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We proposea memoryform of exchange-correlatiopotentialvxc(r, ¢) for time-dependerinteracting
many-particlesystems. Unlike previousmemory-XC potentials,our vxc is not limited to the linear
responseregime. The proposedform of vxc is a generalizedlocal-density approximationchosen
so as to satisfy the nonlinearharmonic potential theoremand Newton'’s third law. For the caseof
the inhomogeneouglectrongas, we give an epr|C|t prescriptionfor vxc basedsolely on an existing
parametrizatiorof thelinearXC responsekernelfx 2"(n, w) of theuniform gas. Applicationto quantum

wells seemspromising. [S0031-9007(97)03984-7]

PACS numbers:71.15.Mb,71.45.Gm,73.20.Dx, 73.20.Mf

Widespreadnterestin nonlineardynamic phenomena
leadsusto seekan efficientdescriptionof time-dependent
exchangeand correlationeffectsin strongly perturbedin-
teracting many-body systems. These effects exhibit a
memoryin general,and recentwork [1,2] on linear re-
sponsesuggeststhat a spatially local memory approxi-
mation will only be availableif one works in terms of
currentsand vector potentials,rather than densitiesand
scalarpotentials. Herewe will showthat, at leastin the
caseof one-dimensionakpatial variation, a very simple
reinterpretatiorof the local-densityapproximationat the
nonlinear level, can lead to the correctlinear theory as
expoundedn Ref. [2].

We startfrom time-dependendensityfunctionaltheory
[3-5]. With suitablerepresentabiliticonditions,it gives
the exactdensityas

N
I’l(l’,t) = Z |‘ﬁk(1’, t)|2’
k=1

where the orbitals {i} obey single-particle-like time-
dependenKohn-Sham(TDKS) equations
2

i%lﬂk(r, t) = (—V— + v,[n](r, t))tﬁk(r, N, (2

(1)

2

vi[n](r,t) = v(r,t) + [n(r/, NUr, v d*r

+ vxclnl(r,1). 3)

U is the interparticleinteraction,v(r, 7) is the external
one-particle potential, and vxc(r,?) is the exchange-
correlation (XC) potential. For a given interaction
U and a given initial wave function, vxc(r,t) has a
unique delayed, nonlocal dependenceon the density
n(r’,t'). We assumethat the initial many-bodywave
function ¥(ry,...,ry, %) is the nondegeneratesurrent-
free ground state Wy(ry,...,ry) of the initial potential
v(r,t9) = vo(r) and that the density n(r,r < t;) is the
ground-statedensity no(r). The initial density canthen
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be representedin terms of the ordinary ground-state
KS orbitals i o(r), which thereforealso serveas initial
orbitals . (r, t) for (1)—(3).

A commonapproximatiorfor vxc(r, t) is the adiabatic
local-densityapproximation(ALDA), involving locality
bothin spaceandin time [6,7],

(e, 1)) = L)

veEPAn] (r, 1) =
n(r,t)

(4)

Here X" is the XC energy per particle of the homo-

geneougyas. To dateEqgs.(1)—(4) haveusually [6—11]

beensolvedfor the linear densityresponser; to a small

external scalar potential v;. In the linear regime the

TDKS equationsself-consistentlydeterminethe density

perturbationn; in termsof the externaland Hartreepo-
tentialsplusa linearizedXC potential

vxc,i(r, 1) = ffxc(l't,l",t/)ﬂl(l'/,l')d3r/df/, (5)

fxc(et, v't') = [6vxc(rt)/8n(c't) ], . (6)
vxc and fxc are not known exactly but Gross and
Kohn [12] generalized(4) via a spatially local memory
approximation,

v (r 1) = f £ (no(6), £ — Yma(r, £ di!, (7)
hom

where fxcr(n, 7) is the Fourier transform,with respect
to frequency,of the longitudinal XC kernel 3% (n, w)
of the homogeneousgas. For Coulomb systems
fXCL is related to the local-field-correctionfactor G
by fX1(n, ) = limy_o[~(47/4*)G(n,q,»)]. Gross,
Kohn, and lwamoto [12 13] further derived a useful
parametrizationof fxen (n, w) which has been used
in a number of numerical calculations [11,14]. By
contrast,the ALDA vyields, via (4) and(6) a frequency-
independentfxc.. A further analysisof fae" (n, w) has
now becomeavailable[15].
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Recentlyit was shown[1] that the approximation(7),
with spatiallocality but time nonlocality,violatesanexact
condition, the harmonicpotentialtheorem(HPT). (This
theorem[1], an extensionof the generalizedohn theo-
rem[16,17], appliesto interactingharmonicallyconfined
systems.It guaranteesxistenceof amodeinvolving rigid
oscillation, at arbitrarily large amplitude, of the charge
density and many-bodywave function) In Ref.[1] a
modificationto the Gross-Kohntheory,basedon the cur-
rent rather than the density alone, was suggestedn or-
der to remedythis difficulty. Furtherwork by Vignale
andKohn [2] (“VK") involved a currentdependencehut
alsoavectorratherthana scalarXC potential,in orderto
achievea straightforwardlylocal lineartheoryin the limit
of slow spatialvariations. In VK the tensorconnection
betweenaxc and j was determinedby explicit enforce-
mentof five differentconstraintsncluding Newton’sthird
law andthe HPT. Theresultingexpressiorcontaindongi-
tudinalandtransverséermsdependingon thelongitudinal
andtransverseXC kernelsf%" and f22%. of the uniform
electrongas[12,13,15]. The transverseart of VK van-
ishesfor the caseof one-dimensionahhomogeneitieand
currents.

The purposeof the presentwork is to exhibit and dis-
cussa simple, physically motivatednonlinear functional
which containsmemory and yields the longitudinal part
of the linear Vignale-Kohntheory in the limit of small
densityperturbations. Thusonehasboth (a) a newphysi-
cal picture which exhibits the somewhatformal linear
VK theory asa modified local-densityapproximationfor
the XC force, and (b) a first attemptat the inclusion of
memory-XCeffectsin the nonlinearresponseegime.

We first consider a straightforwardly local (“SL”)
but nonlinear and time-delayedapproximationfor the
exchange-correlatiopotential. By this we meanthatvxc
hasthe form

wSk(r, 1) = / wxen(e, )t — )i, (8)

wherewxc(n, 7) is, as yet, an unknownnonlinearfunc-

tion of two variableswith wxc(n, 7 < 0) = 0 for causal-
ity. Note that the spacevariabler is the sameon both
sidesof (8). A potentialof theform (8) wasproposedre-
viously [18] by BunnerandGross,who fixed wxc by ref-

erenceto the XC kernel fx¢ of the uniform electrongas.
This potentialwasshownin [18] to changets shapewhen
the densityis rigidly boosteda behaviorwhich hassince
beenshown[19] to be forbidden:it alsocanbe shownto

violatethe HPT.

We now introducea simplegeneralizatiorof the notion
of spatiallocality which will ensurethata modifiedform
of Eq. (8) satisfiesthe harmonicpotentialtheoremin its
nonlinear form: for this it is sufficient [1,19] that the
XC potential move rigidly when the density is rigidly
acceleratedvith arbitraryamplitude. To thisend,the new
physicalinput requiredis the notion that memoryresides
not with eachfixedpointr in space but rather with each

1906

separatefluid element. Thusthe elementwhich arrivesat
locationr at time ¢ “remembers”what happenedo it at
earliertimes+’ whenit wasat locationsR’ = R(¢' | r, t)
different from its presentiocationr. Herethe trajectory
function R(¢' | r, t) of a fluid elementis its position at
time ¢/, given that its position at time ¢ is r. R can
be defined unambiguouslyby demandingthat its time
derivativeis the fluid velocity u = J/n formedfrom the
guantalcurrentdensityJ(r, 1),

% R( |r,7) = u(R,7) = JR.&)/nR, 1), (9)

whereall occurrence®f R havethe sameargumentsas
on the left side of Eq. (9). The boundarycondition on
(9)is

R(t|r,t) =r. (20)

Notethat, despitethe classicabppearancef theequations
definingR, we do not simply haveclassicalhydrodynam-
ics becausehe currentin Eq. (9) is obtainedfrom the KS
orbitals,

N
Y0 = 5 Wi - V). (D)
k=1

[The caseswe will be concernedwith below (e.g.,
quantumwells with “edge” electromagneticexcitation)
involve three-dimensionaystemsput all quantitiesvary
in one spacedirection only, and all currentsare in the
same direction. Under these conditions (11) follows
exactlyfrom (1)—(3) by continuity.]

The simplest way to incorporatethe above idea is
to replace n(r,t') in (8) by n(R(z' | r,z),¢'), thereby
satisfyingthe HPT. Unfortunately,unlike (8), this theory
violatesNewton’sthird law, which requiresthe total XC
forceto bezeroatanytime [5,19,20],

fn(r,t)FXC(r,t) dr=0.

HereFxc = —Vuxc isthe XC forceperparticle. Clearly
(12) is satisfiedif the XC force perunit volume,nFxc, is
a spacegradientof form —VPyxc where Pxc vanishes
at the boundaries. With this and the HPT in mind,
we introducethe following ansatzfor the XC force per
particle:

(12)

1
n(r,t)

Fxc(r) = =2 oV [ Txc(®. i1 = f)ar.

(13)

Here R’ = R(¢' | r,t) and lIxc(n, 7) is a pressurelike
scalar memory function of two variables,whose value
will be determinedbelow. Equation(13) is a modified
local-densityassumptionin thatfor fixedr, ¢, andt’, vxc

dependsnly on the densityat oneplaceR’: “locality” is

therebydefinedrelativeto a fluid elementratherthanto a
fixed positionr. For consistencywith the staticLDA we

require(13) to reproducehe ground-stateXC force,

1

VoiE(no(r)) = oy Ve Go(r). 0 = 0). (14)
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Here v3¥M(n) = L [neh¥™(n)] is the static LDA XC
potential. The form (13) guaranteessatisfactionof the
nonlinearHPT. To seethis, note that in HPT motion
under harmonic confinement,the ground-statedensity
no(r) suffersarigid displacemenX(z) sothatthe density
is n(r,t) = ny(r — X(#)). Becausehe many-bodywave
function also movesrigidly [1], the current density is
J(r, 1) = no(r — X(#)) dX/dt. The fluid velocity u =
J/n isthendX/dt, independentf r. ThenEgs.(9) and
(10) showR’ = r + X(¢') — X(#). Thus(13) and (14)
yield
1
Fxc(r,1) = —

no(r — X(1))
X VIlxc(no(r — X(t)), ® = 0)
= - vaocm(no(r - X(1))).

That is, the XC potential in the caseof HPT motion
is the rigidly shifted ground-stateXC potential,and this
guaranteesatisfactiorof the HPT [1,19,20].

In the caseof 1D inhomogeneityone can go straight
from the force (13) to a scalar potential by a spatial
integration,

vxc(r,t) = — f_;FXC(r/,t) dr', (15)
_ nl(r’t) hom _

Fxci(r,t) = no(r) no(r)fxer (no(r), o = 0)

5V et -

Time-Fourier transforming (17) and applying it to the !

linearresponsef a uniform electrongasof densityn [for

which Fxci = — 2% (n, ®)Vn,(r,w), and Vay(r) = 0]
we find

Il xc(n, ) m

Mxes0) _ oo n, ).

where £ (n, ) is the well-known [12] longitudinal

dynamicXC kernelof the uniform electrongas. Thus

Myc(n, w) = fo

since IIxc = 0 for a gas of zero density. Fourier
transforming(18) we obtain(see[13])

hom

fxer(p, @) dp, (18)

ch(n 7) = [.(n)8(7) + Allxc(n,7),  (19)
where [.(n) = [ pfas® (p,=)dp. The 8(r) part of

(19) is mandatedby the third frequency moment sum
rule, andfrom [13] we obtainIl.(n) = —6.537, —2.557,
—1.199, and —0.3711 (10~* Hartree units) for n such
that r, = 2,2.5,3, and 4, respectively. Figure 1 shows
the memory part Allxc within the parametrizationof
Ref. [13].

Returning to the linear responseof a nonuniform
system,Fourier transformationand partial expansionof

resultingin a highly nonlocalXC potentialfor usein the
TDKS equations. For general3D variations,with a suit-
able choice of gaugeone can derive an equivalentvec-
tor potentialAxc(r, 1) = [_.. Fxc(r,t') dt’ whichis then
usedvia a minimal gaugesubstitutionin the Kohn-Sham
single-particle Schrdlinger equations. There are some
technicaldifficulties with this 3D approachhowever,so
we will restrict attentionhereto 1D inhomogeneity,in
which caseone can chooseto useeitherthe scalaror the
vectorpotentialasjust describedwith equivalentresults.

Equation(13) is the main result of the presentwork.
It remainsto identify the function Ilxc for arbitrary
w, and to show that (13) reducesto the linear VK
theoryin the appropriatdimit. Considersmallmotionsat
frequencyw arounda staticequilibrium,in the sensehat
the displacementx(r,¢) = R(¢|r,#) — r of eachfluid
elementfrom its initial (r = () positionr is small. Then
J in (9) is a small quantity (first orderin x at fixed w),
and(9) canbeintegratedo give

R( |r,1) =r + x(r,¢) — x(r,1) + O(x*). (16)

Substituting(16) into (13), using (14) with R, @ =
0) = 9vi¢"/an andwriting n(r,7) = no(r) + ni(r, ) we
obtainafirst-orderperturbationFxc; to the XC force,

) {Vno(r) - [x(r,t") — x(r,1)] + ni(r, ")} dr. (17)

the outergradientin the seconderm of (17) now give

Fxci(r,w) = — Vn’z(z(l)‘)

[n1(r,w) + Vng(r) - x(r,w)]5f

— V{Vno(r) - x(r,w)8f + ni(r,1)f},
(20)

where f = £XEL(no(r), ) and 8f = fRE(no(r), w) —
fXCL(”O(r) w = 0).

We can now userelations j/no(r) = —iwx [the lin-
earizedform of (9)] andn; = —ngV - x — x * Vng (lin-
earizedcontinuity). By thesemeanswe verify that the

. [10_4a.u.]

00 1.0 20 30 40
T [a.u.]

FIG. 1. Memory function Allxc vs delay = (Hartreeunits).
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linearized form (20) is identical with —iwa)xe (r,w)
where a x&(r,w) denotesthe “longitudinal” part of the
XC vectorpotential,obtainedfrom Eq. (19) of Ref. [2] by
omissionof the transverseermsinvolving fxcr. Thus
in the caseof 1D variationswhere the transversgerms
in Ref.[2] vanishidentically, the presentnonlinearthe-
ory linearizesto give exactlythe VK result:this VK form
is known to be valid in the linear limit of slow spatial
variations.

It may seemsurprisingthat the nonlinearresponseof
an inhomogeneousystemis entirely determined,in the
presenttheory, by the linear XC coefficient f4%} (n, w)
of the uniform gas. This arises becauseof the bold
assumptiorof theform (13) for the nonlinearXC potential
vxc(r, ), dependingon the density at only one foreign
spacetimepoint at a time—i.e., no crossdependencies
suchasn(r’,t')n(r",t") areincluded. Theform (13) can
be regardedasthe lowesttermin a resummedunctional
Taylor expansionof vxc(r, ) in terms of densitiesat
one foreign spacetimepoint, two suchpoints, threesuch
points, etc. This notion is discussedin more detalil
on pp. 127-128 of Ref.[5], where the needto satisfy
Eq. (12) was not, however,considered. A consequence
of the presentform is that the second-ordeand higher
nonlineartermsin an expansiorof vxc in powersof the
densitywill containa restrictedform of memoryrelating
to thedensityatjust oneprevioustime, nottwo, three,. . .,
previoustimes as would be allowed for theseexpansion
coefficientsin general. This is a consequencef the
very simple“local-with-memory”form of (13). With this
restriction,Eqg. (13) sumsall ordersof nonlinearresponse.

Numericalimplementatiorof the presenschememight
appeardifficult becauseof the apparentneedto store
a two-time quantity R(¢' | r,¢) along with the TDKS
orbitals ¢ (r, ). In fact, one only needsto usethe one-
time quantity X(r, t) = R(¢ | r,ty) wherert, is theinitial
time. Indeed,it may be more convenientto rewrite the
KS equationsn termsof KS wavefunctions¢; relabeled
by theinitial positionof thefluid element,

(ﬁk(l’,[) = ¢k(X(r, t)’ t) .
Then memory resides separately with each chosen
pointr.

In summary,we have shown how the conceptof a
local-density approximation for the XC potential can
be extendedto the nonlineartime-dependentasewith
memory,with satisfactionof exactnonlinearconstraints,
the harmonicpotentialtheorem[1], and Newton’s third
law. Our schemefollows by postulatingthat locality
should be definedrelative to a fluid elementratherthan
to afixed spatialpointr. It is summarizedy Egs.(13),

1908

(18), (9), and (15). It usesas input only the well-
known linear longitudinal XC coefficient 3oy (n, w) of
theuniform gas[12,13,15]. Whenlinearized,it yieldsthe
longitudinal part of the Vignale-Kohnform of XC vector
potential[2], which is believedto be exactin the limit of
slow 1D spatial variationsof a 3D system. Immediate
applicationsmay arise in the context of recent work
[21,22] on nonlinearprocessesnvolving 1D motions of
the electrongasin semiconductoguantumwells.
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