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It is shownthat the exchange-correlatiofunctional of spin-densityfunctionaltheoryis identical,on
a certainsetof densitieswith the exchange-correlatiofunctional of current-densityfunctional theory.
This rigorous connectionis usedto constructnew approximationsof the exchange-correlatiofunc-
tionals. Theseinclude a conceptuallynew generalized-gradiergpin-densityfunctional and a nonlocal
current-densityunctional. [S0031-9007(97)02428-9]

PACSnumbers:31.15.Ew,31.10+2, 31.25.Eb

Density-functionaltheory (DFT) hasbeenwidely and
very successfullyappliedin solid-statephysicsandquan-
tum chemistry[1]. The power of the methodlies in its
numericalsimplicity which follows from mappingthe in-
teractingmany-bodysystemof interestonto an auxiliary
system(the so-calledKohn-Shamsystem)of noninteract-
ing particlesmoving in an effective single-particlepo-
tential. The latter consistsof the external potential, the
Hartreeterm, andthe so-calledexchange-correlatio(xc)
potentialwhich containsall the many-bodyaspectf the
original interactingsystem. In practice,this quantity has
to be approximated. To deal with the presenceof ex-
ternal magneticfields, two generalization®of DFT have
been developed;spin-densityfunctional theory (SDFT)
[2] andcurrent-densityfunctionaltheory (CDFT) [3]. In
SDFT only the Zeemanterm is takeninto accountwhile
in CDFT the coupling of the magneticfield to the or-
bital currentsis alsoincluded,thusallowing for the treat-
ment of systemsin strong magneticfields. CDFT has
beenusedsuccessfullyto describethe magneticbehavior
of atoms,moleculeq4], andextendedsystemd5]. How-
ever, to date, there exist only a few approximationsof
the xc functional of CDFT: The local density approxi-
mation (LDA) of the exchangeenergyis known exactly
[6], andthe LDA of the correlationenergyhasbeencal-
culated[7] within the RPA. In SDFT, onthe otherhand,
a largevariety of approximatexc functionalsis available.
Theseinclude the LDA (beyondRPA), gradientdepen-
dentapproximationdGDA), aswell asnonlocalschemes
[1]. The purposeof the presentLetter is to establishan
exactconnectiorbetweenSDFT andCDFT whichis then
usedto constructnew approximatefunctionalsfor both
SDFT andCDFT.

The Hamiltonianof SDFT is givenby

A

H5=T+\7+W—fd3rrf1(r)-B(r), )

where, as usual, 7', V, and W stand for the operators
of kinetic energy,externalpotential,and particle-particle
interaction,respectively. The Hamiltonian of CDFT in
turnis
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A A

HC! =T+V+W—[d3rm(r)-B(r)

2
- %fd3rj,,(r)-A(r)+ 1_

2mc

f d*riv(r)A(r)?,
(2)

where ¢ denotesthe chargeof particlesinvolved. The
densityis definedin termsof field operatorsas

n(r) = () = D (FEe)P, (). 3)

The physicalcurrentdensityis given by j(r) = j,(r) +
ja(r) + js(r), where

ip() = (j,0) = 2%1 VTV (r) - VI ()P (r)])

(4)
is the paramagneticurrentdensity,
jar) = =L n(r)A(r) (5)
mc
is the diamagneticontribution,and
. c
is(r) = ;V X m(r) (6)

is the spin-currentdensity. The spin magnetizationm(r)
is finally givenby

m(r) = @) = uo > (VIwows¥sm) (7)
apB

with the Bohr magnetonu, = ¢/i/2mc and the vector
of the Pauli matriceso. In the following, the physical
(i.e., gaugeinvariant) orbital currentwill be denotedas
Jorb(r) := j,(r) + ju(r), while the sumof the paramag-
netic and spin currentswill be abbreviatedas j,,(r) :=

ip(®) + js(0).

Thereexist severaformulationsof CDFT which differ
by the choice of the current-densityariable: From the
form of the Hamiltonian H¢! it appearsmost naturalto
use j, togetherwith » andm. This choicewasadopted
by Vignale and Rasolt in the original formulation
[3] of CDFT, with the (commonly applied) additional
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assumptionof m having a fixed direction in space.
Alternatively,onecaninsertB = V X A in (2) andthen
performa partial integrationon the Zeemanterm, leading
to —Z [d®rj, - A plusasurfacetermwhich vanishedor
finite systems. This yields the Hamiltonian

A?=7+7v+w- 1L /d3rjm(r) - Ar)
C

2
+ 2 f Pri)Ar)?, 8)
2mc?

suggestingthe use of the densitiesn and j,,. For each
of the three Hamiltonians, (1), (2), and (8), HK- and
KS-type theoremscan be formulatedin the usual way,
for all v-representablelensities(n,m) (n,m, j,), and
(n, jm), respectively. In particular, the many-body
ground statesof (1), (2), and (8) are uniquely deter-
mined by the respectivedensities,i.e., ¥ = ¥5[n, m],
W = ¥l m,j,], and ¥ = ¥[p, j,]. Like-
wise, the correspondingKS Slater determinantsare
uniquely fixed by thesedensities,i.e., ®5 = ®5[n,m],
Ol = ®Cn,m,j,],and®? = O[n, j,].

For finite systems,H¢! (with B = V X A) and H¢?
areidentical. Hencethe correspondingnany-bodywave
functionsmustbeidenticalaswell, i.e., ¥![n,m, j,] =
Y n, ju = j, + ¢V X m]. As an immediateconse-
quencewe find

Fn,m,j,] = (YT + W|¥)
— (Yl W

= FC2|:n,jm = jp?v X m:| (9)

According to the Levy-Lieb constrained-searcformula-
tion [8] of DFT and its recentextension[9] to CDFT,

the KS ground state ®¢![n,m, j,] is the determinant
which minimizes(7’) andsimultaneouslyields(r, m, ip)

Likewise, ®[n, j,, ] is the determinantvhich minimizes
(T'y and simultaneouslyyields (n, j,). However, since
o€l alsoyields j, = j, + §V X m, we concludethat
OCn,m,j,] = ®[n, ju =j, + gv X m]. Conse-
quently, the noninteractingkinetic energyfunctionalsare
identical:

T n,m, j,] = (O T|DC) = (2T | D)
= rfz[n,j,,, —j, + —VX m] (10)
q

For each of the three Hamiltonians, (1), (2), and (8),

the xc energy is defined as Ex, =F — T, —

1 [d3rd®r'n(r)w(r.r)n(x'). Therefore, as an im-

mediateconsequencef (9) and(10), we obtain

B )] = 52 i = 3y + SV xm | Q)
q

Using this identity, we find for the xc potentialsvy¢, Bxc,
A€l and A€2, which arefunctional derivativesof the xc

Xc? Xc?

energywith respecto n, m, j,, and j,,, respectively,

viln,m,j,] = UXCC2|:n,jp + %V X mi|, (12)
A n.,m,j,] = Afcz[n,jp + gv X m} (13)

B [n.m,j,] =V x Afg[n,j,, + %V X m} (14)
In CDFT thetrue densities(n, m, j,) canall be obtained
from the correspondingCDFT KS orbitals. In SDFT, on
theotherhand,only thedensitiegn, m) arereproducedy
the SDFT KS orbitals,while j, is afunctionalof (n, m):

ipln,m] = (¥3[n,m]lj,| ¥[n,m]).  (15)

This quantitywill, in generalbedifferentfrom the current
resultingfrom the SDFT KS orbitals:

iy ln,m] = (@°[n,m]lj,| ®3[n, m])

N
= 5 > 6l Vol — Vel (19)

m &
In the following, we specializeto situationswhere B =
A = 0. Inthis case,jx%[n,m] = 0 implies j,[n,m] =
0 andvice versa. Furthermore HS = H¢! = HC? and,
consequently¥$ = wC! = w2 Fromthis, we readily
concludethat the three versionsof the functional F =

(¥|T + W|¥) coincide:

Fs[nam] = FCl[nama j[)[n’m]]
= Fcz[n,jm = jp[n’m] + LV X m],
q
(17)

if B[n,m] = 0. The functional B[z, m] representshe
magnetic field that, within SDFT, correspondsto the
densitiesn, m). We emphasiz¢hatevenfor a vanishing
externalmagnetidfield the spinmagnetizatioom neednot
bezero. All atomsandmoleculeswith an odd numberof
electronsaswell asferromagneticsolids,areexampleof
this situation. As a consequencethe KS Hamiltonian
of SDFT does not reduceto the KS Hamiltonian of
ordinaryDFT in thesecases. Likewise, jo., neednot be
zeroif B[n,m] = 0. Forexample anatomwith a single
p electronoutsidea closedshell, preparedin the m; =
+1 state,will havea nonvanishingprbital current.

In the following, we further specializeto situations
of vanishingorbital current,i.e., we shall only consider
densitieghatlie in the following set:

M ={(n,m):B[n,m] =0, j,[n,m]=0}.

Using againthe constrained-searatharacterizatiomf the
KS determinantsywe readily concludethat

(18)

®5[n,m] = ®'[n,m,0] = (I)C2|:n, £V x m} (19)
q
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for (n,m) € M. Thisimmediatelyyields

75[n,m] = 7¢'[n,m,0] = T_fz[n,iv X m}, (20)
and, by virtue of (17),

B Dnom] = ECTnm, 0] = B 1. £ ¥ xm | (20

for (n,m) € M. Taking the functional derivativesof
this equationwith respectto » andm on the set M we
obtain

vfc[n,m] = vxccl[n,m,O] = vxccz[n, iV X m} (22)
q
and
BS.[n,m] = BS![n,m,0] = V X Agg[n,gv X m:|

C
(23)
for (n,m) € M. A very important property of EC!

Xc !
first pointedout by Vignale and Rasolt[3], is that gauge
invarianceforcesthe functionalto dependon the current
only throughthevorticity », =V X (j,/n), i.e.,

Efcl [na ma jp] = Fgcl [n’ m, Vp] .

(24)

This propertycarriesover directly to the j,, formulation
of CDFT, i.e.,

Efcz[na jm] = ESCZ[", Vm] , (25)

where »,, standsfor the vorticity »,, = V X (j./n).
Hencewe obtainfrom (21) that

ES[n,m] = E,fg[n, % Vv X (26)

V X mi|
for (n,m) € M. We observethatfor (n,m) € M the
xc-energyfunctional of SDFT dependson the magneti-
zation only throughthe combinationV X ((V X m)/n).
This fact by itself is an interestingand previously un-
known propertyof ES_. 1t appliesto all finite [10] systems
with vanishingorbital currentsand no B fields. This, in
fact, is exactly the situationwhere SDFT is usually em-
ployed.

In the remainderof this Letter we show how (26) can
be usedasatool for the constructiorof approximatdunc-
tionals for finite systems. First, we assumethat we are
given an approximateCDFT functional, E2. Inserting
this approximatefunctional on the right-hand side, the
equality (26) immediatelyyields an approximatiorfor the
SDFT functional ES.[n,m]. If, for example,an LDA-
type approximationis usedfor ES?[n, v,,], we obtain a
new GDA for ES.[n, m].

Next, we demonstratehat (26) can also be usedto
obtain CDFT functionalsfrom SDFT. We assumethat
we are given an approximateSDFT functional of the
magnetizatioron the left-handside of (26). In general,
this will not dependexplicitly onm throughw,,, although
the right-handside of (26) mustdo so. To constructa

1874

CDFT functionalfrom a given SDFT functionalvia (26),
we thushaveto find a way to write a functional Q[m] as
a functional Q[v,,,ljpzo], which canthen be usedon the
left-handsideof (26).

To this end we employ the Helmholtz theorem(HT)
of vectoranalysis,which statesthat a vectorfield canbe
decomposedh a partwhich dependonly on the sources
andanotherthatdependsnly on the curl of thefield:

m(r) =mg + £;[V-m(r)] + £,[V X m()]. (27)

In thesecondermwerewritetheargumenby dividing and
multiplying with thedensityandthenusetheHT again this
time for the vectorfield V. X m(r)/n(r). Thisyields

m(r) =mo + £,V - m(r)]

+ fz[n(r)@[v VX m(r)}

ECH
S )] e

with a constantm,. Insertingthis resulton the left-hand
sideof Eq. (26) we obtainanotherrigorousidentity. The
latter canbe simplified by usingthe fact thatthe exactxc
functionaldependon the magnetizatioronly throughthe
vorticity »,,. Sincethe vorticity dependsnly on the curl
of m(r), the constantm, dropsout and one canadd any
gradientof a scalarfunction to the magnetizatiorwithout
changingthe functional. The sameargumentholds for
the combinationV X m(r)/n(r). The vorticity depends
on this quantity only throughits curl, so thatthe addition
of any gradientof a scalarfield to V X m(r)/n(r) does
not changethe functional. Now we usethis freedomby
addinggradienttermsin sucha way that the secondand
third termsin Eq. (28) vanishidentically. Explicitly, for
the secondermthis meango substitutam(r) + V¢! for
m(r), which doesnot changethe vorticity, andto choose
¢ suchthatV - m(r) + A¢V = 0. Forthethird term
we addV¢@ to V X m(r)/n(r) andproceedn thesame
manner. The correspondingart of the fourth termis not
changedy theseadditions. It cannow be identifiedwith
the vorticity for j,(r) = 0. Thisleadsto

Fgf[n, lejl,ZO] = E£C|:I’l, f2|:nf2|:% lejl,Oi|i|i| (29)

+ f2|:V X

for (n,m) € M. Equation(29)constitutegnexplicit pre-
scriptionfor obtainingE<2[n, »,,|j,~o], given EZ [n, m].
The prescription(29) is far more generalthan it ap-
pearsatfirst sight. Thecrucialpointis that,although(29)
was derivedfrom (26) which wasvalid only for systems
with vanishingparamagneticurrent,(29) canalsobe em-
ployedto constructCDFT functionalsfor current-carrying
systemqwhich constitutethe prime applicationof CDFT
by its very nature). This is due to the simple fact that
any functionalidentity f[x] = g[x] implies f[x + y] =
glx + y] providedthat x + y lies within the domain of
therespectivedunctionals. In our case this meanghatthe
completefunctionaldependencef ES2 on the vorticity is



VOLUME 78, NUMBER 10

PHYSICAL REVIEW LETTERS

10 MARCH 1997

determinedy (29), evenif we droptherequirementj, =

0. Theonly changds thatw,|; —o = §V X ((V X m)/n)

is replacedby »,, = w,lj,—0 + V X (j,/n). Thisis an
advantageof the j,, formulation of CDFT as compared
to the j, formulation: Oncethe dependencen V,,,ljp:()

is known, the dependencen lejp;&(), andthuson j,, is

automaticallyknownaswell. Thuswe finally have

Efcz[n, v,| = Efc[n, fg[nfz[i V,,,iH} .
c

Through(30) every approximatiorfor a functional of the
magnetizatiorgeneratea functionalof the currentdensity
Jjm which canbeusedin CDFT.

The explicit form of the functionalsf, and f, is [11]
fi[a] = [d*r'a(r’)G(r,r’) for scalarfunctionsa(r) and
fo(b] = [d*r'b(r') X G(r,r') for vectorial functions
b(r), with G(r,r’) = ﬁv,,(mr —r'|). Theseforms
are correctwhenevetthe field to be decomposedanishes
faster than 1/r? as r approachednfinity. While this
condition is satisfiedby m for all finite systems,it is
generally not satisfied by V X m(r)/n(r). Various
generalizationof G(r,r’) for more slowly vanishingor
even weakly diverging fields exist, see, e.g., Ref. [12].
Our Egs.(29) and (30) hold for these casesas well.
Insteadof using thesegeneralizationshowever,one can
also explicitly subtract out the asymptotic functional
Lln,m] = lim, .V X m(r)/n(r) and apply the HT
decompositioronly to theremainder.

Given approximate CDFT potentials, v€

(30)

XC and ASC
Egs.(22) and(23) canreadily be usedto deduceapproxi-
mateSDFT potentialsv’, andB?.. Converselyapplying
the HT oncemore, we can use Eg. (22) to constructan
approximate CDFT xc potential from a given SDFT
potentialas

oGln i) = wine] Lin]] @
The xc vectorpotentialof CDFT is givenby [3]
6EC2 8FC2

_dpe 2O Lo 08 (g
c O Jm n U

Inserting(30) on theright-handside of (32), we obtain
AZ(r) = £[B5](r). (33)

It is a notoriousfact that the constructionof approximate
CDFT functionalsis an extremelydemandingask: Even
the simplestpossibleCDFT functional,the exchange-only
LDA, is avery complicatedfunctional [6] which is rather
hardto implementin practice. In view of thelargevariety
of simple and reliable SDFT functionals,we expectthe
approximateCDFT functionalsresultingfrom (30), (31),
and (33) to be very usefulin practicalapplications. To
demonstratehis with an explicit examplewe employthe
local spindensity(LSD) approximationon the right-hand
side of Eq.(33). Within this approximation,only the
z componentof B, hasa nonvanishingvalue, which is
givenby BLSP(r) = —[vi3P(r) — vt ()] /2. Here

LSD LS

vyer  and vxch denote the ordinary xc potentials of

SDFT within the LSD approximation. Togethemwith the
explicit form of the functional f, given above,Eq. (33)
leadsto the simpleapproximation
d3r/
A2 = = [ {0,000 - ok )
1
Ir — 1’|
for the vectorpotentialof CDFT[13].
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