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Abstract. We present simulations of harmonic generation in hydrogen and
helium solving, for hydrogen, the time-dependent Schrodinger equation and
for helium the time-dependent Hartree-Fock and the time-dependent Kohn—
Sham equations, respectively. The calculations are performed for a variety of
laser wavelengths and intensities as well as for one—color and two—color pulses.
Optimum conditions for the generation of intense high—order harmonics are
discussed.

1. Introduction

Since the discovery of harmonic generation in rare gas atoms exposed to strong laser
pulses [1, 2, 3] the production of high—order harmonics has become an important subject
of experimental [4, 5] and theoretical [6, 7, 8] work in the field of intense laser-atom
physics. One of the main reasons for this activity lies in the potential applications of
this process as a route towards the generation of new coherent VUV or soft X-ray pulsed
sources. Recently the first experiments using high harmonic radiation like time-resolved
spectroscopy of helium [9] and pump—probe—experiments on surfaces [10] have been re-
ported. The determination of optimum conditions for high—order harmonic generation
has thus become an important experimental and theoretical challenge. The aim of our
work is to study the influence of the laser frequency and the field strength on the in-
tensities of the resulting harmonics in the plateau region by solving the time-dependent
Schrodinger equation for the hydrogen atom in a strong laser field. Varying the two
laser parameters either independently or simultaneously in a controlled way will pro-
vide us with first indications for the optimum choice of the laser parameters. As a
second method to increase the efficiency of harmonic generation we present simulations
for two—color laser pulses. These pulses consist of two different laser frequencies, usu-
ally a fundamental frequency and a low—order harmonic. The two-color calculations are
performed for the helium atom.



2. Numerical procedure

To study the process of high harmonic generation in hydrogen we solve the time-—
dependent Schrédinger equation (atomic units are used throughout)
2
i 2 (e, t) = (-V— ) f(t)zsin(wot)> W(r.t) (1)
ot 2 r

for an electron interacting with the nucleus and with a laser field, linearly polarized in
z—direction, with a peak strength F, and frequency wy. As usual we make use of the
dipole approximation written in the length form. The envelope function f(¢) has the
form of a linear ramp over the first three laser cycles and is then held constant for the
following 15 cycles.

We solve this equation in cylindrical coordinates (p, z,¢) with a finite-difference
scheme very similar to Kulander [11] using a finite non—uniform grid as introduced by
Pindzola et al. [12]. The spatial extent of the p—z grid is about 20 a.u. x 60 a.u.
Due to the linear polarization of the laser field the angular part of the wave function
is conserved. As initial state for our calculation we use the numerical ground state
of hydrogen obtained by direct diagonalization of the Hamiltonian on the grid. This
procedure yields a ground-state energy of -0.5 Hartrees in perfect agreement with the
exact value.

We simulate ionization by an absorbing grid boundary [11] so that the norm of the

wave function
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grid
taken over the finite volume of the grid decreases with time. The resulting decay rates
can then be interpreted as ionization rates.
To obtain the harmonic spectrum, we calculate the induced dipole moment

d(t) = / 2n(r,t) d*r (3)

from the electron density n(r,t) = |¢(r,t)|* which is then Fourier transformed over the
last 5 cycles of the constant—intensity interval. It can be shown [13] that this method gives
results which are insensitive to the linear ramping of the laser intensity during the first
three cycles of the simulation. The absolute square of the resulting Fourier transform,
|d(w)|?, has been shown [14] to be proportional to the experimentally observed harmonic
distribution to within a very good approximation.

Harmonic generation in helium will be treated within the time—dependent Hartree—
Fock approximation

0
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Here 9 (r,t) denotes a (doubly occupied) spin orbital.

To solve Eq. (4) we use the same numerical methods as described for the hydrogen
atom. However, the calculation of the initial helium ground state yields an energy
eigenvalue of -0.955 Hartrees, which is 3.9 % off the exact Hartree-Fock value of -0.918
Hartrees. This error is due to the relatively coarse grid spacings in the vicinity of



the nucleus which is inevitable to keep the numerical effort tractable during the time
propagation.

To investigate the influence of electronic correlations in helium beyond the time—
dependent Hartree—Fock approximation we also solve the time—dependent Kohn—Sham
equation:

2 rgy|2
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This equation arises from the optimized—effective-potential version [15] of time-
dependent density functional theory [16, 17]. Heavier atoms have also been treated
with this method [18, 19, 20]. V.(r,t) in Eq. (5) is a correlation potential for which
we employ the local-density approximation in its parametrization by Vosko, Wilk and
Nusair [21].

An approximation of the expected cutoff in the harmonic spectrum is given by the
well known Iy + 3.2U, rule [22, 23] where I; denotes the atomic ionization potential and
U, = E2/4w? the ponderomotive shift. Despite the simplicity of the semiclassical model
on which this rule of thumb is based its predictions are usually well confirmed by fully
quantum mechanical calculations. Therefore this rule will be used as a guideline in the
choice of laser parameters for an efficient generation of high harmonics.

3. Results

The first set of laser parameters considered are a wavelength of A = 1064 nm and an
intensity of 7 = 2.0 - 10'® W/cm?. The resulting harmonic spectrum is given in Fig. 1.
It agrees very well the result of Krause, Schafer and Kulander [24] for the above laser
parameters. After a rapid decrease over the first few harmonics the calculated intensities
form a plateau which extends approximately until the 17th harmonic. Using the Iy+3.2U,
rule we find a value of 0.75 a.u. for the cutoff frequency in good agreement with the full
quantum mechanical calculation.

In the following we investigate the variation of the harmonic spectrum if the laser
parameters Fy and wy are changed. First we vary only the wavelength A keeping the
intensity I = 2.0 - 10" W/cm? fixed. The semiclassical model then predicts a shift of
the cutoff energy towards the ionization potential of 0.5 a.u. in the hydrogen atom for
decreasing wavelengths. We calculate the harmonic spectra for laser frequencies wy which
are 1.5, 2.0, 2.5 and 3.0 times the frequency 0.04284 a.u. corresponding to the wavelength
A = 1064 nm. The results are presented in Fig. 2. Comparing the different spectra one
finds the following general behavior: The extent of the plateau decreases with increasing
wavelength as expected from the semiclassical model. At the same time the intensities
of the harmonics in the plateau regions increase by several orders of magnitude.

If the objective is the generation of intense and high harmonics one has to change
both laser parameters simultaneously. This is done by multiplying both the field strength
Ey = 0.02384 a.u. and the laser frequency wy = 0.04284 a.u. of our first example by the
same factor. In this way, the ponderomotive potential U, = E3 /4w3 remains unchanged
so that we expect the same cutoff frequency of 0.75 a.u. for all multiplicative factors. In
our simulations, factors between 1.0 and 3.0 have been used. The resulting spectra are
displayed in Fig. 3. For all parameter sets, we find that the plateau extends roughly until
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Figure 1. Harmonic spectrum of hydrogen for A = 1064 nm and I = 2.0 -

10" W/cm2. The corresponding laser frequency has a value of 0.04284 in
atomic units.
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Figure 2. Harmonic spectra of hydrogen for various laser frequencies but
fixed intensity of I = 2.0 - 10'* W/cm? (see text for details).
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Figure 3. Harmonic spectra of hydrogen for various laser frequencies and
intensities yielding the same ponderomotive potential (see text for details).

the semiclassical cutoff. More interesting is the observation that the intensities of the
harmonics generated in the plateau regions increase when the field strength and the laser
frequency wy are raised by the same factor. However, above a factor of 2.0, a saturation
in the intensities of the produced harmonics occurs. One possible cause for this effect is
that the process of ionization is becoming more and more important: While, for a factor
of 1.0, the norm of the wave function taken over the finite grid is 99% at the end of the
simulation, only 25% of the norm is left within the finite grid for the factor 3.0.

Finally we investigate how the harmonic spectrum changes if only the intensity [ is
raised. The wavelength is held constant at a value of A = 1064 nm. From the semiclassical
cutoff rule we expect that the extent of the plateau will expand with increasing intensity.
Fig. 4 shows harmonic spectra for intensities between I = 2.0-10*® W /cm? and I = 3.2-
10 W /cm? . In the intensity range below I = 8.0-10'® W /cm? the efficiency of harmonic
generation is dramatically increased since the plateau regions are raised and expanded
simultaneously with growing intensity. Above an intensity of I = 1.0 - 10'* W /cm? on
the other hand the semiclassical cutoff frequencies are no longer reproduced by the full
quantum mechanical calculation. Moreover, the generation of high harmonics gets more
and more suppressed for intensities higher than I = 2.5 - 10'* W/cm?. Both effects are
most probably due to the competing process of ionization which becomes relevant at
intensities above I = 2.5 - 10 W /cm?.

Another approach to increase the efficiency of high harmonic generation is the use
of two—color laser fields. Evidence for this has been found in experiments [25, 26] as
well as in numerical simulations for the hydrogen atom [27, 28, 29]. Here the laser fields
employed are of the general form

E(t) = f(t)[Ep sin(wot) + E; sin(wyt + 0)]. (6)
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Figure 4. Harmonic spectra of hydrogen at a laser wavelength of A =
1064 nm for various laser intensities.

In most cases Ey and E; are of the same strength and w; is an integer multiple of wy. A
possible phase shift between the two fields is taken into account by the constant 4.

In order to investigate how the harmonic spectrum is influenced by the choice of the
second laser frequency we have studied the harmonic generation in helium for different
values of w;. The calculations were performed for £y = F; = 0.010 a.u. resulting in a
total intensity of I = 7.0 - 10 W/cm?. The laser frequency w; has been chosen to be
the second and third harmonic of wy = 0.0740 a.u. which corresponds to a wavelength
of A = 616 nm. The phase difference ¢ has been set equal to zero in both cases. Fig. 5
shows the resulting harmonic spectra together with the results of a one—color calculation
with the same total intensity I = 7.0 - 10** W/cm? and the fundamental frequency
wgp = 0.0740 a.u. alone. The generated harmonics found at even multiples of wy in the
case w; = 2wy are due to nonlinear mixing processes of the two fields [26]. Most of
the harmonics in the plateau region produced by the two—color field for wy = 2wy are
one to two orders of magnitude more intense than those resulting from the one-color
calculation.

In the case w; = 3wy an even stronger enhancement in the generation of high
harmonics is found. This enhancement however approximately lasts only until the 29th
harmonic. The results of this simulation therefore resemble the effects found in hydrogen
(see Fig. 2) where the plateau region was raised and shortened with increasing laser
frequency.

To investigate the contributions of the two laser frequencies to the process of har-
monic generation we now vary the intensities Iy and I; of the fundamental frequency wy
and the third harmonic w; = 3wy respectively. The total intensity I = Iy + [; is held
fixed at a value of 7.0 - 10" W/cm? to allow for a direct comparison of the resulting
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Figure 5. Harmonic spectra of helium resulting from a one—color calculation
and from two two—color calculations. One of the latter includes the second
and the other includes the third harmonic in addition to the fundamental fre-
quency. The laser parameters used are A = 616 nm and I = 7.0- 10 W/cm?.

spectra. The intensities Iy and I; are therefore chosen as

1
I, = —J
q
I, = 4 7
! g+ 1 (8)

where ¢ denotes the ratio of the intensities. The harmonic spectra for different values
of ¢ and a phase difference of 6 = 7/2 are given in Fig. 6. One finds that adding only
a small amount (¢=0.01) of the third harmonic yields a considerable increase of the
intensities of the generated harmonics compared to the one—color simulation (¢=0). The
best efficiency of harmonic generation is already reached for a ratio of g=1. ¢-values
greater than unity do not lead to a significant enhancement.

All of the above calculations for helium were done within the time-dependent
Hartree-Fock approach. To investigate the influence of electronic correlations on the
generation of high harmonics we finally compare the time-dependent Hartree-Fock ap-
proach with the results of a time—dependent density functional calculation. The latter
is based on Eq. (5) where electronic correlations are taken into account through a local
correlation potential. Fig. 7 compares the two approaches for the harmonic spectrum
of helium, calculated with the laser parameters A = 616 nm and I = 7.0 - 10** W /cm?2.
The intensities of the produced harmonics are found to be generally reduced in the cal-
culation with correlation, typically by a factor of 2 — 3. Although this is not exactly a
small deviation, the overall structure of the harmonic spectrum is changed very little by
electronic correlations.
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Figure 6. Harmonic spectra of helium resulting from two-color calculations
with different intensity ratios ¢ of the third harmonic to the fundamental
frequency.
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Figure 7. Harmonic spectra of helium resulting from the Hartree-Fock equa-

tion (without correlation) and the Kohn—-Sham equation (with correlation).
The laser parameters are A = 616 nm and I = 7.0 - 10 W/cm?.



References

[1]

2]
[3]

[29]

A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and
C. K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987).

Atoms in Intense Laser Fields, ed. by M. Gavrila, Academic Press, Boston (1992).

Super—Intense Laser—Atom Physics, ed. by B. Piraux, A. L’Huillier, and K. Rzazewski,
NATO ASI series B316 (Plenum Press, New York, 1993).

A. L’Huillier and P. Balcou, Phys. Rev. Lett. 70, 774 (1993).

S. G. Preston, A. Sanpera, M. Zepf, W. J. Blyth, C. G. Smith, J. S. Wark, M. H. Key,
K. Burnett, M. Nakai, D. Neely, and A. A. Offenberger, Phys. Rev. A 53, R31 (1996).

A. Sanpera, P. Jonsson, J. B. Watson, and K. Burnett, Phys. Rev. A 51, 3148 (1995).
X. Chen, A. Sanpera, and K. Burnett, Phys. Rev. A 51, 4824 (1995).
J. B. Watson, A. Sanpera, and K. Burnett, Phys. Rev. A 51, 1458 (1995).

J. Larsson, E. Mervel, R. Zernet, A. I’Huillier, C.-G. Wahlstrom, ans S. Svanberg, J.
Phys. B 28, L53 (1995).

R. Haight and D. R. Peale, Phys. Rev. Lett. 70, 3379 (1993).

K. C. Kulander, Phys. Rev. A 35, 445 (1987).

M. S. Pindzola, T. W. Gorczyca, and C. Bottcher, Phys. Rev. A 47, 4982 (1993).

S. Erhard, Diploma Thesis, Universitdt Wiirzburg (1996).

A. L’Huillier, L. A. Lompré, G. Mainfray, and C. Manus, in Ref. [2], p. 139.

C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 74, 872 (1995).
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

J. F. Dobson, M. Petersilka, in Density Functional Theory II, ed. by R. F. Nalewajski,
Topics in Current Chemistry, Volume 181 (Springer 1996), p. 81-172.

C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Ber. Bunsenges. Phys. Chem. 99, 488
(1995).

C. A. Ullrich, S. Erhard, and E. K. U. Gross, in Super Intense Laser Atom Physics IV, ed.
H. G. Muller and M. V. Fedorov, NATO ASI series 3/13 (Kluwer 1996), p. 267-284.

C. A. Ullrich and E. K. U. Gross, Comments on Atomic and Molecular Physics (1996),
in press.

S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

K. C. Kulander, K. J. Schafer, and J. L. Krause, in Ref. [3], p. 95.

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998 (1992).

S. Watanabe, K. Kondo, Y. Nabekawa, A. Sagisaka, and Y. Kobayashi, Phys. Rev.
Lett. 74, 2692 (1994).

H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long,
and J. K. Mclver, Phys. Rev. A 51, R3414 (1995).

K. J. Schafer and K. C. Kulander, Phys. Rev. A 45, 8026 (1992).
S. Long, W. Becker, and J. K. Mclver, Phys. Rev. A 52, 2262 (1995).

M. Protopapas, A. Sanpera, P. L. Knight, and K. Burnett, Phys. Rev. A 52, R2527
(1995).



