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We study the quantum dynamics in a model system consisting of two electrons and a nucleus which
move between two fixed ions in one dimension. The numerically determined wave functions allow
for the calculation of time-dependent electron localization functions in the case of parallel spin and
of the time-dependent antiparallel spin electron localization functions for antiparallel spin. With the
help of these functions, it becomes possible to illustrate how electronic localization is modified
through the vibrational wave-packet motion of the nucleus. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1806812#

In 1990, Becke and Edgecombe introduceda simple
measure of electron localization in atomic and molecular
systemsin their such entitled article.1 The authors defined the
so-called electron localization function~ELF! within the
Hartree-Fock theory and for systems with parallel spin. Up
to now, many applications of the ELF to analyze atomic shell
structure and bonding situations in molecules were pre-
sented, for a review see Ref. 2. Most recently, the ELF was
employed in the time-domain to study the electronic dynam-
ics of acetylene in a strong laser pulse and the collision of a
proton with ethylene withclassicallymoved nuclei.3 In this
letter we elaborate on the idea of the ELF, extending the
concept to a more general situation. In doing so, we exploit a
model of two electrons and a nucleus all of which are al-
lowed to movequantum mechanicallyin a single dimension
between two ions, the latter being fixed in space. This par-
ticle configuration is sketched in Fig. 1.

We solve the time-dependent Schro¨dinger equation nu-
merically exact to obtain wave functionsc(xs,yt,R,t),
wherex, y, R are the electronic and nuclear coordinates,s, t
are the spin coordinates of the electrons, andt denotes time.
The wave functions serve as the starting point to calculate
quantities which characterize electron localization. To pro-
ceed, we follow the strategy of Becke and Edgecombe, and
start from the diagonal of the time-dependent density matrix
of the two-electron/one-nucleus system, given by

Dst~x,y,R,t !5uc~xs,yt,R,t !u2. ~1!

This quantity is the probability density for finding, at timet,
the two electrons with spinss andt at x andy, respectively,
and the nucleus at positionR. Although we might, in prin-
ciple, investigate the localization of all three particles, we

concentrate here on the electrons. An average of the diagonal
part of the density matrix over the nuclear degree of freedom
yields

Dst~x,y,t !5E dRDst~x,y,R,t !. ~2!

The time-dependent probability density~the electronic spin
density! to find one electron with spins at pointx, indepen-
dently of where the other electron and the nucleus are lo-
cated, is obtained by integration

rs~x,t !5E dtE dyDst~x,y,t !. ~3!

Furthermore we define theconditional probability densityto
find an electron with spint at y, if we know with certainty
that another electron with spins is located atx, by

Pst~x,y,t !5
Dst~x,y,t !

rs~x,t !
. ~4!

We now have to distinguish the cases of parallel~aa! and
antiparallel~ab! spin of the two electrons. Since in the latter
case, the coordinate-space wave function is symmetric with
respect to exchange of the electrons, we may use the function

Pab~x,t !5Pab~x,x,t !, ~5!

as a measure of localization. Accordingly,Pab(x,t)dx is the
conditional probability in the volume elementdx to find one
electron at timet at pointx, if we know with certainty that
the other electron with opposite spin is at the same place.
Unfortunately, this relation is an indirect one.Pab(x,t) is
small, if the electron atx is strongly localized. Following the
example given by Becke and Edgecombe for the ELF, we
define an inverse quantity denoted astime-dependent anti-
parallel spin electron localization function@TDALF(x,t)# as

TDALF~x,t !5@11uPab~x,t !/Fa~x!u2#21, ~6!
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whereFa(x) is the Thomas-Fermi kinetic energy density. In
the case of antiparallel electron spins and within our one-
dimensional model system, the latter takes the form

Fa~x!5 4
3p

2ra
3~x!, ~7!

where the spin densityra(x) is normalized to 1.
The case of parallel spin is more complicated since the

above defined probabilityPaa(x,x,t) is in fact zero due to
exchange symmetry. Following Becke and Edgecombe, we
first introduce the relative coordinates5x2y. For our linear
system, a spherical average1 is neither necessary nor possible
and the conditional probability@Eq. ~4!# is directly expanded
in a Taylor series up to second order around the point
s50:

Paa~x,s,t !5Paa~x,0,t !1
]Paa

]s
~x,0,t !s

1
1

2

]2Paa

]s2
~x,0,t !s2. ~8!

Since the wave function for the two-electron~aa! system has
a node ats50, the constant term vanishes identically. Fur-
thermore, according to Kato’s cusp theorem,4 the many-body
wave functionC is proportional tos for small s, so that
uCu2, D, andP go like s2 in this limit. As a consequence, the
first nonvanishing term in the expansion~8! is of quadratic
order and can be written as

Paa~x,s,t !5
1

2

]2Paa

]s2
~x,0,t !s25aaa~x,t !s2. ~9!

The functionaaa(x,t) now enters directly into the definition
of the time-dependent electron localization function
~TDELF! as

TDELF~x,t !5@11uaaa~x,t !/Fa~x!u2#21, ~10!

whereFa(x) is the Thomas-Fermi kinetic energy density. In
the case of parallel spinsFa(x) is given by

Fa~x!5 16
3 p2ra

3~x!. ~11!

The spin densityra(x) is again normalized to 1. Armed with
the above definitions we now examine numerical examples
to characterize the electron localization dynamics in a system
with antiparallel and parallel spin and a fully correlated elec-
tronic and nuclear motion. Below, we also investigate the
time-dependent nuclear density, defined as

Gst~R,t !5E dxE dyDst~x,y,R,t !. ~12!

The model employed in the present paper extends a pre-
viously investigated model of a single electron and an ion
moving on a line within two ions~1!, ~2! fixed at positions
R1525 Å and R255 Å.5,6 Including a second electron
leads to the Hamiltonian

H~x,y,R!5T~x!1T~y!1T~R!1V~x,y,R!, ~13!

whereT(qi) is the kinetic energy operator of particlei and
all coordinates refer to the origin in the middle between the
two fixed ions, see Fig. 1. The potential energy is param-
etrized in the form:

V~x,y,R!5
Z1Z

uR12Ru
1

Z2Z

uR22Ru
1

erf~ ux2yu/Re!

ux2yu

2
Z1 erf~ uR12xu/Rf !

uR12xu
2

Z2 erf~ uR22xu/Rf !

uR22xu

2
Z erf~ uR2xu/Rc!

uR2xu
2

Z1 erf~ uR2yu/Rf !

uR12yu

2
Z2 erf~ uR22yu/Rf !

uR22yu
2

Z erf~ uR2yu/Rc!

uR2yu
.

~14!

The first three terms describe the interaction of the nuclei
with chargesZn , Z and the electron-electron interaction. In
the latter, as well as in the electron-nuclei interactions@addi-
tional terms in Eq.~14!#, a screened interaction is used. Its
parametrization employs error functions~erf! and screening
parametersRf ~fixed ion electron!, Rc ~moving ion electron!,
and Re ~electron electron!. The choice of these parameters
allows one to switch between cases of weak and strong nona-
diabatic interactions.5–9

A simpler form of this model system, containing only a
single electron was used earlier by Shin and Metiu to de-
scribe charge transfer processes in crystals5,6 and also by us
to investigate the quantum dynamics of a coupled electron
and nuclear motion in the presence of strong nonadiabatic
coupling7,9 and additional interactions with external fields.8

The simplicity of the model systems allows for an exact
treatment of all degrees of freedom beyond the usual Born-
Oppenheimer approach and also contains important ingredi-
ents which are essential to describe a realistic situation of
many-particle interactions in molecules. This is essential for
the considerations presented in what follows.

As a first numerical example we regard the case of anti-
parallel spin~ab!. The parameters entering into the potential
energy function were chosen asZn5Z51, Rc5Rf51.5 Å,
andRe52.5 Å. Here and below the mass of the ion was fixed
to the hydrogen mass. In order to make some predictions
about the dynamical behavior of the system, we first deter-
mine the adiabatic potential curvesVn

st(R) for the nuclear
motion. The latter are obtained from the electronic Schro¨-
dinger equation

FIG. 1. Configuration of the model system: An ion~coordinateR! and two
electrons~at x andy! are allowed to move between two fixed ions~1! and
~2!, fixed at a distance of 10 Å.
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$T~x!1T~y!1V~x,y,R!%fn
st~x,y,R!

5Vn
st~R!fn

st~x,y,R!, ~15!

so thatfn
st(x,y,R) are the electronic eigenfunctions in state

un&. The spin properties~st! are exclusively determined by
the symmetry of the spatial wave function, so that in the
~a,b! case, the eigenfunctionsfn

st(x,y,R) are of gerade
symmetry. Potential curves for the quantum numbersn
50 – 3 are displayed in Fig. 2, upper panel. They are all
bound and symmetric with respect to the origin of the coor-
dinate system and exhibit avoided crossings at various values
of R.

The time-dependent Schro¨dinger equation was inte-
grated numerically using the split-operator method10 for the
initial function

c~xa,yb,R,t50!5e2g~R2R0!2
fn

ab~x,y,R! ~16!

with g50.2646 Å22 and R0523.5 Å. In the present ex-
ample, the initial state was localized in the first excited elec-
tronic state, i.e., we employ the electronic wave functions for
n51 in Eq. ~16!.

The nuclear densityGab(R,t) ~Fig. 3, upper panel! ex-
hibits typical features of a vibrational motion where reflec-
tion at an outer turning point and the anharmonicity of the
potential results in a large dispersion. A more detailed picture
of the dynamics can be obtained by inspecting the popula-
tions in the various electronic states, defined as

Pn
ab~ t !5E dRu^wn

ab~x,y,R!uC~xa,yb,R,t !&x,yu2.

~17!

The populations for statesn50, 1 ~being the only ones popu-
lated! are displayed in Fig. 4. According to the initial condi-
tion, the wave packet at early times has exclusively an ex-
cited state (n51) component. After about 10 fs it reaches
the first coupling region between ground and excited state at
R521.5 Å ~see Fig. 2, upper panel!. A substantial amount
of population is transferred to the electronic ground state,
where the motion proceeds until the moving nucleus reaches
the second coupling region aroundR511.5 Å at about 25
fs. Now the population is partially back transferred to the
excited state, where the nuclear wave packet is repelled from
the right fixed ion~35 fs! which gives rise to a strong oscil-

FIG. 2. Adiabatic potentials for the antiparallel~upper panel! and parallel
spin case~lower panel!. Different parameters were used in the parametriza-
tion of the interaction energy, as is detailed in the text.

FIG. 3. Quantum dynamics in the case of anti-parallel spin. The upper panel
shows the nuclear density. The time-dependent electron density and time-
dependent electron localization function are shown in the middle and lower
panels, respectively.
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lation in the nuclear density. At later times the nuclear wave
packet becomes extremely broad and a defined structure can
no longer be seen. However, taking a look at the time-
dependent electron density~Fig. 3, middle panel!, it seems as
if hardly anything happens. The two maxima of the electron
density seen atx565 Å at early times, are only slightly
modified by the motion of the nucleus. Thus, the electron
density seems to be rather insensitive to the nuclear motion
and also to the presence of nonadiabatic couplings. This can
be explained by an analysis of the structutre of the
R-dependent electronic eigenfunctions. Although their nodal
structure is different, the densities and in particular those
obtained from a superposition of the two electronic states are
quite similar.7 On the other hand, localization, if present,
should be influenced more effectively. This, indeed, can be
seen in Fig. 3~lower panel! which displays the TDALF. Ini-
tially it resembles the structure of the electron density. A first
effect visible in the inner localization domain~negativex
values! is observed as the population tranfer starts, suggest-
ing that the electronic transition decreases the degree of lo-
calization. Within the latter time interval, however, the outer
domain remains unchanged since the nucleus is still far sepa-
rated from the location of ion~2!. As soon as it approaches
the location of the outer ion, the TDALF decreases in ampli-
tude and nearly vanishes. Afterwards, the same effect can be
seen to occur at the inner domain. Altogether, the present
example illustrates that wave-packet spreading and strong
nonadiabatic couplings are effective in decreasing localiza-
tion. Alternatively, one can rationalize this effect taking into
account that here an electronic wave packet is built and then,
upon its nonstationary behavior, electron localization is di-
minished.

Next we treat an example where the electrons have par-
allel spin. Employing the parameter setZn5Z51, Rc5Re

5Rf51.5 Å, adiabatic potential curves are obtained which
are shown in Fig. 2, lower panel. Here the ground state and
the first excited state are well separated from each other and
also from the higher states, whereas the states withn52 and
n53 again show avoided crossings.

We solve the time-dependent Schro¨dinger equation nu-
merically starting with an initial wave function as given in

Eq. ~16!. As parameters we employedg50.2646 Å22 and
R0522.7 Å. Figure 5, upper panel, displays the calculated
nuclear densityGaa(R,t) ~upper panel! during the vibra-
tional motion. The particular choice of initial conditions as-
sures that the motion takes place exclusively in a single elec-
tronic state (n51). The nuclear wave packet is initially
localized in the left half of the potential well and starts mov-
ing to the right side where it is repelled by the right fixed ion
at about 40 fs. The incoming and outgoing~reflected! parts
of the nuclear wave packet give rise to a pronounced oscil-
latory structure. After that, the wave packet broadens sub-
stantially due to the anharmonicity of the potential. The elec-
tron densityra(x,t) ~Fig. 5, middle panel! on the other hand
exhibits a very smooth structure during the vibrational mo-
tion of the nucleus. Att50 the electron density is accumu-
lated around the left fixed nucleus and the moving ion and

FIG. 4. Populations in the ground and first excited state for the case of
antiparallel spin. Initially, only the excited state (n51) is populated. Due to
a strong nonadiabatic coupling, an effective population transfer between two
electronic states (n50,1) takes place at later times.

FIG. 5. Quantum dynamics in the case of parallel spin. Starting from the
top, the nuclear density, the electron density, and the time-dependent elec-
tron localization function are shown in the different panels.
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reflects the nodal structure of the electronic eigenstate~not
shown!. After some time, as the nucleus crosses the origin at
R50, the initial density drops to zero and two new maxima
occur around the right fixed nucleus and the moving ion.
This can be interpreted as a charge transfer from the left
fixed ion to the right one due to the motion of the nucleus.
However, this situation is not fully reversed at later times
because of the broadening of the nuclear probability density,
so that the electron density has three maxima at aboutt
5100 fs.

From the electron density alone it is not clear how many
electrons are involved in the charge transfer from the left to
the right fixed ion. In order to shed some light on the process
we calculated the TDELF which is displayed in Fig. 5, lower
panel. Initially it shows two localization domains: one
around the left fixed ion at aboutx525 Å, the other is
found near the origin (x50). The first domain vanishes
completely during the vibrational motion of the nucleus~it is
restored at later times!, while the second one is only slightly
modulated. Furthermore, as the mobile ion crosses the origin
of the coordinate system, a third domain, located at the right
fixed ion (x515 Å), gets visible which drops to zero again
as the vibrational period completes.

The interpretation of the TDELF is not trivial, but the
vanishing of the first domain atx525 Å and the appearance
of a third domain atx515 Å indicates that one electron
must have been removed from the left fixed nucleus and
dragged to the right fixed ion as the TDELF reveals localiza-
tion of the electron distribution. Now, remembering the fact
that the electron density at negative values ofx drops to zero,
one can conclude that both electrons participate in the
charge-transfer process induced by the vibrational motion of
the nucleus. During this process the maxima in the probabil-
ity density of the electrons shift smoothly on the internuclear

axis. These changes are clearly reflected in the time-
dependent ELF exhibiting the dynamics of the localization
domains.

In conclusion, we have studied aspects of electron local-
ization as a function of time in connection with vibrational
nuclear motion. Therefore we employed exact wave func-
tions obtained from the solution of the time-dependent
Schrödinger equation for a model system. This allows for a
construction of time-dependent electron localization func-
tions in the case of parallel~TDELF! and antiparallel
~TDALF! electron spin. The procedure is unique in the sense
that the latter functions are not restricted to ground electronic
states and/or approximate calculation methods and further-
more include time as well as the coupling of electronic and
nuclear motion.
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