Relativistic Theory of Superconductivity
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Abstract
A relativistic generalization of the Bogolubov-de Gennes equations is derived where the
particle and hole amplitudes are Dirac spinors. In the weakly relativistic limit one obtains,
besides the usual spin-orbit, Darwin and kinetic energy corrections, a new ”spin-orbit” and
a new "Darwin” term involving the pair potential in place of the electrostatic potential.
The results indicate significance of the relativistic corrections for superconductors with a

high Fermi velocity, a small coherence length or heavy elements in the lattice.



Relativistic effects play an important role at several places in the theory of supercon-
ductivity : First of all, it is a well-known fact that the traditional (non-relativistic) theory
of Bardeen, Cooper and Schrieffer (BCS) [1] gives a rather poor description of the spin
susceptibility found experimentally in the superconducting phase [2]. Inclusion of the spin-
orbit coupling, which is a relativistic effect of order (v/c)?, provides a partial explanation
of the discrepancy [3, 4, 5]. Second, theoretical attempts to describe magnetic impurities
in superconductors and the coexistence of magnetism and superconductivity have taken
the spin-orbit coupling into account [6, 7, 8]. Third, the spin-orbit coupling is known
to affect the symmetry of the order parameter. This is of particular importance for the
heavy-fermion superconductors, where currently much experimental and theoretical effort
is put in a determination of this symmetry [9, 10, 11, 12, 13, 14]. Finally, the Meissner
effect can be regarded as an intrinsically relativistic effect [15] since it is associated with
an energy contribution of order (v/c)?.

The non-relativistic standard theory of inhomogeneous superconductors [16, 17, 18,

19, 20] is based on the Bogolubov-de Gennes Hamiltonian
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where ! (r) and 4, (r) are the usual (non-relativistic) field operators. o is a spin in-
dex and H.c. denotes the Hermitian conjugate. The first term of (1) is a single-particle
Schrodinger Hamiltonian containing an effective electrostatic potential w(r) which consists
of the Coulomb potential of the ionic lattice and, in the most general case, an additional
external voltage applied to the system. p is the chemical potential and 7 is the generalized
momentum p — %A where A is an external vector potential and ¢ is the charge of the
particles involved. The second term of (1) contains the pair potential D(r) that couples
to the superconducting order parameter A(r) = 14(r)v (r). For the time being, the three
potentials w(r), A(r) and D(r) are regarded as given fields.

All the work on relativistic effects mentioned above is based on the Hamiltonian (1)
with the additional inclusion of the spin-orbit term in the potential w(r). This procedure,

however, does not treat relativistic effects in a consistent way because it includes only



relativistic corrections arising from w(r) but neglects possible relativistic corrections of
the same order in (v/c) associated with the pair potential D(r).

It is the purpose of the present work to provide a relativistically consistent theory
of superconductivity on the single-particle level that treats all relativistic effects on the
same footing. We shall first present a fully relativistic treatment leading to a set of Dirac
type Bogolubov-de Gennes equations. Then we take the weakly relativistic limit of these
equations to order (v/c)?. One obtains, in addition to the usual spin-orbit, Darwin and
kinetic energy corrections, a new ”spin-orbit” and a new ”Darwin” term involving the pair
potential D(r).

Obviously the relativistic generalization of the first term on the right-hand side of Eq.

(1) is the Dirac Hamiltonian

/d37" U(r) [C’)/ -p+me* + q%A"] U(r) (2)

with the four potential A¥ = (%,A(r)) and the four vector of gamma matrices v,
[21]. ¥(r) denotes the Dirac spinor field operator and ¥(r) = ¥'(r)yy. In order to find the
corresponding relativistic generalization of the second term in Eq. (1) we have to construct
a covariant extension of the non-relativistic singlet order parameter A(r) = 14(r)y, (r).
This is achieved by requiring the Cooper pair to consist of time-conjugate states, i.e. the
relativistic order parameter is required to be a Kramers pair, A,¢(r) = b¥7T (r)7T ¥ (r).
Here U7 (r) is the transposed Dirac field operator and 7 = iy'y3 is the time-reversal

operator. The proportionality constant b is determined in such a way that A, (r) reduces

to A(r) in the non-relativistic limit. This leads to A, (r) = U (r)nT(r) with
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It follows that A, (r) has a simple and definite transformation behaviour under Lorentz
transformations : it is a Lorentz scalar. The fully relativistic Hamiltonian is then given

by

H= / Pri(r) [ey - p+me + gy, A1 T(r) - / d [U7 ()4 U(r) D" (r) + Hee] . (4)



Next we search for a set of single-particle eigenvalue equations describing the excitation
spectrum of this Hamiltonian. H can be diagonalized by means of the unitary and canonical

transformation

Ti(r) = 3 (wins(r) s + vl (007 ) (5)

kj
which is a straightforward generalization of the well-known Bogolubov transformation
[16]. The operators 'y;gj and <; are the new quasi-particle creation and annihilation
operators. The indices ¢ and j refer to components of four-spinors while the index k stands
for all quantum numbers that characterize the quasi-particle states. For homogeneous
systems k represents the wave vector, in the presence of a periodic lattice potential it
additionally contains a band index and for the case of spherical symmetry it includes
angular quantum numbers. In analogy to the non-relativistic case [17], the unitarity
and canonicity conditions lead to a set of generalized orthonormality and completeness

relations for the amplitudes u;p;(r) and v (r), which will be presented elsewhere [22].

The Bogolubov transformation (5) leads to a set of eight coupled differential equations

which, in terms of the Dirac spinors uy; = (ulkj..U4kj)T and vy; = (Ulkj..v4kj)T, can be
condensed in two 4 X 4 equations.
Yley - p+me*(I = y0) + qvuAJug(r) = Eyjug;(r) — D(r) (20) vg;(r) (6)

Yoley - p +me*(I — 0) + quuA*] v (r) = —Egjop;(r) + D*(r) (207) ugs(r)  (7)
where I represents the 4 x 4 unit matrix. We have subtracted mc? from the Dirac operator
to facilitate the transition to the weakly relativistic limit. Eqs. (6) and (7) constitute
one of the main results of the present work. They will in the following be called Dirac-
Bogolubov-de Gennes equations. Their algebraic structure is very similar to that of the
traditional non-relativistic Bogolubov-de Gennes equations [16]. The main difference is
that the particle and hole amplitudes uy;(r) and vg(r) in Egs. (6) and (7) are Dirac
spinors while they are single-component functions in the non-relativistic Bogolubov-de
Gennes equations.

Specializing to homogeneous systems (w(r) = const = 0 and D(r) = const = D)

without magnetic fields (A(r) = 0) the energy spectrum of Egs. (6) and (7) can be



determined exactly. A straightforward calculation gives

By = +/(ex £ a)? + |DP? ®)

where a = me? + p and € = ++/(fik)2c2 + m2ct. The energy spectrum has four branches
corresponding to the four possible choices of the signs (see Fig. 1). We can immediately
check two important limiting cases: (i) In the non-superconducting limit (D = 0) Eq.(8)
reduces to +(ex £ a). The two branches +¢; —a are the usual Dirac spectrum, shifted by a.
The remaining two branches, —(+e; —a), being the negative of the first, represent the hole

spectrum, as always for Bogolubov-de Gennes-type equations. (ii) In the non-relativistic

limit (v/c — 0), Eq.(8) reduces to the well known BCS result i\/(h2k2/2m — u)?+|DJ?.
In both the relativistic and the non-relativistic case, the superconducting gap (see Fig.
1) is given by 2|D|. The relativistic theory predicts, however, that the position of the gap

is slightly shifted away from the Fermi wave vector k. One finds

Bap = K2(1 + 5 (0r/0)?) )

with the Fermi velocity vp. The predicted shift is of the same order of magnitude as the
experimentally confirmed relativistic correction to the Cooper-pair mass [23].

For inhomogeneous systems a complete numerical solution of the Dirac-Bogolubov-de
Gennes equations (6) and (7) is required. Since, for ordinary matter, terms of higher
than second order in (v/c) are negligibly small it is desirable to have a set of weakly
relativistic (Pauli-type rather than Dirac-type) Bogolubov-de Gennes equations. Such
equations would be easier to handle and, in addition, they would allow one to identify the
superconducting analogues of the spin-orbit and Darwin terms. In the remaining part of
this paper we determine the weakly relativistic limit of the Dirac-Bogolubov-de Gennes
equations to second order in (v/c). Straightforward application of the Pauli elimination

method [24] leads to
(Ho + H>) ( ki > = Ey; ( ok > (10)
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where the particle and hole amplitudes uy; and vy; are now Pauli spinors uy; = (u1x;, uzkj)T



and vg; = (vikj, ngj)T. The zero-order term

(o m2/2m + (w(x) - ) D(r) (icr,)
Ho= ( —(io,)D"(x) —(o* 72 /2m — (w(r) — p) > ()

is the well-known [16] non-relativistic spin-Bogolubov-de Gennes Hamiltonian.The second-

order term is given by
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Eq. (10) is not a standard eigenvalue equation because H, contains the eigenvalue
E}; to be calculated [24]. To underline this fact we write Ha(Ej;). In the following we
determine an energy-independent Hamiltonian Hs such that the spectrum of (Hy + Hs)
is identical to order (v/c)? with the spectrum of (Hy + Hs). By first-order perturbation

theory, Hy must satisfy the equation

(Wi | Halty) = (i) | H2(BG ) = (3] 1 H2( B ) + (4] 1 Ha (B 14)) /2

(13)

where W,g?) is a shorthand for the eigenstates (u,(c(;.), v,(c(;-))T of Hy and E',(c(])-) are the corre-

sponding energy eigenvalues. The last equality in (13) follows from the fact that H(E)
is a Hermitian operator for any value of E.

For simplicity we now consider systems without magnetic fields so that

_ [ P*/2m A+ (w(r) - p) D(r)(ioy)
Ho = < o)D" (0)  —p?/2m— (w(r) - ) ) (14)
and
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Inserting this representation of Hy in the r.h.s. of Eq. (13) and using the fact that

w(r) — p) — BY —p?/2m  —io,D(r
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the Hamiltonian Hj is readily identified to be

ho ds
Hy = 1
() i




with
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The three terms of he are the usual Darwin, spin-orbit and kinetic energy corrections
known from atomic physics. The two terms of ds are the central result of our analysis.
These new terms are of the same order in (v/c) as the well-known terms of hy and they
have the same algebraic structure. For homogeneous systems, do does not contribute
and the energy spectrum of (Hy + Hs) is easily seen to reproduce the spectrum (8) of the
Dirac-Bogolubov-de Gennes Hamiltonian to order (v/c)?. For inhomogeneous systems, the
off-diagonal terms do and dj become relevant. To estimate their magnitude we replace
the gradients by suitable mean values, i.e., |V2D| — D/&2, |Vu| — 4/¢ and |Vv| — /€.
where ¢ is the typical length over which the pair potential and the particle and the hole
amplitudes can vary. This typical length is the coherence length of the superconductor. As
a consequence, ds is found to be proportional to (A¢/€)?, where A¢ is the Compton wave
length. In the high-temperature superconductors the coherence length is several orders
of magnitude smaller than in conventional superconductors. The resulting values of ds,
although still small, are expected to produce a clearly measurable effect that might shed
some light on the nature of superconductivity in these materials.

Another interesting effect in inhomogeneous systems comes from the term with the
vector product in dy. Concentrating on one unit cell and assuming D(r) to be spheri-
cally symmetric in this cell (which is a reasonable approximation for instance for some
superconductors with one atom per unit cell like Nb) this term can be written as

1 1dD
——=———S5 - L(ioy). 20
2m2c2 r dr (ioy) (20)
This shows, that the eigenstates of the complete Hamiltonian cannot be simultaneously
eigenstates of the spin-operator S, and the angular momentum operator L,. Consequently,

the symmetry of the order parameter should be classified according to the total angular

momentum J. The occurance of an offdiagonal S - L term has previously been postulated



[25] on the basis of group theoretical arguments. The relativistic theory of superconduc-
tivity presented above establishes, for the first time, the explicit form of the coefficient
to be (2m2c?r) 1(dD/dr). Previous treatments of the symmetry of the order parameter
[10, 13, 26] have focussed on the relativistic corrections due to hy. It is, however, essential
to include the new offdiagonal symmetry breaking terms of ds in a complete analysis of
the order parameter. This is of particular importance for the heavy-fermion supercon-
ductors. In these systems the presence of heavy elements favours relativistic effects. The
offdiagonal terms do and d;, having roughly the magnitude of (A¢/€)?, are nevertheless
very small in the heavy-fermion superconductors. However, the mere presence of these
symmetry breaking terms, no matter how small, affects the possible symmetries of the
order parameter. Applications of the theory presented in this letter to these systems are
currently under study.

So far the vector potential has been treated as a given field. However, in an actual
superconducting system placed in a given external field, A, (r), supercurrents are set
up which act as sources of an induced field, A;,(r), resulting in a total field A(r) =
A ;(r) + Ajp(r). The induced field is essential, e.g., for the description of the Meissner
effect. A;, has to be determined self-consistently by the following procedure: We first solve
the Dirac-Bogolubov-de Gennes equations (6) and (7) or the weakly relativistic Bogolubov-
de Gennes equations (10) with the external vector potential A, (r). The resulting particle
and hole amplitudes u(r) and v(r) determine the current density j(r). From the current
density the induced vector potential A;,(r) is obtained by solving the Maxwell equation
V x (V x Aj(r)) = 4T“J(r) which leads to a new total field A(r) = Ag,(r) + Aj(r).
With this total vector potential the Dirac- or the weakly relativistic Bogolubov-de Gennes
equations are solved again, leading to a new current density, etc. The cycle is repeated until
selfconsistency is achieved. It should be emphasized that the energy, (1/¢?)- [ d3rd3r j(r)-
J(r")/|r — r'|, associated with the induced currents is of the same relativistic order as the
new terms presented in this work. A consistent treatment of the Meissner effect and, in

particular, the calculation of the penetration depth should therefore include the new terms



as well. Detailed results will be presented elsewhere [22].

In a more complete treatment, the potentials D(r) and w(r) will have to be determined
self-consistently as well. This requires a consistent relativistic treatment of the particle-
particle interaction, leading, e.g., to the inclusion of the Breit interaction. In this context,
variationally stable two-component Hamiltonians such as the Douglas-Kroll-Hess operator
[27, 28] will have to be considered as well. To determine D(r) and w(r) self-consistently, a
relativistic extension [29] of the density-functional formalism for superconductors [30, 31,
32, 33] is envisaged.
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