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Abstract
The density-functional theory of superconductivity is extended to triplet superconductors
and superfluid helium 3. We prove a Hohenberg-Kohn-type theorem for these systems and
derive effective single-particle equations. The latter include exchange and correlations in a
formally exact way and allow the treatment of both electronic and phonon-induced super-
conductivity. The relation of this approach to the Bogolubov-de Gennes mean-field theory

and to phenomenological theories based on Ginzburg-Landau functionals is discussed.



1 Introduction

The purpose of this work is to generalize the density-functional theory (DFT) for super-
conductors to the case of triplet superconductors.

DFT for superconductors was originally formulated for superconductors with a singlet
order parameter [1]. The basis of this theory is provided by a Hohenberg-Kohn (HK) type
theorem which states that all properties of a superconducting system can be expressed as
functionals of the number density n and the order parameter A.

The other basic ingredient is a set of Kohn-Sham (KS) type equations, which allow the
determination of the density, the order parameter and the grand canonical potential from
single-particle wave functions which are calculated self-consistently. Many-body effects
beyond the Hartree (mean field) approximation enter the theory through an exchange-
correlation (xc) functional F,. which is a universal functional of the number density and
the order parameter. This functional, just as the corresponding normal-state xc functional,
is not known exactly.

The formalism has meanwhile been extended to include current densities and external
vector potentials [2, 3], the magnetization density and its interaction with magnetic fields
[3] and time dependent external fields [4]. The resulting KS equations have been solved
using band structure methods with a phenomenological ansatz for the xc functional [5, 6].
As another strategy for the solution of the equations an approximate decoupling into a
gap equation and an ordinary normal-state KS equation has been proposed [7, 8].

Recently an LDA-type approximation for the universal xc-functional has been con-
structed [3, 9] which generalizes the normal-state LDA in taking into account the depen-
dence of the xc functional on the order parameter explicitly. A frequency dependent linear
response formalism based on the general theory has also been worked out [10].

All this work has been directed towards inhomogeneous (i.e. short coherence-length)
and strongly correlated superconductors, which cannot be treated properly within the

BCS theory. The order parameter (OP), which is the basic quantity in this treatment, is



a singlet OP, i.e. of the form

A(r,r') =< 1/J¢(r)¢¢(r') > . (1)

It is well known, however, that many interesting systems cannot be described adequately
with such an OP. The prime example is superfluid helium 3. It is now firmly established
that the different phases of helium 3 are characterized by triplet OPs [11]. We will comment
on this case in section 4 below.

As far as proper superconductors are concerned, the hypothesis that the OP is actually
a triplet OP has been put forward for both the high-temperature superconductors and, in
particular, the heavy-fermion systems [12, 13, 14, 15, 16, 17, 18]. In some heavy-fermion
superconductors the spin-orbit coupling is very strong, so that the spin is not a good
quantum number any more. In this case a theory which consistently takes into account
the effect of relativity on the singlet [19] or triplet [20] OP should be employed.

Finally, several models for the coexistence of magnetism and superconductivity involve
triplet superconductivity (see e.g. [21, 22, 23] and references therein).

In view of the capability of the DFT approach to treat correlations in inhomogeneous
systems it is desirable to extend the formalism of DFT for superconductors to the case of
triplet superconductivity.

To this end we start from a Hamiltonian which explicitly contains a triplet OP. Different
ways to set up the basic Hamiltonian are presented in section two, where we also discuss
the structure and some of the symmetries of the order parameters in some detail. In section
three we outline the proofs for the generalized HK and KS theorems. The equations given
include both singlet and triplet contributions. In section four we offer some brief comments
on available functionals and discuss the application of the formalism to superfluid helium

3.
2 The Hamiltonian for Triplet Superconductors

The Hamiltonian we consider is given by

A~ A A~

H=T+V+U+W-D (2)



Here T is the usual operator of the kinetic energy

P= 3 [@riie (W2>¢U(> (3)

o=T{

V contains the external (lattice) potential v(r) and the chemical potential .
V=X [ b)) - abe). (4)
o=14
U represents the Coulomb interaction
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The last two terms in Eq.(2) are related to superconductivity. W is an additional phonon-
induced attractive interaction. In the most general case, W is given by

/d3 /dS'/dS /d%'AMr D) gy (v, 1, %, %) A (x, %), (6)

oo’ 1!

where the OP matrix is defined as

~ ~ ~

A (I‘, rl) = s (I')’l,ba/ (rl) (7)

which is a straightforward generalization of Eq.(1). D finally represents the coupling of

the OP matrix to a general spin dependent external pair potential D, (r,r').

b = E/ d3r d3fr, [ ~;0’ (I‘, r,)Aaa’ (I‘, I'I) + H.c.] (8)

Physically, this term can be viewed as representing the pair potential of an adjacent
superconductor, induced through the proximity effect [1, 2, 3]. Alternatively it can be
viewed as a mathematical device to produce eigenfunctions with the correct symmetry
(i.e. broken gauge invariance) [23]. If no proximity-induced pair potential is present, Dy
has to be set equal to zero in the final equations.

In the framework of DFT this procedure is well known from spin-DFT, where external
magnetic fields are introduced in the beginning to generate a non-vanishing OP which,
in this case, is the spin magnetization. For zero external field the final equations then

describe spontaneous magnetization forming below T),, including correlation effects. In



the same way, the case of zero external pair potential in the DFT for superconductors
describes superconductivity spontaneously forming below T, again including correlations.
The general interaction w which forms the kernel of W can be specified according to

the particular model for superconductivity under study. One common approximation is
Wootrir (B, 0%, X' ) = 85 0grmw(r, o', x, x'). (9)

This covers many cases of physical interest in superconductors such as the Bardeen-Pines
interaction [3, 24], the local Gorkov interaction [25] and the original model interaction of
BCS [26]. For the case of purely electronic superconductivity, which has been suggested
to be present in the high-temperature superconductors, w can be taken to be zero since
the Coulomb interaction is already included in H through U.

The crucial step in any DFT is the identification of those ‘densities’ in terms of which
HK and KS theorems can be formulated. Although, in our case, a DFT can be established
in terms of the quantities Ay, (r,r’) it is preferable to work with another set of ‘densities’
which exhibit the singlet and triplet character explicitly. To this end we have to rewrite
Eq.(8) in terms of the new densities.

The standard way of separating the singlet and triplet components is by using the
Balian-Werthamer parametrization [12, 27, 28]. We write out the spin sum in Eq.(8)

explicitly and go over to a spinor notation. This results in

A [ 3. 38.01qT ~« (1 0 -~ (01 ~. ([0 0 . (0 0

Here ¥(r) is a two-component spinor defined as (1&T(r)7 " 1(r))T. Upon setting

DS = DTi — DiT’ Dw = Dii — f)TT’ ﬁy = i(Dii + Eyr), f)z = DTi + DJ/T’ we obtain
N 1 a o~ n o~ n o~ n" o~
D= 3 /d37" a3 T (r) [SD;(r,r') + T Dy (r,v') + T, Dy (r,x") + TZD:(I',I'I)] U(r') + H.c.

(11)
N 0 1 . -1 0 . (1 0 A 01
HereS—<_1 0>,Tx—<0 1>,Ty—z<0 1)ande—<1 O)'

D, is the pair field of a singlet superconductor (the corresponding matrix is antisym-

metric in spin space) while the Dy, l~)y, D, are the pair fields for triplet superconductors



(with spin-space symmetric matrices). The matrices 5', Tx, Ty, T, are those used in
the conventional Balian-Werthamer parametrization for triplet states [12, 27, 28]. This
representation has the advantage of being well suited to derive generalizations, e.g., to
incorporate relativistic effects [19, 20]. However, from the matrix notation of Eq.(11) the
Hamiltonian employed in the DFT for singlet superconductors is not easily recovered.
Therefore we shall use yet another representation of Eq.(8) for the DFT formulation. We
first observe that, as a consequence of the fermionic anticommutation relations, the OP
(7) satisfies

~ ~

Aggr (I‘, rl) = _AG'IO'(r,’ I‘). (12)

The pair fields Do (r,r') in Eq.(8) do not have a definite symmetry under exchange of r
and r'. However, Dy4(r,r') and D (r,r') can be assumed to be antisymmetric without
restriction because, as a consequence of (12), a symmetric component would not contribute
to the integral on the right-hand side of Eq.(8). For the up-down components we define
symmetric and antisymmetric linear combinations Dg(r,r’) := %(f)s(r, ')+ D,(r',r)) and

Dy(r,r') := 2(D,(r,r') — D,(r',r)). Defining the symmetric and antisymmetric OPs by

Arr) = (A (rr) + Ay (1)) (13)
Ro(e,x') = 5 (Apy(e,¥) — Agy(x', ) (14)
Aplr,r') = Agy(r,r) (15)
A rr')i= Ay (), (16)

Eq.(8) can be rewritten as

D= /d3r dr' [As(r, ') D (r,r') + A (r, r') D7 (r,r')

+Ao(r, YD} (r,r") + A_(r,r')D* (r, r')] + H.c (17)

where we have defined D, := ﬁﬁ and D_ := D 11~ What has been achieved by this final
rewriting is that both the pair potentials and the order parameters are even functions for
the singlet and odd functions for the triplet contributions. In this way we have incorporated

the exactly known symmetry properties of the order parameters. The formulation of a DFT



in terms of A;, Ay, Ag, A_ will facilitate the construction of suitable xc functionals with
correct symmetry properties. In terms of these ‘densities’ the phonon-induced interaction
reads

W=- Z /dsr / d3r'/d3x/d3x'A;k(r', r)w;;(r, v, x,x') A (x, %), (18)

%,J €
(s,+,0,—)

where the w;;(r,r’,x,x’) are given in terms of the w4, (r, ', x,x’) as follows:

Wit = Wippp W0 = Wty + Wit

Wi = W)y Wis = Wit} — Wiyt

Wo+ = Wyt + Wt Woo = Wyt + Wyt + Wy uy + Weylp
Wo— = Wiy + Wy Wos = Wyt — Wy + Wiyry — Wyt

W_y = Wy W-0 = W) + Wy

W_— =Wy W—s = Wy p) — Wyt

Wst = Wit — Wt Ws0 = Wit + Wy — Wiypt — Wt

Ws— = Wity — W) Wss = Wt — Wit — Wip) + Wiyt

3 Fundamental Theorems

The fundamental theorem of any DFT is the Hohenberg-Kohn theorem. In exactly the
same manner as for the normal state [29, 30] or for singlet superconductors [1, 2, 3] one
can prove a HK theorem for the Hamiltonian (2) with (17) and (18). For systems at finite

temperature the theorem comprises the three statements! :

1. The mapping of the set of densities {n(r), As(r,r'), As(r,r'), Ag(r,r'), A_(r,r')}
onto the statistical operators p = ea:p[—ﬁ(f[ )] is one-to-one. Since the statistical
operator contains the complete information on the system, this means that the above

set of densities determine the entire physics of the system at thermal equilibrium.

2. The grand canonical potential {2 can be split up into one contribution, .., from
the interaction with the external fields (v(r) — i), D4(r,r’), Do(r,r'), D4 (r,r') and
D_(r,r') and one contribution, F, which contains the kinetic energy, the entropy

and the interactions U/ and W':

Qln(r), {A} = Qeat + Fln(r), {A}]. (19)

!Quantities without a caret denote the expectation value of the corresponding operator in thermal
equilibrium, e.g., A =< A >.




F is a universal functional of the set of densities, i.e. for given particle-particle

interactions U and W, the functional F' does not depend on the ezternal fields.

3. The grand canonical potential taken as a functional of the above set of densities is

minimized by the equilibrium densities.

The functional F[n(r), {A}] can be rewritten as

Fn,{A}] = (20)
1 q , n(r)n(r’)
Tn A8)] = g A1 + G [ dor [ @ RIS+ Fn, (o)
- Z /d37"/d37“'/d3x/d3x'A§(r',r)wij(r,r',x,x’)Aj(x,x').
(6£26,)

Here {A} denotes the set of OPs (Ag, A4, Ag,A_), B stands for 1/kp6# and T and S, are
the kinetic energy and entropy of non-interacting particles, respectively. Eq.(20) serves as
a definition of the universal exchange and correlation functional F2[n, {A}].

At zero temperature one obtains the same three statements with the ground-state
energy in place of the grand canonical potential and the ground-state wave function in
place of the statistical operator.

To construct Kohn-Sham single-particle equations we use the generalized Bogolubov-

Valatin transformation

V(1) = 3 (ko (070 + 04 (02, ) - (21)
ko

The KS Hamiltonian H(®), i.e. the noninteracting counterpart of the Hamiltonian (2) with

the external fields replaced by effective fields v(*) and D),

2v72
A=Y [l <— i

o=1

)zza(r) + 2 [ e ) - n)d. @)

o=1l
= [ drate [(Autex) DI (e x) + A, ) DO )4
Ag(r,t')DF*(r,') + Ay (r, ) DY (1)) + Hee]  (22)
can be diagonalized by the unitary and canonical transformation (21) provided that the

coefficients in the transformation satisfy the following set of coupled differential equations

h D uka(r) _ Uka(l')
(o 5) (ot ) =m0 ) o)

oo



This is the KS equation for triplet superconductors. uy,(r) and vg,(r) are two-component
spinors with entries u,rs(r) and v, (r), respectively. Eq.(23) is thus a 4 x 4 matrix

equation. h is defined by

A h2V?
h= (— 4ol (r) - u> (24
where [ is the 2 X 2 unit matrix in spin-space. D stands for the integral operator
D= /d3r' cood(r,r') (25)

The kernel of D contains the individual contributions of the order parameters for singlet

and triplet superconductivity:

d(r,v') = SDY)(r,') + T_D¥(x,x') + ToD{" (r,r') + T D\ (x,1') (26)
where
A 0 1 A 01 - - 0 0 - 1 0
s=(01) m=(0 1) aoa(90) m-a(}D).
(27)

By construction, the pair potentials D) have the same parity as their interacting coun-
terparts, i.e., Dgs)(r,r') = +D{" (r',r) and DZ(S) (r,r') = —Dgs)(r',r) with ¢ € (0,4, —).

The effective single-particle potentials which appear in (24) and (26) are defined as

D) = Diles !+ (17 S [ [ a2, %) 806 X)) Daciln, (A1,
] (29)

where 7,5 € (s,0,+,—) and

(AN = ofe) + 47 [P o (AN () (29)

Here p = 0 for singlet superconductivity (i.e. for i = s) and p = 1 for triplet superconduc-
tivity (i.e. for ¢ € (0,4, —)). Equations (28) and (29) follow, as usual, from the application
of the HK variational theorem (statement 3 above) to the original interacting system and to
a non-interacting reference system with the same densities. The xc-potentials in Eqgs.(28)

and (29) are formally defined as functional derivatives:

0Fg[n, {A}]

ol (AY(r) = (30



_SF%[n.{A}]

Dacalrr’) = =55
7 7

(31)

The factor (—1)? in Eq.(28) has physical significance. Since a large pair potential is
favorable for the stability of superconductivity, the signs of the double integral over w;;
and of the xc-contribution determine if the last two terms stabilize superconductivity in
the singlet or the triplet channel. The BCS model interaction, in particular, employs
an everywhere positive spin-independent w and the Hartree-type term in (28) will thus
enhance superconductivity in the singlet channel and weaken it in the triplet channel. The
same applies for the Gorkov and the Bardeen-Pines interaction, which are of the form (9).

We can thus conclude, without any explicit calculation, that the phonon-mediated
interactions usually considered (Bardeen-Pines, Gorkov, BCS-model) are not likely to
produce triplet superconductivity, in agreement with experimental facts.

These remarks do not apply to the case of purely electronic superconductivity because
for this case w = 0. Purely electronic superconductivity would manifest itself in the form
of the functionals Dy ;[n, {A}](r,r") and vgz.[n,{A}](r) and may very well give rise to
triplet superconductivity.

The solutions of the above KS equations determine the densities through

n(r) = 3 [[trko*£5(Ero) + lorko2(1 = f5(Bio)] (32)

Tko

and

Arri(r, rl) = Z [uTkU(r)U:’ka(rI)(l - f/J’(EkU)) + U:ka(r)uT’kU(rl)fﬂ (Eka)] (33)
ko

where fg is the Fermi distribution

f5(E) = ﬁ . (34)

Equations (23) to (33) have to be solved self consistently.
In the local (A(r,r’) — d(r — r')A(r)) and singlet-only (Ao 4 — = 0) limit the above
equations reduce exactly to those of DFT for singlet superconductors of Ref.[2], while the

nonlocal singlet case coincides with the formalism put forward in Ref.[1].

10



Eq.(33) allows one to calculate the real space order parameter including its dependence
on both spatial coordinates. This amounts to the possibility of determining the symmetry
of the order parameters for a given system (i.e. a given interaction W) through approx-
imate solution of the KS equations. The parametric dependence on 8 = ﬁ allows one
to determine the temperature dependence of the order parameters and thus in particular
the critical temperature.

The equilibrium value of the grand canonical potential Q@ = Q3 + F[n,A] can be

evaluated immediately, once the equilibrium densities are known. It is given by

Q= Q, + Fyy — / Brn(r)og(r) +

/dsrdsr’ Z Ai(r,r')Dj. i(r, ') 4 cc.

/d3 &y '” +/d3 B dPadds S AL w1 %, x) Ay (x, %) (35)
ij

To derive Eq.(35) we used that
Ai(ra I‘,) = (_l)pAi(rla I‘) (36)

and

wij(r,r',x, x')* = wji(x',x, r',r) (37)

which is a consequence of the hermiticity of W (c.f. Eq.(18)). Since the grand potential
is given by (35) in terms of the particle density and the order parameters, this offers a
possibility to compare various order parameters with respect to the energetic stability of
the corresponding phase. In contrast to standard Ginzburg-Landau theory, one does not
minimize a phenomenological functional, but rather a first-principles density functional

whose validity is not limited to the vicinity of 7.

4 Remarks on Functionals and Applications

4.1 Available Functionals

The DFT formalism described above is formally exact. Any actual application requires
an approximation for the xc functional FJ,[n(r), {A(r,r')}].
In the case of singlet superconductors several such approximations exist: (i) a phe-

nomenological approximation developed by Gyorffy and coworkers [5, 6], (ii) a first prin-

11



ciples LDA-type approximation [3, 9] and (iii) gradient corrected functionals [31]. For
triplet superconductors no explicit functionals exist up to now.

The phenomenological approach, however, can be generalized straightforwardly to the
triplet case, because the detailed structure of the OP does not enter the functional in this
method.

Any parameter-free first-principles functional such as the LDA or gradient corrected
functionals should differ from the corresponding singlet functional because the correlations
will in general not be the same for the singlet as for the triplet case. The construction
of such functionals for triplet superconductors is possible along the same lines as in the

singlet case [3, 9, 31] and remains a project for the future.

4.2 Potential Applications in the Theory of Superfluid Helium 3

Liquid helium 3 undergoes a phase transition into a superfluid state below about 3mK.
In this state the individual helium atoms form Cooper pairs, just as the electrons do in
the superconducting case [11]. The superfluid state can be described in terms of an order
parameter which is very similar to the order parameter describing superconductivity.

The main difference to the case of conventional (BCS) superconductors is the OP
symmetry. For helium 3 it is well known that the Cooper pair is in a spin-triplet p-wave
state.

The density-functional formalism presented above can be applied to superfluid helium
3 with only minor modifications. The field operators in the original Hamiltonian (2)-(8)
have to be reinterpreted as creation and destruction operators for helium atoms instead of
electrons. The order parameter is still given by Eq.(7), and all the symmetry arguments
discussed in section 2 apply.

The external potential v(r) can be set equal to zero, since there is no analogue to the
crystal lattice in the case of helium 3. However, one has to keep v(r) in the derivation,
and set it equal to zero only in the final Eq.(29). It then serves as a mathematical device
to generate the exchange-correlation potential v,., just as D(r,r’) is a device to generate

Dye(r,r').

12



Finally, and most importantly, the Coulomb interaction has to be replaced by the in-
teraction between helium 3 atoms. For this one can use the potentials discussed within the
framework of paramagnon theory or Fermi liquid theory [11, 32] or any other parametriza-
tion of the interaction between the atoms.

Density-functional theory for superfluid helium 3 could then constitute a tool to treat
inhomogeneities in the superfluid state such as the effects of surfaces, textures and impu-
rities. Similar effects in metals have been treated very successfully within the framework
of ordinary density-functional theory.

Another virtue of the theory is that minimization of the grand potential through
iterative solution of the KS equations will, just as for electrons, provide a means to test

OPs of various symmetries with respect to their energetic stability.

4.3 Generalizations and Further Applications

A particularly interesting application of the formalism would be the interface between a
singlet and a triplet superconductor. In this case the external pair potentials immedi-
ately acquire physical significance. It has been demonstrated by explicit construction that
for singlet superconductors the DFT formalism is well suited to treat interfaces between
different superconductors [1]. On the experimental side, the study of such singlet-triplet
interfaces has been suggested as a means to investigate the parity of the heavy fermion
superconductors (see Ref.[27] and references therein). Although matters are complicated
through the spin-orbit interaction in the heavy fermion compounds, this might be a promis-
ing situation on which the above formalism could be applied directly.

An interesting generalization of the above work would be to include the effect of mag-
netic fields. This is important, e.g., for the high temperature superconductors, the heavy
fermion systems and the magnetic superconductors. In all these systems, the presence of
a triplet contribution to the OP is possible (and in some cases even likely) while the phase
diagrams suggest the importance of magnetic correlations for the superconducting state.

Finally, it is well known that in heavy fermion superconductors spin-orbit effects are

very strong. This makes a classification in singlet and triplet OPs somewhat questionable.
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One has to resort either to a classification with respect to parity [13] or to a relativistic
treatment [19]. Since the recently developed relativistic theory of superconductivity [19]
revealed the presence of interesting new spin-orbit terms in superconductors, it is desirable

to generalize this theory to triplet superconductors as well.
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