor expandable about ¢,, then there must
be some finite k for which the right hand side of (4) does not vanish, so that

(@) #§'(2). (8)
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To extend this result to the densities, we use continuity,

% (n(z) —n'(2)) = -V - (j(z) - j'(z)) (9)

and calculate the (k + 1)th time derivative of (9) at t = to:

(%) " (ni) — @)

To see that the right-hand-side cannot vanish for all k, note the following iden-
tity:

= V- (no(r)Vuwy(r)) . (10)

t=to

/d3r V - (wg (r)ne (r) Vg (r)) =
/ &Br {wp(@)V - (no(r)Vur(r)) + no(r) Ve (r)]2} . (1)

The left-hand side may be transformed into a surface integral via Green’s theo-
rem, and vanishes for physically realistic potentials (i. e., potentials arising from
normalizable external charge densities), because for such potentials the quanti-
ties wy(r) fall off at least as 1/r. Since there must exist some k for which Vwy(r)
does not vanish everywhere, the second integral on the right must be non-zero.
Thus the right-hand side of (10) cannot vanish everywhere for all values of &,
and the densities n(r,t) and n'(r,t) will become different infinitesimally later
than to-

Note that the difference between n(z) and n'(z) is non-vanishing already
in first order of v(z) — v'(z), ensuring the invertibility of the linear response
operators of section 4.

Since the density determines the potential up to a time-dependent constant,
the wavefunction is in turn determined up to a time-dependent phase, which
cancels out of the expectation value of any operator.

2.2 Kohn-Sham Equations

The Runge-Gross theorem can also be applied to a fictitious system of non-
interacting electrons having the same density as the physical system, thereby
establishing the uniqueness of the Kohn-Sham potential (but not its existence)
for an arbitrary n(z). Assuming v,[n] exists, the density of the interacting system
is

N
n(z) = lp; (@), (12)
j=1
with orbitals ¢;(z) satisfying the time-dependent KS equation

208 _ (T o) i) (13
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We may then define the exchange-correlation potential as

vxc[n](z) = vs[n)(z) - v(z) — va[n)(z), (14)

where v(z) is the external time-dependent field, and vy[n](z) is the time-dependent
Hartree potential generated by n(z):

/d3 UG (15)

v —r'|

As in the static case, the great advantage of the time-dependent KS scheme
lies in its computational simplicity compared to other methods such as time-
dependent Hartree-Fock or time-dependent configuration interaction [45, 46, 47,
48, 49, 50, 51, 52]. In contrast to time-dependent Hartree-Fock, the effective
single-particle potential vs is a local potential, i.e., a multiplicative operator in
configuration space, which, in principle, contains all correlation effects.

An important difference between ground-state density functional theory and
the time-dependent formalism developed above is that in the time-dependent
case the 1-1 correspondence between potentials and densities can be established
only for a fized initial many-body state ¥y, so that functionals depend implicitly
on ¥,. However, if both ¥, and the initial KS determinant &, are non-degenerate
ground states, then they are uniquely determined by the density, and all quan-
tities are functionals of the density alone.

2.3 Stationary-action principle

At this point, it is customary to define an action functional, which has a sta-
tionary point at the solution of the time-dependent Schrédinger equation, with
initial condition ¥(tg) = ¥y. A standard choice has been[7]:

t1 R
A= [ at (W(t)|i% —H()|F(2)) . (16)
to

which may be considered as a functional of n(z). Variation of this functional
with respect to n(z) yields an Euler equation whose solution should yield the
physical density. In the Kohn-Sham scheme,

t1

= [Carwol - i), (17)

to

where H is the non-interacting Kohn-Sham Hamiltonian. An exchange-correlation
action functional can then be readily identified as

Aseln] = Byfn] B[n——/ttldt/d3 /d3’n7rt), (18)

[r — 1|

where

Bln] = Afn] + /tldt/d3rn (19)
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is the universal (i.e., potential-independent) contribution to .4, and likewise for
Bs. Employing these definitions and the Euler equation, we find

xc(z) = § Axc/on(z). (20)

However, some difficulties with the action defined as in (16) have been noticed
(see section 4.1). Here we give a simple demonstration of the inadequacy of (16).
Since the stationary point satisfies the Schrédinger equation, A = 0 at this point.
This is likewise true in the Kohn-Sham system, so that 45 = 0 also. Inserting
the definitions of B and Bs into (18), and using the definition of the exchange-
correlation potential, and the fact that A4 = As = 0 at the stationary point, we
find:

t1
Areln] = /t dt / &r n(z) {valn](@)/2 + vee[n](@)} (21)

Functional differentiation of this suspiciously simple result yields a result which
is only true for the one-electron case:

va(w) = — /:dt’ / & n(m')ég’;é? (22)

From this simple exercise, we conclude that the definition of the action of (16)
is inadequate.

Note that the same reasoning may be applied to the ground state problem,
but with different results. The energy is analogous to the action, but in this case,
the value of the energy at the minimum differs in the physical and KS systems,
thereby avoiding the conundrum.

2.4 Relation to many-body theory

Van Leeuwen[32] has recently shown how to connect time-dependent density
functional theory to the better-known language of many-body perturbation the-
ory. However, because of the explicit time-dependence of the external potential,
we are always dealing in non-stationary states, so that one cannot use the usual
technique of time-ordered products and Wick’s theorem[53]. This difficulty shows
up whenever there is explicit time-dependence in the many-body problem, and
Keldysh[54] devised a method used to get round it, by parametrizing the physical
time ¢(7) with a pseudotime 7.

Employing this formalism, one can derive the time-dependent Sham-Schliiter
equation[31]:

/dy' G(y,y") Gs(¥',y) vxe(y') = /d4y' /d4y" Gs(¥,9") Zxely',y") Gy, y)

(23)
where y = (r,7), [d'y = [7_drdt/dr [d®r, and G(y,y') is the one-particle
Green’s function, with G5 its Kohn-Sham analog, while Yy, is the exchange-
correlation contribution to the self-energy[32].
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2.5 Explicit orbital dependence

Since the Kohn-Sham orbitals are implicit functionals of the density, we can con-
sider the Kohn-Sham potential as an explicit functional of the orbitals, rather
than of the density alone. The theory remains formally exact, but is written in a
different way. Such a procedure can be useful for approximate functional develop-
ment. In particular, with explicit orbital functionals, the exchange contribution
becomes exact.

When the action is written as a functional of the orbitals, the condition used
to determine the potential is 6 A/dvs(z) = 0. Hence the name optimized effective
potential (OEP), but we emphasize that this potential is simply the usual Kohn-
Sham potential. Here we do not give a derivation of the time-dependent OEP
equations, but instead we just state the results:

ta N
/ dt /dsr G (z,2") Z ¢j(x) ¢7(2') [vxc(e') — uxc,j(2)] +cc. | =0,
" 4

where
u;cc,j(m) - LM (25)

43 () 66;(x)

Here & denotes the Kohn-Sham wavefunction, and the kernel G***(z, ') is the
retarded one-particle Green’s function of the system:

{ig/ot — (-V"?/2 + vs(z")) } G*(z,2") = 6(z — 2') (26)

with initial condition G™*(z, z') = 0 for ¢’ > t. Explicitly,
oo
iGN (z,0") = ) ¢5(2) ¢;(a") Ot ') (27)
7j=1

Note that the functions uxc,; are given as functional derivatives of the exchange-
correlation action. While the definition (16) has serious difficulties for other
purposes, it appears to yield the correct results in this context.

The solution of these time-dependent OEP equations (with some approxima-
tion for Axc[®]) is extremely computationally demanding. The Krieger-Li-Iafrate
(KLI) approximation is very useful in this regard, because the error made in this
approximation is expected to be so small relative to the errors made in func-
tional approximations[35], that we can treat its results as ‘exact.” By ignoring
an orbital-dependent contribution which averages to zero over each orbital, one
can rewrite the integral equation (24) so that it has an analytic solution for
the exchange-correlation potential, Equation (22) of Ref. [43], which is used for
practical calculations.
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2.6 Spin-density functional theory

The above arguments can all be easily generalized to the common case of spin-
density functional theory[7], in which the external field can differ for each of the
two spin components along some fixed direction. This corresponds physically
to the coupling to the spin of an electron of an external magnetic field which
has only one non-zero component. Then we can establish a one-to-one mapping
between spin densities n4(z) and n;(z) and potentials v4(z) and v (z), and
all quantities can be considered functionals of the two spin densities, e.g., the
Kohn-Sham potential is vs (2)[n+, n}], where o =1, |.

In analogy to the ground-state problem, when B = 0, v4 = v, = v, but the
spin-dependent Kohn-Sham equations do not reduce to the regular Kohn-Sham
equations, unless the system is spin-unpolarized. The great practical benefit of
spin-density functional theory when B = 0 is the improvement in accuracy of
approximations for spin-polarized systems (e.g., local spin density approximation
over local density approximation).

3 Exact Conditions

3.1 Newton’s third law
Consideration of the equation of motion for the # operator leads to[37, 55, 7]

(r) = % /d3rrn($) = —/dzr n(z) Ve (), (28)

i.e., the net external exchange-correlation force must be zero. The analogous
statement is true for the Kohn-Sham system, which must reproduce the same
equation of motion. Then, from the relation between the Kohn-Sham and exter-
nal potentials (14), and the fact that

/ &r n(z) Voa(z) =0, (29)
we find
/ &r n(z) Voro(z) = 0. (30)
Similarly, one obtains
/d3r n(z) r X Vuxe(z) =0, (31)

i.e., the net exchange-correlation torque must vanish.
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3.2 Translational invariance

Consider a rigid boost X (t) of a static density, n(r). Then the exchange-correlation
potential of the boosted static density will be that of the unboosted density, eval-
uated at the boosted point, i.e.,

vxe[n](r,) = vxe[n)(r—X(t)), n'(r,t) =n(r-X(t)), X(to) =0 (32)

This condition is universally valid[36] . It was first discovered[38] in the special
case of a harmonic external potential driven by driving force F(t), where X() is
the classical motion of an oscillator under this driving force. This is the harmonic
potential theorem[56], which is an extension of the generalized Kohn theorem[57].

4 Linear Response

Consider an external potential of the form
Vext (w) = Vo (I‘) + v (I‘, t) @(t - tO)a (33)

where O(t) = 1 for ¢ > 0, but is zero otherwise, and assume that at times
t < to the system is in the ground state corresponding to vo(r). In this case, the
initial density no(r) can be obtained from the self-consistent solution of the static
ground-state Kohn-Sham equations and, via the Hohenberg-Kohn theorem, the
time-dependent density is a functional of the external potential alone, n[v..](z).
We expand this functional in a Taylor series in vy (r, t):

n(z) = no(r) + na(z) + ..., (34)

where the lower indices denote the orders in v;. The first order density response
ny is given by

m(e) = [ &'z x(e,2) u(@) (35)
with the density-density response function
Onfvext](z)
I _ e
x(z,2")[no] = SVext(2') v (36)
The same reasoning applies to the Kohn-Sham system, yielding
onfvs(z)
z, 2 )[ng] = ——2 , 37
xs )[ 0] dvs(z') vs[no) (7

which can be found by inverting the dependence vg[n], and can be expressed in
terms of the static unperturbed Kohn-Sham orbitals ¢y:

8(X)87(1)0; (X))

w— (e —€x) +1in (38)

Xs(r,v5w) = Y (fx — f5)

J:k
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Here, (fx, f;) are the occupation numbers (0 or 1) of the KS orbitals. The sum-
mation in (38) ranges over both occupied and unoccupied orbitals, including the
continuum states.

A Dyson-like equation may be derived between x and xs. Using the chain

rule, we write
"
:B :IJ /d4 " 6" 6U ( )
dug( x” ) OVere (')
We can write an expression of the second functional derivative above in terms
of vxc using its definition, (14):

Sus@) | \ Stuxc(@) Sn(a”)
50 (2') . =6(x—12')+ /d4 5n(z") Sv(z') (40)

where vuxc = Vu + vxc and dvu(z)/on(z') = §(t — t')/|r — r'|. Insertion of
this result into (39), and using the definitions of the physical and Kohn-Sham
response functions, we find

(39)

no

6UHXC ($3)

x(z,z') = xs(z,z') + /d4:v3 /d4:c4 Xs(z,x3)m x(z4,z'). (41)

This equation has the form of the time-dependent random phase approximation
(RPA), and reduces to that approximation if dvxc/dn is ignored.

From (41), we can extract the exact linear response of the physical system,
by multiplying x by the perturbing potential, and integrating over z’, to find
the self-consistent linear response equations:

ni(z) = /d4x'xs(x,a:') vs1(2'), (42)

where

aa @) = v1(a) + vale) + [[atar 2 "”’"C )[ ol (=) (43)

consists of the external perturbation v; and the Hartree— and exchange-correlation
contributions to first order in the perturbing potential v;.

The results here have been generalized to finite temperature in thermal equi-
librium [58, 59].

4.1 Exchange-correlation kernel

In these derivations, the quantity
dvxc(z)
on(z')

plays a key role, and is called the exchange-correlation kernel. In the theory
of classical liquids [60], fuxc = 6Uuxc/0n is the Ornstein-Zernike function. The
Fourier transform with respect to time of fxc is

Fre(r,t'sw) = / dt et fro(r, i1, 0) (45)

fx0($awl) = (44)
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and the relation to the static case is[7]

lim fyc(r,r';w) = e (46)
w0 X S (r)on(x!)”
An exact formal representation of fx is readily obtained by solving (35) for vy
and inserting the result in (43):

faxo(@, &) = x5 (2, ¢") = x 7} (2,2") (47)

where xg* and x " stand for the kernels of the corresponding inverse integral
operators whose existence on the set of densities specified by (33) and (35) follows
from (10), as mentioned in section 2.1.

As a consequence of causality,

fxc(z,2') =0 for t'>t. (48)

1 1

making fxc asymmetric under interchange of z and z’. This is the difficulty in
treating fxc as a second functional derivative of the action defined by (16) in
section 2.3.

4.2 Exact conditions

The kernel fxc(r,r’,w) is an analytic function of w in the upper half of the
complex w-plane and approaches a real function fxc(r,r';00) for w — oo [61].
Therefore, the function (fxc(r,r’,w) — fxc(r,r'; 00) satisfies Kramers-Kronig re-
lations:

I Cx ! !

Rfse(r,',w) ~ f(r,1',00) = [ 4 Sfelrs ) (49)
T w —w

! Py ’.

Sfxe(r,r’,w) = TP /di%fxc(r’r had /) Fxo(r,1'; 00) . (50)
™ w —w
Also, since fxc(z,z') is real-valued,

fxe(r,r'sw) = frc(r,r's—w). (51)
Besides that, the response functions x; and x satisfy the symmetry relations [62]
x(r, r'sw) = x(r', 15 0) (52)

provided that the unperturbed system has time-reversal symmetry. Equation
(47) then implies that

fxc(l',l'l§w) = fXC(I'I’I'§W)- (53)

The exact conditions on the potential of section (3) also yield conditions on
fxc, when applied to an infinitesimal perturbation. Taking functional derivatives
of (30) and (31) yields

/d3r n(r) Vfxe(r,r';w) = —V'uxe(r) (54)
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and
/d% n(r) r X Vfxo(r, r';w) = —r' X Viuxe(r'). (55)
Taking [ dr’ n(r') of each side, and using (30) and (31) once again, yields
/d3r /d3r' n(r) n(r') Vfxc(r,r';w) =0 (56)
and
/dsr n(r) /d3r' n(r) n(r') r x Vfxc(r,r';w) = 0. (57)

These equations place strong restrictions on the frequency dependence of fxc,
since the right hand sides are all frequency independent[37].

4.3 Explicit orbital-dependence

One can also consider the linear response regime of the OEP equations, and ask
what integral equation fxc satisfies[27]. This turns out to be identical to the
OEP equation itself, (24), but with vcc(z) replaced by fxc(z, ') and uxc,j(z)
replaced by gxc,;(z,2'), where

N 1 buxc(z)
gxo3(%: ) = [W 6¢;(z")

] (58)
{gr(r) exp(—iex(t—to))}
and the {¢;(r)} are the ground-state Kohn-Sham orbitals. Thus gxc,; involves a

straightforward functional derivative of vxc, but evaluated on the time-evolved
ground-state Kohn-Sham orbitals.

4.4 Tensor exchange-correlation kernel

This scalar linear response theory may be easily generalized to the time-dependent
current response j1(z) to a vector potential a; (z) [63, 39]. Following the reason-
ing above, we find

ji(r,w) = /d3r' xs (r,r;w) - ag1(r',w), (59)
where
as;1 = a1 +ag + axc (60)
is the Kohn-Sham vector potential,
an = /d3r' \Y L V' i, w) (61)
. (w)? o]

is the longitudinal vector Hartree potential, and

axc(r,w) = /d3r' frc(r,r;w) -ji(r;w) (62)



A Guided Tour of Time-Dependent Density Functional Theory 17

is a linear functional of j;. The boldface x and fxc indicates that these are now
3 x 3 tensors. The tensor exchange-correlation kernel is

®
e —r'|

1

frc(r,r;w) = x5! (r,0;w) —x * (r,r;w) =V \vi (63)

where ® denotes the outer product of two vectors, and the Kohn-Sham suscep-

tibility tensor is

¢ (x); (r') Vi (r) ® Vi (r')
w— (e — €x) +1in

xXs(r,v'5w) = n(r) S(r—1') 1+ (fu— 1))

3.k

. (64)

This generalization is neccessary for the construction of a local density type
approximation for time-dependent problems, as in section 5.4.

4.5 Homogeneous gas

In order to investigate fxc for the uniform gas, we consider (47) in the uniform
case. Fourier transformation with respect to (r —r') and (¢ — ¢') leads to

. 1 1 4
unif

G5 = n - i T2 05
o (n,q;w) Xinif(n, g;w)  xUnif(n,qw) g2 %)

where XU is the Lindhard function[53]. In the theory of the uniform electron
gas [61, 64, 65, 66] fxc(g,w) is proportional to the local field correction

2

G(q,w) = — 3~ Felg,0). (66)

We focus here on the limit ¢ — 0, as this is used in the Gross-Kohn approx-
imation (see section 5.2). Writing

fu(n) = lim f15¥ (g, w), (67)

then fo(n) is known from the compressibility sum-rule, while fo,(n) is known
from the third frequency-moment sum rule[41], each in terms of the accurately-
known uniform gas exchange-correlation energy[67]. We plot these functions in
Fig. 3. Furthermore, the imaginary part of filif exhibits the high-frequency

behavior
c
lim SfPom(gw) = ———
W—00 fxc (q’ ) w3/2

(68)

for any ¢ < oo [68]. A second-order perturbation expansion [68, 69] of the irre-
ducible polarization propagator leads in the high-density limit to ¢ = 237/15,
while others [70, 71] find double this value; see also Ref. [72]. Some exact features
of xU™f are known, which lead to some exact properties of fi2if. Many of the
corresponding properties for ¢ — oo are also known[7].
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-10+

-12+

-141

Fig. 3. fi8if(g = 0,w — 0) and f32(q = 0,w — o) as functions of 5.

Taking into account the exact high- and low-frequency limits, Gross and
Kohn [40] proposed the following smooth interpolation for f,(n):

5/3
%fw(n) = _c(l T 34/3223 (::2)5/4 ’ (69)
where
a(n) = (v/¢)(foo(n) = fo(n)), (70)

and v = (I'(1/4))?/(4v27). The real part can then be found in terms of el-
liptic integrals using the Kramers-Kronig relation (49). An extension of the
parametrization (69) to non-vanishing g was given by Dabrowski [73]. The spin-
dependent case was treated by Liu[74]. A similar interpolation for the exchange-
correlation kernel of the 2-dimensional electron gas has been derived by Holas
and Singwi[68].

More recently, Bohm, Conti, and Tosi[75, 76] have calculated fxc(w) within
several different approximations for the uniform gas. They find that two-plasmon
processes induce a strong peak in the imaginary part just above twice the plas-
mon frequency, leading to highly nonmonotonic behavior in the real part. The
resulting frequency dependence is very different from the smooth interpolation
of (69).

Lastly, we discuss the response of the uniform gas to the vector potential of
section 4.4. In the limit of small wavevector g, i.e., ¢ << kr and ¢ << w/vF,

firf(qw) = w2 [fu(n) a®a+ fL (n)(@1-q®q)], (71)
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where fT(n) is the transverse exchange-correlation long wavelength response
function of the uniform gas. Thus the exchange-correlation vector potential of a
uniform gas in response to a slowly varying perturbation is

altf(r,w) = w2 {V[fu(n)Vi1(r,w)] = V x [£I (n) Vi1 (r,w)]} . (72)

The behavior of the transverse kernel fT(n) is also known in the limits w — 0
[77] and w — oo [39]. Conti, Nifosi, and Tosi have calculated this transverse com-
ponent, again finding strong structure around twice the plasmon frequency[77].

5 Approximate functionals

In this section, we sketch the historical evolution of functional approximations for
vxc and fxc. This illustrates how exact conditions are used to refine and sophis-
ticate approximate functionals. What is perhaps lacking is more calculational
comparison between these various functionals. After all, the simplest approxi-
mation (ALDA) satisfies all exact conditions except, oddly enough, recovery of
the frequency-dependent response of the uniform gas.

5.1 Adiabatic local density approximation

The simplest possible approximation of the time-dependent exchange-correlation
potential is the adiabatic local density approximation (ALDA). It employs the
functional form of the static LDA with a time-dependent density:

d

veet[n](z) = vie" (n(x) = i (Pex™ ()| =) - (73)

Here €i%if is the accurately known exchange-correlation energy per particle of
the uniform electron gas. Naively, one might expect ALDA to be a good ap-
proximation only for nearly uniform densities, i.e., for functions n(z) that are
slowly varying both spatially and temporally. However, for the ground-state en-
ergy, LDA is moderately accurate for almost all systems[78], so there is room
for optimism. For the time-dependent exchange-correlation kernel of (44), (73)
leads to

hom

LD. ! ! dz
P mol(2,2") = 6@ = ') g5 (2 (0) g (74)

The time Fourier-transform of the kernel has no frequency-dependence at all.
This is not such a bad thing, as it means that translational invariance, (32), is
satisfied, although in a rather crude fashion.
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5.2 Frequency-dependent LDA

In order to incorporate the frequency-dependence of fxc in some approximate
fashion, Gross and Kohn[40] suggested using the frequency-dependent exchange-
correlation kernel fUlif of the uniform electron gas in a local approximation:

xXc
ve no](r,1'5w) = {8 (no(x), Ir — r'f;w). (75)

The LDA of non-local quantities, such as response functions, always involves
some ambiguity[2] as to where the inhomogeneous ny(r) is to be evaluated. To
avoid this, Gross and Kohn[40] treated the case where n;(r,w) is slowly varying
on the length scale given by the range of fi2if(ng(r), |r — r'|;w). The change in
the exchange-correlation potential is then

Vxo (T, w) = ny(r,w) /d3r' Unif (o (r), [r — r');w) . (76)
Thus the Gross-Kohn approximation may be written as

o], r'sw) = 6(r — ') fra¥(no (r), ¢ = O w), (77)

whereas ALDA uses the zero-frequency limit of this kernel for all w. As we
see in the next two sections, the GK approximation, by incorporating the full
frequency dependence of the uniform gas exchange-correlation kernel, violates
several of the exact conditions developed in section 3.

5.3 Following a fluid element

The difficulties with the frequency-dependent LDA of Gross and Kohn were
first noted by Dobson[38]. Harmonic potential motion causes a static ground-
state density to be rigidly boosted, as discussed in section 3.2, leading to a
response kernel with no frequency dependence. This suggested the following
general property of the time-evolution of an inhomogeneous system (in the linear
response regime). Consider a fluid element at z = (r,t). It has evolved from an
element at z’, where t' < t, and in general, r' # r. The position r’ of the fluid
element at earlier ¢’ is determined by the differential equation:

t = u(z') = j(z')/n(z’) (78)

where the dot denotes a time derivative, and u(z) is the fluid velocity, with initial
condition rj,_, = r (not to be confused with uxc ;). This uniquely determines
the fluid displacement history. The linearized continuity equation (9) then yields

i (z) = 2P () + 128 (z) = —no(r) V - u(z) — u(z) - Vno(r). (79)

The first term above is the compressive component of the fluid motion, which
comes from changes in the velocity distribution of the fluid. The second term
originates from the rigid translation of the fluid, without any changes in the
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velocity distribution, such as occurs in the boost described in translational in-
variance. Thus the response to the compressive component should be frequency-
dependent, but not that of the rigid component, i.e.,

vxe(T,w) = fu(no(r)) ni™™(r,w) + fu=o(no(r)) ni* (r,w). (80)
Clearly, for the boosts used in translational invariance, n;°™? = 0, while this
ansatz is also exact for the response of the uniform gas, where n}'8¢ = 0.

5.4 Local current-density approximation — LCDA

Consider applying (54) to a slowly varying density, so that fxc could be replaced
by its uniform electron gas limit, which is known to be short-ranged. Then we
find

el (g = 0,w,n(r)) Vn(r) = Vuxe(r), (81)

which is impossible, as the left-hand-side is frequency dependent, while the right
is not. Thus fxc for an inhomogeneous system is long-range in space and a
nonlocal functional of the density[37].

Using the current density formalism, Vignale and Kohn[39] have shown how
to overcome this difficulty, and produce a semilocal current-density approxima-
tion. Consider an almost uniform gas, where the deviations are both small and
slowly-varying:

no(r) =n[l+ 2y cos(q; - r)], (1 € kp,w/kr;y < 1). (82)

VK deduce an analytic expression for fx. to first order in «, by using (56)
and (57) and the Ward identity. This contrasts with the scalar version, in which
fxc(a+4ai, q;w) has a singularity of the form q-q; /¢° as ¢ — 0 at finite g1, which
causes the long-rangedness and non-locality of the scalar case. These effects do
not show up here, as the tensor fx contains only differences and derivatives of
fuw(n) values.

Next, VK consider the problem of determining ax. for a slowly-varying in-
homogeneity, but which may have large global deviations from uniformity, and
deduce the general form in terms of gradients of the density and current, up to
two gradient operators. Then they equate these results to the perturbative ones
mentioned above, in the same way as the gradient expansion coefficients have
been found in the ground-state problem[79]. Some contributions of order v? are
not fixed by this comparison, but are fixed by requiring translational invariance
(32). They give an explicit formula for the exchange-correlation vector potential
in terms of n(z) and ji(«) and their gradients, with coefficients determined by
fo and fT [39].

In the case where |Vn|/n < ¢, they recover the GK result, while in the
case of a parabolic well and uniform perturbing electric field, they recover (80),
thereby justifying that ansatz under those conditions.



22 Kieron Burke and E.K.U. Gross

Finally, note that this analysis applies only for w > krg, i.e., high frequency
response, for which ALDA is not justified. A complete local current density
response theory for all frequencies remains to be developed.

Very recently[80], the VK result has been simplified, as

1
. — _v,ALDA
twaxe Vg™ + o (0) Voxc(r,w) (83)
where
2 -
o = Txc (V®u+u®V‘_—§V-u]1>+Cch-u]1 (84)

is a visco-elastic stress tensor with complex viscosity coefficients which are sim-
ply related to f,(n) and fI(n). For sufficiently slowly varying densities, these
expressions yield the nonlinear response also[80].

5.5 Local-with-memory density approximation — LMDA

Some recent work goes way beyond the linear response regime, while being con-
strained to respect all the exact conditions discussed here. The ansatz suggested
is[42]

Fxc(z) = —Vuxe(z) = —ﬁV/_OO dt' e (n(ry(z'),t —t'),t—t') (85)

where Fy is the exchange-correlation force, and IIxc(n,7) is a pressure-like
scalar local memory function of n and 7, where r}, () is the fluid displacement
function. Thus locality is defined relative to the fluid element, rather than to
a fixed position r. This LMDA is the natural generalization of LDA from the
static case.

To see explicitly that (85) satisfies translational invariance (32), note that
under a rigid boost X (t), the many-body wavefunction also moves rigidly, so that
j(z) = no(r — X(t))X, and u is independent of r. Thus r}, = r + X(t') — X(t),
and

Fyc(z) = ———

satisfying (32).

Interestingly, the function ITxc(n,w) is fully determined by requiring it to
reproduce the scalar linear response of the uniform gas. Consider small motions
at frequency w in a uniform gas of density n. One finds the simple condition

§Ilxc/dn =n fu(n) (87)

which implies

Mo (n,w) = /0 V' ! (). (88)
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Thus any parametrization of fi2if of section 4.5 fixes ITxc.

Note that (85) defines the exchange-correlation force, rather than potential.
For a one-dimensional inhomogeneity, one can simply integrate this force up to
a point to determine the potential. Thus this scheme recovers the exact VK
result for the slowly varying one-dimensional perturbation. In the more general
three-dimensional case, work is continuing.

5.6 Expansion in powers of e2

An alternative route to useful approximations is in powers of the Coulomb re-
pulsion. To lowest order, one gets the time-dependent exchange-only density
functional theory, which is most easily expressed in the OEP formalism, since
the exchange action is an explicitly orbital-dependent functional:

() — 3 Bi(r'st) ¢i(r',t) ¢i(r,t)
ux j(z) = ¢* Z / d®r o (89)

|r —

This can be derived either by inserting the exchange action into the OEP
equations[43], or directly from the Sham-Schliiter equation[32], expanded to
first-order. These equations are computationally similar to the time-dependent
Hartree-Fock equations, but their solution has one very important practical ad-
vantage over Hartree-Fock. The unoccupied orbitals in exchange-only density
functional theory suffer no self-interaction error, whereas those in HF see N re-
maining occupied orbitals. This feature is not so important in the ground-state
problem, but is very significant in time-dependent and excited-state problems.

One can also imagine going to higher order in €2, via the Sham-Schliiter equa-
tion (23), to get ever more accurate results. Of course, for extended systems such
as metals, one must include all orders within the random-phase approximation,
to avoid blatantly unphysical results, just as in the ground-state problem.

For practical calculations, one can make a simple analytic approximation to
the KLI exchange-correlation potential, which we denote PGG[26]:

2

N
oPGG( Z ; [uxc,j(z) + c.c] (90)

which comes about by retaining only the dominant contribution. This leads to
a simple analytic form for the exchange-correlation kernel:

LZh e g6 )|’
n(x) Ir = rn(r’)

This approximate form is exact for exchange for two-electron spin-unpolarized
systems. For more than two electrons, even at the exchange-only level, the
exchange-correlation kernel has some frequency dependence.

PGG(

r,r';w) = (91)
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6 Applications, Including Excitation Energies

6.1 Way beyond the linear response regime: Atoms in short laser
pulses

Recently, experiments have been performed in which atoms are subjected to very
intense, femto-second laser pulses. The external potential is then

v(z) = —% + E, f(t) z sin(wot), (92)

where Z is the nuclear charge, E, is the electric field of the laser, and f(¢) is the
envelope function of the pulse.

In these experiments, the strength of the perturbation is comparable to the
static field of the nucleus, so that linear response theory is simply inadequate.
The full time-dependent Kohn-Sham equations are solved, and two quantities
extracted from the self-consistent density. The induced dipole moment

d(t) = /d3r z n(z) (93)

whose Fourier transform, d(w), when squared, is proportional to the harmonic
spectrum, i.e., the intensity distribution of emitted photons as a function of their
frequency. Also, decreases in the norm of the single-particle Kohn-Sham orbitals
in a finite volume

Ny(t) = /V @r |65 ()P (94)

where V is a finite volume, can be loosely equated with the probability of ion-
ization of an electron from a given orbital. Calculations of these quantities have
been performed for Be[43] and Ne[18] subjected to single frequency laser, and for
He subjected to two-color lasers[18, 20]. Most recently, the formalism has been
extended to include the nuclear motion as well[20], which must be treated fully
quantum mechanically when the nuclear probability densities do not stay in a
tight classical distribution during the motion. It is also important to include the
motion of all electrons in the outermost shell[20], which is not done in the single
active electron (SAE) model in the traditional wavefunction approach[81].

6.2 Linear Response and a Little Beyond

Many applications of time-dependent density functional theory have been in the
linear response regime[16]. Calculations of photoresponse have been performed
on atoms[21, 82, 83, 84, 85, 86], molecules [87, 88] and clusters [89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99] metallic surfaces[22, 23, 24, 25, 100, 101, 102]
and semiconductor heterostructures[103, 104, 105, 106, 107] bulk semiconductors
[108] and bulk metals[109, 110, 111, 112].
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For sufficiently long wavelengths, the electric field experienced by the system
is spatially uniform, and the dipole approximation holds. For a finite system, the
dynamic polarizability is

2
a(w) = -5 /d3r 2 ny(r,w) (95)
and the photoabsorption cross section is
4
o(w) = % Sa(w). (96)

Most calculations of this kind have used the ALDA in the past, with reasonably
good results. A similar formula defines the Feibelman d-parameter, d (w), which
characterizes the surface response in the long-wavelength limit and determines,
e.g., the initial dispersion of the surface plasmon[113].

Another off-shoot of these calculations is the question of incorporating van
der Waals forces into density functional approximations. Because these forces
arise from dynamic fluctuations at separated points in the system, there is no
(transparent) way to build them into a local or semilocal (GGA) ground-state
exchange-correlation energy functional (but see [9, 10]). A more natural lan-
guage is that of dynamic linear response. Thus approximations for a(w) lead
to predictions for Cs, the coefficient of the 1/R® attractive potential between
two widely separated neutral species[114, 8], or the C3 coefficient of the 1/R3
potential between an atom and a surface[115, 116]. Furthermore, some approxi-
mation for fxc, inserted in the linear response formula and then inserted in the
adiabatic connection formula for the exchange-correlation energy, will produce
an energy estimate which includes van der Waals forces, at both small and large
separations[11].

Senatore and Subbaswamy [117] have found explicit expressions for the re-
sponse up to third order, while Gonze and Vigneron [118] have calculated the
static case. Recently[7], it has been shown how to go to arbitrarily higher order
response functions, order-by-order. Interestingly, the k-th order density response
satisfies an integral equation whose kernel is independent of k, i.e., is the same
for any order, but whose driving term depends on all k£ — 1 lower order solutions.

ni(z) = My(z) + /d4a:' /d4x” Xs(2',2") fuxc(z,2') ni(z") (97)

Therefore once the first-order response is found, the next can be found by the
same means, once the driving term is constructed.

6.3 Excitation Energies

The linear response of any system can be used to determine its excitation ener-
gies. Simply apply an oscillating potential and vary its frequency, and a resonance
occurs whenever the frequency equals the difference of two energy eigenvalues
of the system. This familiar physical statement can be used to great effect in
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time-dependent density functional theory, since the exact susceptibility x must
therefore contain poles at the exact excited state energy differences. To see this
explicitly, we rewrite (42) and (43) as an integral equation for the first-order den-
sity response in terms of only the Kohn-Sham susceptibility and the exchange-
correlation kernel:

/d3r' {6(r—r') —/d3r” xs(r, "5 w) fHXC(r',r";w)} ny(r',w)
/ &' ya(r,r's w) vy () (98)

where the driving term contains the external potential. Since the true excitation
energies (2 are generally not identical to the Kohn-Sham excitation energies,
the right-hand-side remains finite as w — {2, whereas n; has a pole at (2. The
operator acting on my cannot be invertible here, so its eigenvalues must vanish,
i.e., writing

/d3 ! /d3r' Xs(r, ' W) fuxc(r’, "5 w) ((r",w) = Mw) {(r,w) (99)

we have A\(£2) = 1. This is an exact condition for determining the excitation
energies of the system.

In practice, we usually don’t want the full frequency-dependence of the func-
tions in (99), which contain a vast amount of information on the response of the
system. In the case where the poles are well-separated, we make a single-pole
approximation (SPA), where we expand everything about a single Kohn-Sham
energy difference, assuming the difference between the true excitation frequency
and the Kohn-Sham one is smaller than the difference between energy levels[26].
We then find

Q=i+ 2R =) [ [ @1 656) 61(6) funclrir'sw) (&) u(x)
(100)
This expression estimates the leading correction to the Kohn-Sham eigenvalues
as excited state energies. It was used to calculate the energies displayed in Fig. 2,
starting from the exact Kohn-Sham orbitals, and using the PGG approximation
for fx.

These formulas have been applied to excited state calculations for atoms
with considerable success[26], in the sense that the excitation energies are al-
ways improved, often significantly. The Kohn-Sham eigenvalues do not distin-
guish between the spin states of the excited states. When the excited state is
degenerate at the Kohn-Sham level, the correction usually splits this degeneracy.
In particular, the spin-dependent version of (100) yields the separate singlet and
triplet levels, raising the singlet and lowering the triplet[28]. It is important to
begin with a good approximation to vxc(r) for the ground-state, since the orbital
energies, especially of the higher lying states, are very sensitive to the decay of
the potential[27]. Beyond that, the time-dependent X-only approximation to fxc
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ALDA

is usually better than f. , while the correlation correction within ALDA is

Xc
usually in the right direction.
Other routes to excited state energies are also being explored, such as ensem-
ble DFT[119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129], ASCF theory[130,
131, 132], and Gorling-Levy perturbation theory[133, 134]. It remains to be seen
which will provide the best approach to the problem. Very likely, each of the
various approaches will suggest its own approximations, etc., and be useful in

its own way.

7 Outlook

The purpose of this chapter has been to review the current state of time-
dependent density functional theory, especially for those who are more familiar
with the traditional ground-state formulation and applications.

We believe that this subject is about to see an exponential growth in interest,
as practical approximations are currently appearing and being developed, which
should lead to applications in areas of chemistry[135], such as laser-induced
photochemistry[136]. We anticipate that ultimately it will reach the same level
of development and application as the ground-state theory currently enjoys, in
both physics and chemistry.
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