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I1. The Pauli equation for superconductors

K. CapelleandE. K. U. Gross
Ingtitut fur Theoretische Physik, Universitat Wurzburg, Am Hubland, D-97074 Wurzburg, Germany
(Receivedl4 October1997)

It is shownthat the interplay betweenrelativity and coherencefound in superconductorwith heavyele-
ments,leadsto a numberof interestingand previously unknowneffects.In particular,severaltypesof spin-
orbit coupling are shownto exist only in superconductorEExplicit expressionslescribingtheseeffectsare
derivedusing a covariantformulation of the theory of superconductivitylt is demonstratedhat relativistic
effectscan becomerelevant,e.g.,in high-temperatur@and heavy-fermionsuperconductorssuperconducting
heterostructuresand rotating superconductor§ S0163-182689)11205-0

I. INTRODUCTION

This is the secondn a seriesof two papersdevotedto an
investigationof the effectsof relativity in superconductors.
In the precedingpaper* henceforttreferredto aspaperl, we
studiedthe Dirac equationfor superconductordt wasshown
therethat the order parametergOP’s) describingsupercon-
ductivity can be representedn termsof 4xX4 matricesen-
teringthe Dirac Hamiltonianon the samefooting asthe con-

ventional y matricesof the Dirac theory. By performinga
symmetryanalysiswith respectto the Lorentz groupit was
foundthatonly five differenttypesof OP’s,with atotal of 16
componentsare consistentwith the requirementof covari-
ance.(This is to be contrastedwith the nonrelativisticcase
whereone hastwo typesof OP’s, namelythosefor singlet
and triplet superconductivitywith a total of four compo-
nentg. The five relativistic OP’s transform as a scalar, a
pseudoscalam four vector, an axial four vectorand an an-
tisymmetrictensorof ranktwo, respectively.TheseOP’sin-
cludethe relativistic generalizatiorof the BCS (single) and
the Balian-Werthameftriplet) OP, amongothers.

Our study is motivatedby the fact that relativity influ-
encesmany propertiesof superconductorsuchas,e.g.,the
Knight shift, the upper critical field, the order-parameter
symmetry, the Meissner effect, the band structure, the
magneto-opticakesponse etc. However, in most of these
situationsrelativity constitutesa small perturbatioractingon
anunperturbedessentiallynonrelativistic,superconductoit
is, therefore,not alwaysnecessaryo employ the full Dirac
equation.Considerablesimplificationis achievedoy making
the transitionto the weakly relativistic limit, i.e., by expand-
ing to order (v/c)?. Not only doesthis simplify the equa-
tions, it also yields further insight into the subtle interplay
betweerrelativistic symmetrybreakingand superconducting
coherenceThe presenipaperthereforedealsmainly with the
derivation of weakly relativistic correctionsto the conven-
tional theory of superconductivity.

The simplestpossiblecase,that of a local order param-
eter, treatedwithin the conventionalPauli approximationto
the Dirac equation,was alreadystudiedin our earlier paper,
Ref. 2. In the presentpaperwe go in threerespectseyond
thetreatmentof thatwork. Firstly, we usereductionmethods
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which areboth morereliablein higherordersand more con-
venient for numerical calculationsthan the conventional
Pauliapproximation Secondly we apply thesemethodsto a
more generalrelativistic Hamiltonian containinga nonlocal
pair potentialinsteadof a local one. This allows usto inves-
tigatethe effectsof relativity not only on the center-of-mass
motion but also on the internal degreesof freedomof the
Cooperpair. Thirdly, we study the weakly relativistic limit
of severaltypesof relativisticorderparametersot studiedin
Ref. 2, but containedin the generalformalismof paperl.

The presentpaperis organizedas follows: Sec.ll intro-
ducesthe Dirac—Bogolubovw-de GennesquationIn Sec.ll|
we discussa variety of methodswhich canbe usedto reduce
the Dirac equationto the form of a Schralinger equation
plus correctionterms. Thesemethodsare generalizedo su-
perconductersind usedto obtainzeroth-,first-, and second-
order approximations.In zeroth order we recover the
Bogolubovwde Gennesequations,n first order appearshe
interactionwith magneticfieldsandin secondorderwe find,
amongothers,severalspin-orbit-typeterms.Finally, Sec.lV
is devotedto afirst analysisof thesetermsandtheir effecton
realistic superconductors.

II. THE DIRAC-BOGOLUBOV-DE GENNES EQUATIONS

The conventionald X 4 Dirac-Hamiltonian(-density, hy,
is definedby®*

ha® = yo[cyp+mc?(1-yo) +qy*A,]P=Ed, (1)

where E is the energy measuredrelative to mc?, A,
=(V/g,—A) is the four potentiaP and y* standsfor the

usual y matrices>* Hereandin the following a summation
over repeatedupper and lower greek indices, such as in
y*A,,, isimplied.

The conventionaBogolubovw-de Gennesquation which
is the basicequationof the microscopictheoryof inhomoge-
neoussuperconductorsead§’

Ay a)(ukm)_E(uk(r))
at —hz/lon) "on))”

©1999 The AmericanPhysicalSociety

)

7155



7156

where u,(r) andv(r) are particle- and hole amplitudes,
respectively f is the Schralinger Hamiltonian

2

~ P
hs—ﬁ+V(r). (3
The integral operator
a=fd3r' LA (4)

containsthe pair potentialas kernel. For the caseof a local
pair potentialit reducedo the multiplicative operatorA (R),
where R is the center-of-masscoordinate of the Cooper
pairs.

In our earlierpapef andin paperl of this serieswe have
shown that the proper relativistic generalizationof the
Bogolubow-de Gennesequationis given by the 8 X8 equa-

tion
(ujk<r>):Ejk(u;k<r>), -

vjk(r) vji(r)

hy D
.
D' —hy

which we called the Dirac—Bogolubov-de Gennesequation
(DBAGE). Here hy is the Dirac Hamiltonian, as definedin
Eqg. (1) and D is the integral operator

D::&?FJ a3’ .. Ay (6)

with the 4 X4 matrix

0 1 0 0
-1 0 0 0| [io, O

o 0o o 1 :( 0 i&y)' @
0 0 -1 0

The particle and hole amplitudesu;, and v;, are four-
componentDirac) spinorswith componentsi;j, andv; .

In the terminologyof I, the matrix 37 leadsto the scalar
OP of the generalizedBCS type, definedas

X(r,r) =0T () 7¥(r’). ®)

It is this OP which is the direct relativistic generalizatiorof
the BCS singletOP. In | we derived15 further OP’s which
describemore complicatedpairing statesof the supercon-
ductor. In the presentpaperwe are mainly concernedwith

BCS-typepairing and thereforefocus on the 7-OP. We re-
turn to the other15 OP’sin Sec.IV D.

I11. WEAKLY RELATIVISTIC APPROXIMATION
A. Conventional Pauli method

In orderto identify weakly relativistic correctionsto the
conventionaltheory of superconductivityone needsto re-
duce the Dirac-type equation (5) to the form of a
Schralinger-typeequationplus correctionterms of various
ordersin v/c. To this endwe first briefly discussthe meth-
odsavailablefor this purposein the caseof the conventional
Dirac Hamiltonian. Introducingthe vector of the Pauli ma-
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trices o andwriting the four-componenspinor® in termsof
two two-componenspinors,¢ and y, &s

(1)
q’(”_(w))' ®

Eq. (1) canbe written in termsof two 2X 2 equationsas
Vo+co-mxy=Ed,

co-mp+(V—2me?)y=Ey. (10)

Here 7w standsfor [p—(g/c)A].

For this Hamiltonianthereexistsa large variety of meth-
ods which can be usedto generateweakly relativistic ap-
proximations.All of themare basedon the observatiorthat
in the weakly relativistic limit the two componentsof the
spinory, denotedthe smallcomponentsareby afactorv/c
smallerthanthoseof ¢, which are consequentlyermedthe
large componentsThe small componentscan thereforebe
approximatelyeliminated from the equation,reducingthe
4x 4 Dirac equationto a 2% 2 equationof the Schralinger
type. The elimination can be performedin ordersof, e.g.,
v/c, whereeachorder contributesrelativistic correctionsto
the zeroorder,i.e., Schralinger,case.

This programis implementedirectly in the conventional
Pauli method(CPM) in which one solvesthe secondequa-
tion of Eq. (10) for y andsubstituteshe resultinto thefirst.
This yields an equationfor the large componentsp only:

V+co- co-m|p=Ep. (11

—_—
E—(V—-2mc?)

Expandingto secondorderin v/c andevaluatingthe deriva-
tivesleadsto the well-known Darwin-, spin-orbit-andmass-
velocity corrections’® 1

The counterparbf Eq. (11) in the superconductingaseis
immediatelyfound from Eq. (5) to be

(C(Tﬂ' 0 )
o —clom*

~ia,d )1

\ ioyd
—igyd* -V

E—(V—2mc?)

X o
io,d

E+(V—-2mc?)

e
UL UL

X

cow 0
0 —clom*

which canbe rewrittenas
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\% i(}ya 1 (0’7: 0
—ig,d*  —V 2ml 0 —(om*
V—E iod |
2mc? 2mc? (0'17 0 )
X n -
io,d*  V+E 0 —(om*
- - +1
2mc? 2mc?
u u
x| - =E( H. (13
UL (8

In theseequationa, andv, arethelargecomponent®f the
DBAGE (theindicesjk aresuppressetbr notationalclarity).
Eachis itself a two-componenspinor. Equation(13) is still
exactly equivalentto the original DBAGE (5). Accordingto
the prescriptionof the CPM one now proceeddo expandin
ordersof

V+E g d 14
an s
2 2mc2

V—E
21

2mc 2mc

and analytically performsthe inversionin everyorder.

Although the CPM is a standardmethod,it suffersfrom
severaldrawbacks?*2 (i) Already in secondorder of v/c,
the effective Hamiltonian obtainedafter elimination of the
small componentscontainsthe energyto be calculatedand
thus doesnot havethe form of an eigenvalueproblemany
more. (ii) The large componentsf the Dirac Hamiltonian
alonearenot normalized,only the full (four-componentso-
lutions are. It is, however,theselarge componentswhich
becomeeigenfunctionsof the Pauli Hamiltonian. (iii) The
Darwin term, asobtainedby the CPM, is not Hermitian. (iv)
Detailedevaluationof the threecorrectiontermsmentioned
aboveshowsthat they lead, in the presenceof a Coulomb
potential,to variationally unstableHamiltonians.The reason
for this lies in the bad convergenceropertiesof the expan-
sionsusedin the CPM (cf. Sec.lll D below).

Similar problems show up in the Foldy-Wouthuysen
transformation(FWT). While this usedto be a standard
methodfor obtaining weakly relativistic approximationsto
Dirac-typeequations’ recentresearcthasshownthatin the
presencef Coulombpotentialsthe methodamountsto con-
structing wave functions which are extremelysingularand
not normalizablée’. Recentstudiesandreviewsthusgenerally
adviseagainstemployingthe FWT %10:115

In orderto avoid the problemsof the CPM andthe FWT
in the superconductingase,we turn to more sophisticated
modificationsof the CPM. The first of these,the modified
Pauli method(MPM),*?1® is mathematicallyvery similar to
the CPM and solves problems (i)—(iii). We employ this
methodin Sec.lll C of the presentwork. In Sec.lll D we
generaliz€o superconductora reductionmethodwhich was
designedspecificallyto solve problem(iv), namelythe regu-
lar approximationof Baerendsand co-workerst>417

As an additional complicationthe inversionitself is not
trivial any morebecausén the superconductingasethe ma-
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trix to be invertedcontainsthe nonlocalintegral operatord.
This complicationwas not presentin our previouswork,?
becausave then assumedhe pair potentialto be local, so
thatd becamehe multiplicative operatorA (R). In Sec.lll C
we describea way to performthe requiredinversionanalyti-
cally to any requiredorderin v/c.

B. First order in v/c:
The spin—Bogolubov—de Gennes equation

Determining the first- and zero-orderapproximationto
Eqg. (13) is straightforward, because(a) all four above-
mentionedoroblemsof the CPM manifestthemselve®nly in
higher than first order and (b) the terms containingthe in-
verseof the integral operatora, too, contributeonly to the
secondand higherorders.Setting

V-E V+E d
2

=0 (15

2mc2  2mc?  2mc?

the matrix inversion becomestrivial. After straightforward
algebrawhich is essentiallythe sameasin the nonsupercon-
ductingcasé®!? onefinds, to first order, the following 4x 4

equation:
h ioyd (uL) (UL)
~ ~ :E 1
—ioyd* —h*/lvL UL

h= s +V B
_2m ,lLolT

(16)

where

(17

is the generalizatiorof Eqg. (3) in the presencenf magnetic
fieldsand wo=fqg/2mc is the Bohr magnetonEquation(16)
is the spin-Bogolubov-de Gennesequatiofi8 for the case
of a nonlocalpair potential A(r,r"). The large components
of the Dirac spinorsbecomePauli spinorswith entriesfor
spin-upandspin-down

uTUk(r)) (18)

Ujgk(r)

andcorrespondinglyfor v, . Here o and 7 arespin-quantum
numbers Written out asa 4 X 4 equation,Eq. (16) thus be-
comes

UL(r):(

hyp 0 d o\ )

hyy hy —-d 0 U gx(r)

0 —d" —hf; —h [} vien)

dt 0 —hy —hy [ vk
Uy ok(r)

g P
v k()

where
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1( e 2
hTT,:{%< —iAV+ EA(r)) +V(r)}577’_1u’0[0-8(r)]77’ .
(20)

We notein passinghatthe sameequationis alsofoundin a
completely nonrelativistic calculation from the spin-
dependenBogolubov-Valatintransformatiorf:*&1°

w,<r>=§[umk<r)agk+v¢ok<r>azk]. (22)

The zero-orderapproximationis obtainedfrom Eq. (19)
by settingA=B=0. In this casethe 4 X4 equation(19) re-
ducesto the conventional x 2 Bogolubov-de Gennesqua-
tion of the theory of inhomogeneousuperconductors We
havethusverified that our theory hasthe correctnonrelativ-
istic limit.

Note that while thereare first-ordercorrectionsfrom the
electromagnetic potentials, namely the Zeeman term
(hg/2mc)oB and the vector-potential term in @=[p
—(g/c)A], there are no such terms arising from the pair

potential. This is a consequencef the form of the matrix 7
which characterizesthe relativistic generalizationof the
BCS-OP.In Sec.lV D we discussthe circumstancesvhich
canleadto first-ordercorrectionscontainingthe pair poten-
tial.

C. Second order in v/c: the modified Pauli approximation

Using the CPM in higherthanfirst orderleadsto the four
difficulties discussedn Sec.lll A. Thefirst threeof theseare
solved by a modificationof the CPM 121 |n the following
we briefly outline this modificationfor the nonsuperconduct-
ing casebeforegeneralizingt to superconductorshe start-
ing pointis Eq. (11), which is written as

M(E)¢(r)=Ed(r), (22)

whereM (E) isthe operatoron the left-handsideof Eq. (11).

Note that M (E) is not a standardHamiltonian becauseit
contains the “eigenvalue” E. Since the four-component
wavefunction® (r) wasproperlynormalizedthelargecom-
ponentsaloneare not. The difference

1—fd3r ¢(r)*¢(r)=f d’r x(n*x(r) (23
is of secondorderin v/c and can thus not be neglected
beyondfirst order.

The first stepof the MPM consistsin rewriting Eq. (11)
ale,lG

QM (EYQY 1 Qé(r) = E Qé(r).

N —"
:=M'(E) =¢'(r) =¢'(r)
(24)
Choosing
h2v?
O=|1- 25
( 8m2c2) 9
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leadsto a properly normalized ¢'(r). It is this function
which becomeghe nonrelativisticPauli spinor,not the origi-
nal ¢(r). Equation(24) is still not an eigenvalueequation.
However,operatingwith

2v2
—-2__ 4
O = 1+m +O(U/C) (26)
on
M'(E)¢'(r)=E¢'(r) (27)
leadsto

2v2

QO 2M'(E)¢'(r)=E¢'(r)+E ¢’ (r)+0(vic)?.

(28

The secondterm on the right-hand side in Eq. (28) now
cancelsto order (v/c)?, the energy-dependerterm on the
left-handside. After expansionof M (E) to first orderin

4m?c?

V-E v? 29
oL —
2mc?  c?’
onefinds from Eq. (28)
L 2y 2 v 1 L V(r)
+ 202 (r)+ﬁ07r +2mc2 o
h2v2
x| 1+ )gb’(r):Egb’(r). (30)
8m?2c?

Evidently, the first two above-mentionegroblemsof the
CPM are now takencareof. It turns out that the third, the
nonhermiticityof the Darwin term, doesnot requireany fur-
ther treatment.Unlike Eq. (22), Eq. (30) alreadyyields the
correct,Hermitian, Darwin term?° EvaluatingEq. (30) up to
secondorder in v/c leads, after straightforwardalgebraic
manipulations? to

o
ﬁ—f-V(l’)—,u,o(rB(r)

ﬁZ
2
+4m2C2[ 5 VV(r)+ho(VV)Xp

Pl :
2mH¢> (N=E@'(1). (3D)
The first line is just the first-order Hamiltonian (17), while
the secondline containsthe usual Darwin-, spin-orbit cou-
pling (SO0, and mass-velocitycorrections.

In the superconductingaseone can employ essentially
the samemethodto generateelativistic corrections The op-
erator() is generalizedo be a 2X2 matrix acting on the
particle-andhole component®f the DBAGE eigenfunctions.
The manipulationsof Eq. (11) describedabovehaveto be
repeatednow startingwith Eq. (12). However,this equation
requiresthe inversionof
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—ioyd
E+(V—2mc?)

_ [E=(V—-2mc?)
io,d*
ratherthanE — (V—2mc?), asrequiredin Eq. (11). We thus

haveto invert W and, in particular,the integral operatora,
beforewe can employ the machineryof the MPM. To this
end we make use of the following relation for operatorsA
andB:

(32

(A+B)"1=A"1-ATIBAT1+ATIBATIBATI- ...,
(33

which allows us to replacethe inversion of A+B by an
infinite serie€! in which eachterm requiresthe inversionof

A only. We now decompos&V accordingto

PR 0 E~V —io,d
= 2mc -+
0 -1 oy dt E+V
=A =B

(34)
In this way we achieve a decompositionwhere, loosely
speaking A containsthe information aboutrelativity, while
B containsthataboutsuperconductivityThe matrix A canbe
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trivially inverted.Furthermorejt containsall factorsof mc?,
sothat eachtermin the series(33) contributesasmanyfac-
tors of 1/c® asit containsfactors of A~. The matrix B,

containingtheintegraloperatora, neednotbeinvertedatall.
To obtain the second-ordemapproximationto Eq. (13) we
haveto goto order1/c* in Eq. (33). It is readily found from
Egs.(33) and(34) thatto this order

E-V 4
R 1 2mc? Y 2me?
W l= 5 R +0(1/ch).
2me| d* 1 E+V
lo — +
Y omc? 2mc?
(395

Inserting this resultin Eq. (12) we can proceedwith the
MPM, asabove.We first defineproperlynormalizedBogol-

ubov spinorsby
I"II’_ ((l 0) (UL)
U(_ ' 0 Q UL

and then eliminate the energy-dependerterm on the left-
handsideof Eq. (12). The counterparbf Eq. (30) is foundto
be

(36)

io,d

. onm| 1+ )0'11 o'w—yz(a'ﬂ')* ,

" %2y2 \Y, ioyd 1 2mc 2mc L h2y2 )\ [u/

8m’c?/| \ —ig,d* -V 2m 8m2c?) \ v

—(om* or —(om)*| 1+ 5| (om)*
u/
=g |, (37

UL

which is a propereigenvalueequationand hasthe structure
of a Bogolubowde Gennes-typesquationfor the particle
andhole amplitudesu; andv| . Note that, asis alwaysthe
casefor Bogolubowde Gennes-typeequations,the upper
left corner of the matrix equation(37) corresponddo the
nonsuperconductingesult (30). By going throughthe same
algebraasin the nonsuperconductingase,we can evaluate
the variousderivativesand matrix productsin (37). Keeping
only termsof secondorderin 1/c we finally obtain

iaya) 1 (ﬁ2 d, ) (u[)
+ ~ ' ’
—h*) am?c?\d} -h%/|\v(

(38)

ﬁZ p4

ﬁz:?VZV(r)+ho(VV)><|o—ﬁ (39)

and
azzf d3r’ apA(r,r)op’ .. .(ioy)

1
- Ef d3r [p?A(r,r)+A(r,r)p’?] .. .(iay).
(40)

Herethe primein p’ standsfor a derivativewith respectto
r'. In analogyto the Dirac—Bogolubow-de Gennesquation
(5) we call Eq. (38) the Pauli-Bogolubowde Gennesequa-
tion (PBAGB.

Therelativistic correctiontermsof h, andd, arethe main
resultof the presentpaper.By comparisorwith Eq. (31) the
termsof ﬁz are seento be the conventionalrelativistic cor-
rectionsin this order. In the superconductingasethey ap-

pear twice, once through h, and once through — ﬁ’z* . The

termsof d,, on the otherhand,arerelativistic correctionsof
the same orderin 1/c existingin superconductorenly. Sec-
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tion IV is devotedto a first analysisof the propertiesand
consequencesf theseweakly relativistic corrections.
Note thatthe decompositior(34) is not the only onelead-
ing to the final result(38). Choosing
—io,do
E+(Vo—2mc?) |

E—(Vo—2mc?)

A= (42)

PR

whereV is the spatially constantpart of V(r) andao is the
integral operator

ao:der' A (42)
containingthe modulusof the pair potential as kernel, and
defining B=W-—A, anothersuitable decompositionis ob-
tained. After a lengthy calculationthe matrix A can be in-
vertedanalytically up to secondorderin v/c. Its inverseis,

to this order, of the form (35), howeverwith V, and d,

substitutedfor V andd. The secondtermin the series(33)
then containsthe contributionsof the spatially dependent
partof V(r) andthe phaseof the pair potential. Evaluating
this term to secondorderin v/c aswell, leadsto the same
final expressioras the simpler decomposition(34), namely
to Eq. (398).

D. The regular approximation

Beforewe proceedo a discussiorof h, andd,, we have
to returnto the problemsof the Paulieliminationmethod.As
demonstrateaxplicitly, the MPM solvesproblems(i)—(iii )
of the CPM, for both the superconductingndthe nonsuper-
conductingcase.Problem(iv), the variationalinstability of
the resulting Hamiltonian, still needsto be addressedThe
sourceof this problemis the expansionin

V—-E 02
o —
21

43)
2mc? ¢ (

which is small when v/c is small, but large close to the
nucleus.This leadsto convergenceroblemsandrelatedun-
physicalbehaviorof the Pauli Hamiltonian.Similarly, keep-
ing only the first two termsin the expansion(33) is not
justified, unless

IBlI<[lAl, (44)

where| -|| is the operatomorm?? However,this conditionis
not satisfiedif E—V is of the sameorder as 2mc?. Very
closeto the nucleus,E—V can evenget larger than 2mc?
and neitherthe conventionalhor the modified Pauli method
converge Thesedifficulties areavoided,e.g.,in theso-called
regularapproximation:>*17In this methodonerewritesthe
fractionin Eqg. (11) accordingto
E-v| *
1+

2mc?

1 _ 1
E—(V—2mc?) 2mc?|

L |

- 2me?—V\ t

(49)

2mc2—-V
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andproceeddo expandin

E

2mc2—V(r) 40

Evidently, this term is small not only in the nonrelativistic
domain, where mc?>V(r), but also closeto the nucleus,
whereV(r) is large.It thusconstitutesa muchbetterexpan-
sion parameteras the more conventional choice, Eq.
(43).13,14,17

Theregularapproximatioris readily generalizedo super-
conductors.First, the matrix to be invertedin Eq. (12) is
rewrittenaccordingto

E-(v—2mc®)  —igd |
oy E+(V—2mc?)
E —od |\ 7
1 2mc?—V 2mc?—V
Come?-V|  —oydt E
2mc2-V  2mc2-V

(47)

The inversionitself proceedsalongthe samelines asin the
caseof the MPM. The expansion /finally, is in powers of

E/(2mc?—V) and d/(2mc?—V). In the nonsuperconduct-
ing case,one often limits oneselfto the zero-orderterm in
this expansion)eadingto the zero-orderegularapproxima-
tion (ZORA). A conceptuallynew featureof the regularap-
proximationis thatit no longeris an expansiorin ordersof
v/c. Asaconsequencehe ZORA Hamiltonianalreadycon-
tains relativistic correctionsto arbitrary high orderin 1/c.
The sameis true for the superconductingyeneralizationof
the ZORA. Onefinds, from Egs.(47) and(12),

h,+V io.d u u
—igyd* —hy—V/\vL UL
where
R mc?
h,=on——om. (49
2me —V

Equation(48) is denotedthe ZORA-Bogolubov-de Gennes
equation(ZBdGE). Clearly, thereare zero-ordercorrections
arising from the lattice potential,V(r), (which do not have
the form of the conventionalspin-orbitterms,etc) but none
from the pair potential A(r,r’). In higher orders,there ap-
pearalso correctionscontainingA(r,r’).

On physical grounds,we expectthat in most solid-state
situationsonly the (modified Pauli method,andhenceEgs.
(38)—(40), areneededIn solids,the coreelectronsscreerthe
Coulombpotential of the nuclei, so that for the conduction
electrons(which are involved in superconductivity Pauli-
type expansiongare sufficient. In materialswith very heavy
elementsin the lattice, problem (iv) can also becomerel-
evantin solid-stateapplications.In this case,the ZBdGE
(48) providesa viable alternativeto Pauli-typeprocedures.
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IV. ANALYSIS OF THE
PAUL|-BOGOLUBOV-DE GENNES EQUATIONS

A. Interpretation of the correction terms

The weakly relativistic correctiontermsin the PBAGE
containingthe pair potential, as given in Eq. (40), can be
rewrittenin a more transparentvay. First, we specializeto
finite systems,so that one can perform partial integrations
without occurrenceof surfaceterms.lt is thenreadily found
that

az=f d3r'ialpA(r,r')IXp’ .. .igy

1( 5, o , o
—Efdr [(p+p")A(r,r)]...ioy. (50
Here the momentumoperatorsact only on the directly fol-
lowing quantities,as indicated explicitly by the brackets.
Similar termsare also found in the Pauli approximationto
therelativistic Breit equationfor two-electronatoms?: In the
presentcontextwe deal with single-particleequations,but
the nonlocality of the pair potentialreflectsthe two-particle
aspectsof the Cooperpair. We now introducerelative and
center-of-massoordinatess andR, accordingto

s(r,r’):==r—r’ (51

and

R(r ¢’ r+r’
(r,r ).—T.
We usethe samesymbolfor the pair potentialexpressedn
the coordinatef the individual particles,A(r,r"), andex-
pressedn center-of-massnd relative coordinatesA(s,R).
Equation(50) thenbecomes

(52

a2=j dr'[dP(sR)+dP (sR)+dP(sR)] . . .ioy,
(53
wherethe integrationis still overr’. The threetermsin the
kernelof Eg. (53) cannow be interpretedphysically:

ds"(s,R):=ho-[VRA(SR)]Xp’ (54)

is a spin-orbittype termwith respecto the orbital motion of
the center-of-massoordinate.lt will in the following be
denotedasthe anomalou$' spin-orbitcouplingterm (ASOC)
for the center-of-masslegreeof freedom(C-ASOQ.

d5?(s,R) ==§a- [VA(SR)IXp’, (55)
on the other hand, is a spin-orbit type term with respectto
the relative motion of the two electronsin the Cooperpair.
This term will be referredto as the anomalousspin-orbit
couplingtermfor therelativedegreeof freedom(R-ASOQ.
Having classifiedthe ASOC termswith respecto the or-
bital motion, we now turn to the spin degreesof freedom.
There exist at leastthree spinlike quantumnumberswhich
are of relevancefor superconductorsThe first is the total
spin of the Cooperpair. As we discussonly singletpairsin
the presentpaper this is alwayszero. The seconds the spin
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of the individual electronsin the pair. Finally, thereis the

spinlike labelfor the Bogolons,the quasiparticlexreatedoy

breaking Cooper pairs. [In Egs. (18)—(21) the latter two

guantumnumbersare denotedr and o, respectively] The

spininvolvedin both C-ASOCandR-ASOCis the electron
spin. It is coupledto the orbital motion of the individual

electronsin the presenceof the pair potential A(s,R). The

effect describedby thesetermsis the additional spin-orbit

coupling which originatesfrom the coherent motion of the

two electrongn the Cooperpair. In theabsencef coherence
A(s,R)=0 andonly the conventionalSOC,arisingfrom the

lattice potential,v(r), remains.

In many situationsthe modulus of the pair potentialis
spatially constantandits phasedependsonly on the center-
of-masscoordinatesothatthefull pair potentialcanbe writ-
tenas

A(s,R)=A€'*R), (56)
whereA is a real-valuedconstant.Sucha pair potentialde-
scribes,e.g.,supercurrentin thin films.® For a pair potential
of theform (56) andsulfficiently closeto the critical tempera-
ture, the supercurrentare proportionalto the gradientof the
phaseof the order parameteryiz.,

is(R)<|A[2Vgh(R). (57)

Therefore,

d5Y'(sR)x e [jsxp'], (58)

which showsthat the C-ASOCterm canalternativelybe in-
terpretedasa coupling of the spin to the supercurrents.
Dueto thetermj X p’, the expectationvalue of Eq. (58)
is roughly proportionalto the ratio vv/c?, whereuv is the
velocity associatedvith the supercurrentsgthe phaseof the
condensateandv is thatof the quasiparticleexcitations(the
Bogolons. This is to be contrastedwith the ratio v?/c?,
which appearsn the expectationvalue of the conventional

relativistic correctionscontainedn h,. The MPM for super-
conductorsgenerateghe leadingtermsin an expansionin
both of theseparameters.

The R-ASOCterm can,alongsimilar lines, be interpreted
asa coupling of the spin to the internal currentsdue to the
coherentrelative motion of the electronsin the Cooperpair.

The third term in Eq. (53) containssecondderivatives
with respecto the center-of-massoordinateandis given by

- h?
d¥(sR) ==?V§A(S,R). (59
Being the counterparto the conventionalDarwin term, this
termis referredto asthe anomalouDarwin term (ADT).
Note that two typesof relativistic correctionsone might
have expectedare not present.First, thereis no anomalous
Darwin term containingsecondderivativeswith respectto
therelativecoordinate Thus,in contrastto the ASOC terms,
R-ASOC and C-ASOC, thereis no “R-ADT,” but only a
“C-ADT” term.This is consistentwith the requirementof
the correctlocal limit, to be discussedn Sec.lV C. Further-
more, thereis no superconductingounterparto the mass-
velocity correction.Thisis physicallyreasonabléecauséhe
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mass-velocitycorrectionis entirely of kinematicorigin and
thusindependenbf the presenceor absencef externalpo-
tentials.

B. Discussion of consequences of the relativistic corrections

The various relativistic correctionscan be classifiedac-
cordingto whetherthey leadto the breakingof symmetries
or not. The mass-velocitycorrection,the conventionaland
theanomalou®arwin termsdo not breakany symmetriesas
comparedo a nonrelativisticsuperconductoRetainingonly
thesetermsin the equationsconstituteshe superconducting
analogto thefamiliar “scalar relativistic” approximatiorof-
tenappliedin relativistic electronicstructurecalculations It
is generallyfound that the relativistic effect on the kinetic
energy,i.e., the mass-velocitycorrection,is far moreimpor-
tantthanthe Darwin term. As they do not breakany symme-
tries, the main effect of thesetermsis of a quantitativena-
ture. Examples are the relativistic mass correction for
the Cooper pair, which was already measured
experimentall{®~2 and the relativistic shift in the energy
spectrumof a superconductomredictedin Ref. 2.

In Refs. 25-28 the experimentaldata for the massen-
hancemenof the Cooper pair, obtainedusing a technique
basedon rotating superconductorsyere interpretedon the
basisof ad hoc substitutionof relativistic masscorrections
into the BCS equationslt turnedout that this procedureis
very delicateand s likely to miss correctionsarising from
the internaldynamicsof the Cooperpair. Indeed,a quantita-
tive explanation of the experimentaldata could not be
achievedin this way?>~2 Note that our equation(39) pre-
dictsthatsucha massenhancemerttikesplaceand allowsto
evaluatdt on the samefooting with the effectsof theinternal
Cooperpair dynamicsand superconductingoherence.

The spin-orbitterms,on the otherhand,couplethe spinto
the orbital degreeof freedomand,therefore preakthe rota-
tional invariancein spin space.This symmetrybreakinghas
a large numberof importantconsequencesuchas the hy-
bridization of singletandtriplet statesthe lifting of degen-
eracies,the orientation of the macroscopicmagnetization
relative to the lattice in ferromagneticsolids and the intro-
duction of the total angular-momentungquantumnumber j,
insteadof the individual quantumnumberd ands.

Theeffectof theseconsequenceasf the conventionaSOC
on various propertiesof superconductordas beenworked
outin detail by manyauthors Fromtheseinvestigationst is
known that, e.g., SOC canleadto a finite Knight shift at T
=0, which is in striking contrastto the BCS prediction of
zero Knight shift at T=0.2% The conditionsfor coexist-
enceof magnetismand superconductivityare also strongly
influencedby SOC®?*3 Furthermore,SOC can induce Jo-
sephsorcurrentsin situationswherenonewould be present
nonrelativistically>*~¥ The value of the uppercritical field,
in particularthe influenceof Pauli paramagnetidimiting, is
known to be significantly affectedby SOC%3° Moreover,
the magneto-opticatesponseof both normal and supercon-
ductorsis changedn the presencef SOC.In particular,the
absorptionof light with left-handedpolarizationdiffers from
that of light with right-handedpolarization. This phenom-
enon,termeddichroism,is mainly dueto SOC*-*

With the exceptionof dichroism,all theseeffectswere,as
yet, analyzedon the basisof the conventionalSOConly. In
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eachcasethe ASOC terms provide an additional sourceof
spin-orbit coupling which has a very different temperature
behaviorascomparedo the conventionalSOC.For the case
of the absorptionof polarizedlight we have meanwhilein-
vestigatedthe effectsof SOC and ASOC in detaif'~® and
found that ASOC indeed constitutesan additional, poten-
tially observablesourceof dichroism,which s distinguished
by its temperaturelependencanduniquecoherencdactors.

Finally, the symmetryof the order parameteiis strongly
influencedby SOC3*44* The ASOC terms, containingthe
pair potentialitself, can obviously have a similar effect. In
particular,the spin-orbitcouplingwith respecto therelative
coordinateof the two electrondn the Cooperpair, R-ASOC,
suggestghat a classificationaccordingto the total angular
momentumof the pair j, insteadof its orbital component,
may be more importantthan previously thought. The com-
mon classificatiorinto sswaveandd-wavesuperconductivity
refersto the internalsymmetryof the Copperpair,i.e., to the
relative coordinateln orderto discussthe symmetryproper-
ties of the OP one usually decomposest in contributions
which transformaccordingto the irreduciblerepresentations
of the point group of the crystal?’*® Specializingmomen-
tarily to the caseof a homogeneousystem,sucha decom-
positionis achievedby Fourier transformingA(s) with re-
spect to the relative coordinate s and expanding A (k)
accordingto

A<k>=|2m Cim( KD Y(K), (60)

where Y}, denotesthe sphericalharmonicsand k is a unit
vectorin the directionof k. The approximation

Cim([K)) = Cm(ke) 61 2, (61)

which restrictsattentionto the Fermisurfaceandretainsonly
the =2 sphericalharmonic, then leadsto the much dis-
cussectaseof d-wavesuperconductivityThe point group of

the crystal is takeninto accountby replacingthe spherical
harmonicsby symmetryadaptedbasisfunctionsof the point
group?’ It is temptingto speculatethat the difficulties en-
countered in uniquely assigning the OP in the high-
temperaturesuperconductorand the heavy-fermioncom-
poundsa valueof | (Refs.34,44,48 may be partially dueto

the fact that, asa consequencef R-ASOC, the internalde-
greesof freedomactuallyhaveto be classifiedaccordingo j.

Whetheror not this classificationis mandatorydependspf

course,on the actualmagnitudeof the various SOC terms.
We, therefore,now turn to a brief discussiorof the circum-
stancesunder which SOC and ASOC can be relevantfor

realistic superconductors.

The energycontributiondueto SOC,asdescribecby the
secondtermin Eq. (39), is known to rise approximatelyas
Z‘e‘ﬁ, wherethe effective nuclearchargeis given by Z =27
—z. The shielding correctionz takesinto accountthat the
core electrons screen the nuclear Coulomb potential.
Normal-statecalculationsshow that for elementswith Z
>40 inclusion of the SOC is essential. Every high-
temperaturesuperconductoand all heavy-fermionsystems
containsuchelements.
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To assesshe importanceof the ASOC termswe replace
the gradientsof the pair potentialby suitableaveragesac-
cordingto

(A)
VRA(S, R)*} —_—,
§
where(A) is the averageenergygapand ¢ is the coherence
length. For a superconductowith a coherencdengthwhich
is, e.g., 100 times smallerand an energygap which is 100
times larger than for typical BCS-type superconductors,
ASOC becomesl0* times moreimportant. Thesenumerical
valuesaretypical of the high-temperatursuperconductors.

The fact that the magnitudeof ASOC hencedoes not
dependprimarily on the presenceof heavyatoms(i.e., high
Z), butalsoon typical superconductingropertiessuchas¢,
implies that ASOC canbe relevantevenwhen SOCaloneis
not. Relativity might thereforebe importantfor a largerclass
of materialsthan previouslythought.Sucha situationis re-
alized, e.g.,in the vortex stateof a superconductocontain-
ing light atoms.Here SOCis small, sinceZ is small, while
C-ASOCis largebecausé&VrA(s,R) is largein the vortices.
Similar considerationgpply to superconductingpeterostruc-
tureswhere[ VkRA(s,R)]J/A(s,R) becomedargeat theinter-
faces.

R-ASOC,ontheotherhand,canbe expectedo beimpor-
tantfor an OP with a complicatedinternalstructure suchas
the OP describinganisotropicsuperconductivitythe Fulde-
Ferrel state, coexistenceof superconductivityand magne-
tism, etc., becauséan thesecasesV A(s,R) is enhancedas
comparedo homogeneous-wave order parameters.

It shouldfinally be stressedhat, althoughthe absolute
magnitudeof SOCandASOC s smallin mostmaterials the
effects producedby them can be quite large. The SOC-
inducedsplitting of bandscan,e.g.,leadto bandgapsof the
order of 0.1 eV or more?® which is due to the symmetry-
breaking effect of the conventionalSOC. A similar effect
might occur also for the ASOC terms. Further situationsin
which SOC and ASOC can play a role are mentionedin
Sec.V.

(62

C. Relation to the previous formulation of the relativistic
theory of superconductivity

In a previouspapef we presented relativistic theory of
superconductivityfor superconductorsith a local pair po-
tential. A local formulationis, of course,not ableto handle
the internal degreesof freedomof the Cooperpair, but it is
adequatdo treatmacroscopignhomogeneitiessuchas sur-
faces,vortices,etc.

The correspondingdP wasexpressedn termsof the ma-

trix 7, as givenin Eq. (7) of the presentpaper,accordingto

XD =) p¥(r),

whereWV (r) is a four componensolutionto the Dirac equa-
tion. This is the local versionof the BCS-typeOP definedin
Eq. (8).

In the presentpaperwe are mainly concernedwith the
nonlocal case, for which we usedthe MPM to generate
weakly relativistic corrections.In Ref. 2, on the otherhand,
we usedthe CPM for alocal pair potentialand,beingfaced

(63)
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with the above-mentionegroblemsof the CPM, employed
perturbationtheory to constructan energy-independerand
Hermitian Hamiltonian.

The local limit of the first term in Eq. (40) is obtained
from the replacement

A(r,r)—=A(r")é(r—r'") (64
andyields
(op)[A(r)(op)]e(r)(ioy)
=(PA(N))(pe(N))(iay) +A(r)p*e(r)(ioy)
+io(PA(r)X (pe(r))(ioy), (65

where ¢(r) is an arbitrary test function and the right-hand
side follows from the propertiesof the Pauli matrices.The
correspondindimit of the secondtermin Eq. (40) is

1 .
- E[DZ(A(WP(UHA(r)p2¢(r)](lUy)

__ 1. ; 2 i
== 5 (P AM)¢(ioy) —AN)pZe(r)(ioy)

—(PA(r)(pe(r))(iay). (66)
The sumof bothis thus
1
ia(pA(r))Xp—E(pzA(r)) e(r)(ioy), (67)

which s therelativistic correctionfor alocal pair potentialas
derivedin Ref. 2. In view of the different methodsusedin

both approacheshis agreementonstitutesa useful consis-
tencytest.

Note that the correct local limit is obtainedfrom the
R-ASOC,C-ASOC,andADT contributions,asdescribedn
Sec.lV A. Thepresencef afurtherADT containingderiva-
tiveswith respecto the relative coordinatewvould be impos-
sible to reconcilewith the requirementof the correctlocal
limit. Indeed,postulating the appearancef an anomalous
Darwin term of the form

N h?
d(24)(s,R)==a7V§A(s,R) (69
in Eq. (53) and determiningthe factor « from the require-
mentof the correctlocal limit, it is found thatthe only solu-
tion is a=0. Our treatmentof the nonlocal pair potential
with the MPM automaticallyyields the corrrectADT.

Concludingthis sectionwe point out that while Ref. 2
was the first to provide a microscopicderivationof a spin-
orbit term containingthe pair potential,UedaandRice™ pre-
viously suggesteducha term on group-theoreticagrounds.
However,their resultis limited to p-wave superconductivity
in a cubic crystal and contains phenomenologicatoeffi-
cients.

D. Inclusion of the second OP of the generalized BCS-type

In 1 we discussedn detail which typesof OP and pair
potentialscan be includedin a relativistic theory of super-
conductivity without violating covariancelt turnedout that
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only two of the 16 OP componentsare consistentwith the
requiremenbf BCS-typepairing. Thefirst, transformingasa
scalarunderLorentz transformationsis x(r,r’), asdefined
in Eg. (8).

Theother,transformingasthe zerothcomponenof a four
vector,is

XU =T () 0w (r), (69)
where 79 is definedas
0 10
.o |1 00 0 iog, O
A\ 0 00 -1 :( 0 —i(}y). (70)
0 01 O

The associategbair potentialis Ayo(r,r’) [cf. Egs.(74) and
(75) of paperl]. Although retainingonly the zerothcompo-
nentof the four vectoris not Lorentzinvariant? it is inter-
estingto investigatethe weakly relativistic correctiondueto
the secondOP of the generalizedBCS type. We caninclude
this OP in the DBAGE simply by replacingD, as definedin

Eq. (6), by

D'zfd%'...[A(r,r');,+AVO(r,r')§73]. (72)

Defining
AL(r,r’):=A(r,r' )= Aye(r,r’) (72

and repeatingthe stepsof the MPM, we find a slightly dif-
ferentform of the weakly relativistic corrections.

In zerothandfirst orderthe only changes thatA(r,r’) is
replacedeverywhereby A |, (r,r’). This merelyamountsto a
redefinitionof the pair potential,without changingthe struc-
ture of the equationsin secondorder,however the structure
doeschange Namely,in all correctiontermsA(r,r’) is re-
placedby A _(r,r"), sothatnow two different pair potentials
appeatrin the PBAGE.

In the sameway the other 14 OP’s derivedin | canbe
includedaswell. All OP matriceswhich are of the form

(o 4
0 Y/
whereX andY are2 X2 matrices Jeadto increasinglycom-
plex combinationsf pair potentialsand2 X 2 matricesin the
weakly relativistic correctionterms. The OP’s of this form
were shownin | to describethe relativistic generalizatiorof
singlet and triplet pairs, formed from two positive- or two
negative-energgolutionsof the Dirac equation.

OP’s containingoff-diagonal entriesin Eq. (73), on the
other hand, describepairs composedof a positive and a
negative-energystate. While it is unlikely that such pairs
existin solid-statesituations their existencds not forbidden
by relativity. SuchOP’s lead to off-diagonal entriesin the

matrices
comw 0
0 —clom?*

appearingin the courseof the CPM or the MPM [cf. Eq.
(12)] andthusto relativistic correctionsof first order in v/c,

(73

(74
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i.e., of the sameorder as the Zeemanterm and the vector-
potentialterm.

Note thatthe pairing interactionwould haveto bridgethe
energygapof 2mc? to yield pairsconsistingof anE>0 and
anE<0 solutionof the Dirac equationlf suchaninteraction
exists,theleadingcorrectionswill be of first order.However,
the orderparameterslescribingpairscomposedf a positive
anda negative-energgolutionof the Dirac equationarema-
trix elementbetweerstatediffering in energyby, typically,
2mc? andthus expectedo be very small.

Normally any given interactionleadingto superconduc-
tivity will leadto only one type of OP. If severaldistinct
OP’s are presentin one systemthis will resultin a compli-
catedphasediagram,with more than one superconducting
phaselt follows from the abovethat the effect of relativity
then dependson the phaseunderconsiderationThis might
be relevant for the heavy-fermion compoundsUPt; and
U, _«Th,Be;3 which do indeedcontainextremelyheavy at-
omsanddisplay severaldistinct superconductinghases*

V. CONCLUSION AND OUTLOOK

The main resultof this paperis the derivationof weakly
relativistic correctiontermsto the ordinary theory of super-
conductivity,asgivenin Egs.(39), (40), and(53). The exis-
tenceof suchtermsis a necessargonsequencef formulat-
ing the underlyingtheory of pairing in a Lorentz invariant
fashion.

The conventionalnonrelativisti¢ theoryof superconduc-
tivity wasshownto bethe nonrelativisticlimit of our theory.
This identification allowed us to employ various reduction
procedureswhich generateweakly relativistic corrections
from the Dirac equation,in orderto derive suchcorrections
for superconductorsThree reduction proceduresthe con-
ventional Pauli approximation,the modified Pauli approxi-
mation, and the regular approximationwere generalizedo
superconductorand comparedwith eachother.

The resulting weakly relativistic correctionsare of two
types. First, one finds the usual spin-orbit, Darwin-, and
mass-velocitycorrections,which are well known from the
normalstate.Secondthereappearcounterpartdo thesecor-
rectionscontainingthe pair potentialin placeof the lattice
potential. The latter type of correctionsexistsonly in super-
conductorsandwas previouslyunknown.

We interpretthe correctionsin termsof the influenceof
relativity on the coherenimotion of the electronsn the Coo-
per pair. A first analysisof the significanceof the terms
indicatesthat they may be relevantfor high-temperatursu-
perconductors,heavy-fermion compounds,and supercon-
ducting heterostructures.

In all of the abovewe neitherhadto specify the precise
natureof the interactionleadingto pairing, nor the type of
the particlesinvolved. Thereforejust asis the casefor paper
I, the applicationof our resultsis not limited to propersu-
perconductorsbut extendsto any situationin which pairing
takesplace.Apartfrom BCS-typeandunconventionasuper-
conductivity this also includes,e.g., superfluidityin helium
31952 Other circumstancesn which pairing and relativity
may play a role simultaneouslyare the BCS model of
nuclearmatter>® andastrophysicasituations suchaspairing

of neutronsand protonsin neutronstars>*>°
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