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1 Introduction

The basic idea of density functional theory (DFT) is to describe an interacting
many-particle system exclusively and completely in terms of its density. The for-
malism rests on two basic theorems:
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I. Every observable quantity can be calculated, at least in principle, from the
density alone, i. e. each quantum mechanical observable can be written as a
functional of the density.

II. The density of the interacting system of interest can be obtained as the density
of an auxiliary system of non-interacting particles moving in an effective local
single-particle potential, the so-called Kohn Sham potential.

In the original work of Hohenberg and Kohn (HK) [1] and Kohn and Sham (KS)
[2] these theorems were proven for the ground-state density of static many-body
systems. On the basis of these theorems, DFT has provided an extremely success-
ful description of ground-state properties of atoms, molecules and solids [3, 4, 5].
The quality of approximations for the Kohn-Sham potential has steadily improved
over the years and the currently best functionals yield ground-state properties in
very close agreement with configuration interaction results [6]. Excited-state prop-
erties, however, are notoriously difficult to calculate within the traditional density
functional framework and time-dependent phenomena are not accessible at all.

Time-dependent density functional theory (TDDFT) as a complete formalism
[7] is a more recent development, although the historical roots date back to the
time-dependent Thomas-Fermi model proposed by Bloch [8] as early as 1933. The
first and rather successful steps towards a time-dependent Kohn-Sham (TDKS)
scheme were taken by Peuckert [9] and by Zangwill and Soven [10]. These authors
treated the linear density response of rare-gas atoms to a time-dependent external
potential as the response of non-interacting electrons to an effective time-dependent
potential. In analogy to stationary KS theory, this effective potential was assumed
to contain an exchange-correlation (xc) part, vxc(r, t), in addition to the time-
dependent external and Hartree terms:

vs(r, t) = v(r, t) +

∫

d3r′
n(r′, t)

|r − r′| + vxc(r, t) . (1)

Peuckert suggested an iterative scheme for the calculation of vxc, while Zangwill
and Soven adopted the functional form of the static exchange-correlation potential
in local density approximation. Significant steps towards a rigorous foundation of
time-dependent density functional theory were taken by Deb and Ghosh [11]– [14]
and by Bartolotti [15] –[18] who formulated and explored HK and KS type theorems
for the time-dependent density. Each of these derivations, however, was restricted
to a rather narrow set of allowable time-dependent potentials (to potentials periodic
in time in the theorems of Deb and Ghosh, and to adiabatic processes in the work
of Bartolotti). A general proof of statements I and II above for the time-dependent
density was given by Runge and Gross [7]. A novel feature of this formalism, not
present in ground-state density functional theory, is the dependence of the respective
density functionals on the initial (many-particle) state. A detailed description of
the time-dependent density functional formalism will be presented in section 2.
The central result is a set of TDKS equations which are structurally similar to the
time-dependent Hartree equations but include (in principle exactly) all many-body
effects through a local time-dependent exchange-correlation potential. In section 2
we focus on the motion of electrons only. In many experimental situations, however,
the nuclear motion and its coupling to the electronic motion is important as well. If,
for example, a molecule is placed in the focus of a strong laser, the electric field of
the laser can either couple directly to the nuclei (in the infrared frequency regime) or
the coupling to the electrons can lead to photoionization with subsequent Coulomb
explosion (dissociation) of the molecule. To deal with situations of this type a DF
formalism for the coupled system of electrons and nuclei is developed in section
3. The central result is a set of coupled TDKS equations for the electrons and for
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each nuclear species. While sections 2 and 3 exclusively deal with time-dependent
electric fields, magnetic effects will be considered in section 4. Both the ordinary
Zeeman coupling and the coupling of magnetic fields to the orbital currents will be
included.

To date, most applications of TDDFT fall in the regime of linear response. The
linear response limit of time-dependent density functional theory will be discussed
in section 5.1. After that, in section 5.2, we shall describe the density-functional
calculation of higher orders of the density response. For practical applications,
approximations of the time-dependent xc potential are needed. In section 6 we
shall describe in detail the construction of such approximate functionals. Some
exact constraints, which serve as guidelines in the construction, will also be derived
in this section. Finally, in sections 7 and 8, we shall discuss applications of TDDFT
within and beyond the perturbative regime. Apart from linear response calculations
of the photoabsorbtion spectrum (section 7.1) which, by now, is a mature and
widely applied subject, we also describe some very recent developments such as the
density functional calculation of excitation energies (section 7.2), van der Waals
forces (section 7.3) and atoms in superintense laser pulses (section 8).

2 Basic formalism for electrons in time-dependent

electric fields

2.1 One-to-one mapping between time-dependent potentials

and time-dependent densities

Density functional theory is based on the existence of an exact mapping between
densities and external potentials. In the ground-state formalism [1], the existence
proof relies on the Rayleigh-Ritz minimum principle for the energy. Straightforward
extension to the time-dependent domain is not possible since a minimum principle
is not available in this case. The proof given by Runge and Gross [7] for time-
dependent systems is based directly on the Schrödinger equation (atomic units are
used throughout):

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t) . (2)

We shall investigate the densities n(r, t) of electronic systems evolving from a fixed
initial (many-particle) state

Ψ(t0) = Ψ0 (3)

under the influence of different external potentials of the form

V̂ (t) =

N∑

i=1

v(ri, t) . (4)

In the following discussion, the initial time t0 is assumed to be finite and the po-
tentials are required to be expandable in a Taylor series about t0. No further
assumptions concerning the size of the radius of convergence are made. It is suf-
ficient that the radius of convergence is greater than zero. The initial state Ψ0 is
not required to be the ground state or some other eigenstate of the initial potential
v(r, t0) = v0(r). This means that the case of sudden switching is included in the
formalism. On the other hand, potentials that are switched-on adiabatically from
t0 = −∞ are excluded by the Taylor-expandability condition because adiabatic
switching involves an essential singularity at t0 = −∞.

Besides an external potential of the form (4), the Hamiltonian in Eq. (2) contains
the kinetic energy of the electrons and their mutual Coulomb repulsion:

Ĥ(t) = T̂ + Û + V̂ (t) (5)
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with

T̂ =
N∑

i=1

−1

2
∇2

i (6)

and

Û =
1

2

N∑

i,j=1

i6=j

1

|ri − rj |
. (7)

With these preliminaries, we can formulate the following Hohenberg-Kohn-type
theorem: The densities n(r, t) and n′(r, t) evolving from a common initial state
Ψ0 = Ψ(t0) under the influence of two potentials v(r, t) and v′(r, t) (both Taylor
expandable about the initial time t0) are always different provided that the poten-
tials differ by more than a purely time-dependent (r-independent) function: 1

v(r, t) 6= v′(r, t) + c(t) . (8)

To prove this theorem, we use the condition that the potentials v and v′ can be
expanded in Taylor series:

v(r, t) =

∞∑

k=0

1

k!
vk(r)(t − t0)

k , (9)

v′(r, t) =

∞∑

k=0

1

k!
v′

k(r)(t − t0)
k . (10)

Equation (8) is equivalent to the statement that for the expansion coefficients vk(r)
and v′

k(r) there exists a smallest integer k ≥ 0 such that

vk(r) − v′
k(r) =

∂k

∂tk
(v(r, t) − v′(r, t))

∣
∣
∣
∣
t=t0

6= const. (11)

From this inequality we prove in a first step that the current densities

j(r, t) = 〈Ψ(t)|̂jp(r)|Ψ(t)〉 (12)

and
j′(r, t) = 〈Ψ′(t)|̂jp(r)|Ψ′(t)〉 (13)

are different for different potentials v and v′. Here,

ĵp(r) =
1

2i

N∑

j=1

(
∇rj

δ(r − rj) + δ(r − rj)∇rj

)
(14)

is the usual paramagnetic current density operator. In a second step we shall show
that the densities n and n′ are different.

Using the quantum mechanical equation of motion for the expectation value of
an operator Q̂(t),

∂

∂t
〈Ψ(t)|Q̂(t)|Ψ(t)〉 = 〈Ψ(t)|

(

∂Q̂

∂t
− i[Q̂(t), Ĥ(t)]

)

|Ψ(t)〉 , (15)

1If v and v′ differ by a purely time-dependent function, the resulting wave functions Ψ(t) and
Ψ′(t) differ by a purely time-dependent phase factor and, consequently, the resulting densities ρ
and ρ′ are identical. This trivial case is excluded by the condition (8), in analogy to the ground-
state formalism where the potentials are required to differ by more than a constant.
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we obtain for the current densities:

∂

∂t
j(r, t) =

∂

∂t
〈Ψ(t)|̂jp(r)|Ψ(t)〉 = −i〈Ψ(t)|[̂jp(r), Ĥ(t)]|Ψ(t)〉 (16)

∂

∂t
j′(r, t) =

∂

∂t
〈Ψ′(t)|̂jp(r)|Ψ′(t)〉 = −i〈Ψ′(t)|[̂jp(r), Ĥ ′(t)]|Ψ′(t)〉 . (17)

Since Ψ and Ψ′ evolve from the same initial state

Ψ(t0) = Ψ′(t0) = Ψ0 (18)

we can write

∂

∂t
(j(r, t) − j′(r, t))

∣
∣
∣
∣
t=t0

= −i〈Ψ0|[̂jp(r), Ĥ(t0) − Ĥ ′(t0)]|Ψ0〉

= −n0(r)∇ (v(r, t0) − v′(r, t0)) (19)

with the initial density
n0(r) = n(r, t0) . (20)

If the condition (11) is satisfied for k = 0 the right-hand side of (19) cannot vanish
identically and j and j′ will become different infinitesimally later than t0. If (11)
holds for some finite k > 0 we use Eq. (15) (k + 1) times and obtain after some
algebra:

(
∂

∂t

)k+1

(j(r, t) − j′(r, t))

∣
∣
∣
∣
t=t0

= −n0(r)∇wk(r) 6= 0 (21)

with

wk(r) =

(
∂

∂t

)k

(v(r, t) − v′(r, t))

∣
∣
∣
∣
t=t0

. (22)

Once again, we conclude that

j(r, t) 6= j′(r, t) (23)

provided that (11) holds for v and v′. To prove the corresponding statement for the
densities we use the continuity equation

∂

∂t
(n(r, t) − n′(r, t)) = −∇ · (j(r, t) − j′(r, t)) (24)

and calculate the (k + 1)th time derivative of Eq. (24) at t = t0:

(
∂

∂t

)k+2

(n(r, t) − n′(rt))

∣
∣
∣
∣
t=t0

= ∇ · (n0(r)∇wk(r)) . (25)

In order to prove that the densities n(r, t) and n′(r, t) will become different infinites-
imally later than t0, we have to demonstrate that the right-hand side of Eq. (25)
cannot vanish identically. This is done by reductio ad absurdum: Assume

∇ · (n0(r)∇wk(r)) ≡ 0 (26)

and evaluate the integral

∫

d3r n0(r)[∇wk(r)]2

= −
∫

d3r wk(r)∇ · (n0(r)∇wk(r)) +

∮

dS · (n0(r)wk(r)∇wk(r)) , (27)
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where we have used Green’s theorem. The first integral on the right-hand side
of (27) vanishes by assumption. For physically realistic potentials (i. e. potentials
arising from normalizable external charge densities), the surface integral vanishes as
well, because for such potentials the quantities wk(r) fall off at least as 1/r. Since
the integrand on the left-hand side is non-negative one concludes that

n0(r)[∇wk(r)]2 ≡ 0 (28)

in contradiction to wk(r) 6= const. This completes the proof of the theorem. We
mention that more general potentials may also be considered. The precise conditions
have been formulated in [19].

We note in passing that the right-hand side of Eq. (25) is linear in wk. Conse-
quently, the difference between n(r, t) and n′(r, t) is non-vanishing already in first
order of v(r, t) − v′(r, t). This result will be of importance in section 5 because it
ensures the invertibility of linear response operators.

By virtue of the 1-1 correspondence established above (for a given Ψ0), the
time-dependent density determines the external potential uniquely up to within
an additive purely time-dependent function. The potential, on the other hand,
determines the time-dependent wave function, which can therefore be considered
as a functional of the time-dependent density, unique up to within a purely time-
dependent phase α(t):

Ψ(t) = e−iα(t)Ψ̃[n](t) . (29)

As a consequence, the expectation value of any quantum mechanical operator Q̂(t)
is a unique functional of the density:

Q[n](t) = 〈Ψ̃[n](t)|Q̂(t)|Ψ̃[n](t)〉 . (30)

The ambiguity in the phase cancels out. As a particular example, the right-hand side
of Eq. (16) can be considered as a density functional which depends parametrically
on r and t:

P[n](r, t) ≡ −i〈Ψ[n](t)|[̂jp(r), Ĥ(t)]|Ψ[n](t)〉 . (31)

This implies that the time-dependent particle and current densities can always
be calculated (in principle exactly) from the following set of “hydrodynamical”
equations:

∂

∂t
n(r, t) = −∇ · j(r, t) (32)

∂

∂t
j(r, t) = P[n](r, t) . (33)

In practice, of course, the functional P[n] is only known approximately.

2.2 Stationary-action principle

The solution of the time-dependent Schrödinger equation (2) with initial condition
(3) corresponds to a stationary point of the quantum mechanical action integral

A =

∫ t1

t0

dt 〈Ψ(t)|i ∂

∂t
− Ĥ(t)|Ψ(t)〉 . (34)

Since there is a 1-1 mapping between time-dependent wave functions, Ψ(t), and
time-dependent densities, n(r, t), the corresponding density functional

A =

∫ t1

t0

dt 〈Ψ[n](t)|i ∂

∂t
− Ĥ(t)|Ψ[n](t)〉 (35)
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must have a stationary point at the correct time-dependent density (corresponding
to the Hamiltonian Ĥ(t) and the initial state Ψ0). Thus the correct density can be
obtained by solving the Euler equation

δA[n]

δn(r, t)
= 0 (36)

with appropriate boundary conditions. The functional A[n] can be written as

A[n] = B[n] −
∫ t1

t0

dt

∫

d3r n(r, t)v(r, t) (37)

with a universal (Ψ0-dependent) functional B[n], formally defined as

B[n] =

∫ t1

t0

dt 〈Ψ[n](t)|i ∂

∂t
− T̂ − Û |Ψ[n](t)〉 . (38)

On the exact level, the hydrodynamical equations (32, 33) and the variational equa-
tion (36) are of course equivalent. The functionals P[n], A[n], B[n] are well-defined
only for v-representable densities, i. e. for densities that come from some time-
dependent potential satisfying Eq. (9). In view of this, a Levy-Lieb-type [20, 21, 22]
extension of the respective functionals to arbitrary (non-negative, normalizable)
functions n(r, t) appears desirable. Two different proposals of this type have been
put forward so far [23, 24].

2.3 Time-dependent Kohn-Sham scheme

The 1–1 correspondence between time-dependent densities and time-dependent po-
tentials can be established for any given interaction Û , in particular also for Û ≡ 0,
i. e. for non-interacting particles. Therefore the external potential vs[n](r, t) of a
non-interacting system reproducing a given density n(r, t) is uniquely determined.
However, the 1–1 correspondence only ensures the uniqueness of vs[n] for all v-
representable densities but not its existence for an arbitrary n(r, t). In order to
derive a time-dependent KS scheme we have to assume, similar to the static case,
non-interacting v-representability, i.e., we have to assume that a potential vs exists
that reproduces the time-dependent density of the interacting system of interest.
Under this assumption, the density of the interacting system can be obtained from

n(r, t) =

N∑

j=1

|ϕj(r, t)|2 (39)

with orbitals ϕj(r, t) satisfying the time-dependent KS equation

i
∂

∂t
ϕj(r, t) =

(

−∇2

2
+ vs[n](r, t)

)

ϕj(r, t) . (40)

Usually, the single-particle potential vs is written as

vs[n](r, t) = v(r, t) +

∫

d3r′
n(r′, t)

|r − r′| + vxc[n](r, t) , (41)

where v(r, t) is the external time-dependent field. Equation (41) defines the time-
dependent xc potential. In practice, this quantity has to be approximated. As in the
static case, the great advantage of the time-dependent KS scheme lies in its compu-
tational simplicity compared to other methods such as time-dependent Hartree-Fock
or time-dependent configuration interaction [25]– [32]. One has to emphasize that,
in contrast to time-dependent Hartree-Fock, the effective single-particle potential
vs is a local potential, i.e., a multiplicative operator in configuration space.

A few remarks are in order at this point:
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(i) An important difference between the ordinary ground state density functional
theory and the time-dependent formalism developed above is that in the time-
dependent case the 1–1 correspondence between potentials and densities can
be established only for a fixed initial many-body state Ψ0. Consequently,
the functionals P[n], A[n] and B[n] implicitly depend on Ψ0. In the same
way, vs[n] and vxc[n] implicitly depend on the initial KS Slater determinant.
The formalism provides no guideline of how to choose the initial KS orbitals
ϕj(r, t0) as long as they reproduce the initial interacting density n0 corre-
sponding to Ψ0. In general, there exist infinitely many Slater determinants
reproducing a given density [33, 34]. From a formal point of view there is
no problem with that; any choice of initial orbitals ϕj(r, t0) reproducing the
initial interacting density n0 will do the job because the dependence of vs[n]
on the initial state is such that the interacting density will be reproduced
in each case. In practice, however, the dependence on the initial state is a
nuisance. Of course one would prefer to have functionals of the density alone
rather than functionals of n(r, t) and Ψ0. One has to emphasize, however,
that for a large class of systems, namely those where both Ψ0 and the initial
KS Slater determinant are non-degenerate ground states, P[n] and vs[n] are
indeed functionals of the density alone. This is because any non-degenerate
ground state Ψ0 is a unique functional of its density n0(r) by virtue of the
traditional HK theorem. In particular, the initial KS orbitals are uniquely
determined as well in this case.

(ii) We emphasize that the KS scheme does not follow from the variational prin-
ciple. Incidentally, the same statement holds true in the static case as well.
The KS scheme follows from the basic 1-1 mapping (applied to non-interacting
particles) and the assumption of non-interacting v-representability. The varia-
tional principle yields an additional piece of information, namely the equation

vxc[n](r, t) =
δAxc[n]

δn(r, t)
, (42)

where Axc is the xc part of the action functional, formally defined by

Axc[n] = Bs[n] − B[n] − 1

2

∫ t1

t0

dt

∫

d3r

∫

d3r′
n(r, t)n(r′, t)

|r − r′| . (43)

Here Bs[n] is the non-interacting analogue of the functional B[n], i. e. ,

Bs[n] =

∫ t1

t0

dt 〈Φ[n](t)|i ∂

∂t
− T̂ |Φ[n](t)〉 (44)

where Φ[n](t) is the unique time-dependent Slater determinant corresponding
to the density n.

(iii) The current density

j(r, t) =
1

2i

N∑

k=1

(ϕ∗
k(r, t)∇ϕk(r, t) − ϕk(r, t)∇ϕ∗

k(r, t)) (45)

following from the TDKS orbitals is identical with the true current density
of the interacting system at hand. In order to prove this statement we recall
that the first part of the Runge-Gross proof described above establishes a 1-1
mapping, v(r, t) ↔ j(r, t), between external potentials and current densities of
interacting particles and likewise, for Û ≡ 0, a 1-1 mapping, vs(r, t) ↔ js(r, t),
between external potentials and current densities of noninteracting particles.
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Making once again the assumption of non-interacting v-representability of the
interacting current density j(r, t), one can establish an alternative “current-
density version” of the KS scheme,

i
∂

∂t
ϕ̃j(r, t) =

(

−1

2
∇2 + ṽs[j](r, t)

)

ϕ̃j(r, t) (46)

j(r, t) =
1

2i

N∑

k=1

(ϕ̃∗
k(r, t)∇ϕ̃k(r, t) − ϕ̃k(r, t)∇ϕ̃∗

k(r, t)) (47)

whose solution reproduces the current density, j, of the interacting system of
interest. To prove Eq. (45), we show that the solutions ϕ̃j(r, t) of (46,47) are
in fact identical with the solutions ϕj of the ordinary TDKS scheme (39-41).
To this end we prove that the density

ñ(r, t) =
N∑

k=1

|ϕ̃k(r, t)|2 (48)

is identical with the density resulting from (39-41):

ñ(r, t) = n(r, t) . (49)

Then the uniqueness of the potential vs[n] reproducing n(r, t) implies that
ṽs(r, t) = vs(r, t) so that the solutions of (46) and (40) are identical. In order
to prove Eq. (49) we observe that the full many-body Schrödinger Eq. (2)
implies the continuity equation

∂n(r, t)

∂t
= −∇ · j(r, t) (50)

while the Schrödinger equation (46) implies the continuity equation

∂ñ(r, t)

∂t
= −∇ · j(r, t) . (51)

Comparing (50) and (51) we find that n(r, t) and ñ(r, t) can differ at most by
a time-independent function η(r) so that, at the initial time t0,

n(r, t0) = ñ(r, t0) + η(r) . (52)

Hence, if the initial orbitals are chosen to be identical,

ϕk(r, t0) = ϕ̃k(r, t0) k = 1, . . . , N , (53)

it follows that η(r) ≡ 0 and Eq. (49) will be satisfied for all times. It remains
to be shown that the choice (53) is always possible. This is not obvious
a priori because, by construction, the orbitals ϕk(r, t0) must reproduce the
initial density n(r, t0) while the orbitals ϕ̃k(r, t0) must yield the initial current
density j(r, t0). In order to prove that the choice (53) is possible we show
that a given density n0(r) and a given current density j0(r) can always be
simultaneously reproduced by a single Slater determinant

Φ(r1, . . . , rN ) =
1√
N !

det{φj(ri)} . (54)

This can be shown with a current-density generalization [24] of the so-called
Harriman construction [33]. Here we reproduce the construction for one spa-
tial dimension. The three dimensional case can be treated in analogy to
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Ref. [34]. Given the densities n0(x) and j0(x) we define the following func-
tions

q(x) :=
2π

N

∫ x

a

dx′ n0(x
′) (55)

s(x) :=

∫ x

a

dx′ j0(x
′)

n0(x′)
(56)

so that
dq(x)

dx
=

2π

N
n0(x) (57)

and
ds(x)

dx
=

j0(x)

n0(x)
. (58)

In terms of these quantities and the particle number N we define the single-
particle orbitals

φk(x) :=

√

n0(x)

N
ei(kq(x)+s(x)−M

N
q(x)) (59)

where k is an arbitrary integer while M is a fixed integer to be determined
below. The functions {φk : k integer} form a complete and orthonormal set
(see e. g. [4]). Constructing the Slater determinant (54) from these orbitals it
is readily verified that

N∑

j=1

|φkj
(x)|2 = n0(x) (60)

and

1

2i

N∑

j=1

(

φ∗
kj

(x)
d

dx
φkj

(x) − φkj
(x)

d

dx
φ∗

kj
(x)

)

=

n0(x)
ds

dx
+

n0(x)

N

dq

dx









N∑

j=1

kj



 − M



 . (61)

Hence, by virtue of Eq. (58), Eq. (61) reproduces the given current density

j0(x) if M is chosen equal to
(
∑N

j=1 kj

)

. This completes the proof.

3 Motion of the nuclei

3.1 Quantum mechanical treatment of nuclear motion

The formalism developed so far is adequate whenever the motion of the atomic
nuclei can be neglected. Then the electron-nucleus interaction only enters as a
static contribution to the potential v(rt) in Eq. (41). This is a good approximation
for atoms in strong laser fields above the infrared frequency regime. When the
nuclei are allowed to move, the nuclear motion couples dynamically to the electronic
motion and the situation becomes more complicated.

In this section we shall describe a TDDFT for systems consisting of N electrons
and NA nuclei of charge ZA and mass MA (in a.u.), A = 1, . . . ,K. K is the number
of different nuclear species. Let RAα be the configuration space vector of the αth
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nucleus of species A. Then the complete system of electrons and nuclei is described
by the Schrödinger equation

i
∂

∂t
Ψ(r1 . . . rN , {RAα}, t) =

[

Ĥe(r1 . . . rN , t) + Ĥn({RAα}, t)

+Ĥen(r1 . . . rN , {RAα})
]

Ψ(r1 . . . rN , {RAα}, t) (62)

with the electronic Hamiltonian,

Ĥe =
N∑

j=1

(

−1

2
∇2

rj
+ vext(rj , t)

)

+
1

2

N∑

j,k=1
j 6=k

1

|rj − rk|
, (63)

the nuclear Hamiltonian

Ĥn =

K∑

A=1

NA∑

α=1

(

− 1

2MA
∇2

RAα
+ V A

ext(RAα, t)

)

+
1

2

K∑

A=1

NA∑

α=1

K∑

B=1

NB∑

β=1
︸ ︷︷ ︸

(Aα) 6=(Bβ)

ZAZB

|RAα − RBβ |

(64)
and the electron-nucleus interaction

Ĥen = −
N∑

j=1

K∑

A=1

NA∑

α=1

ZA

|rj − RAα|
. (65)

Based on an extension [35] of the Runge-Gross theorems described in sect. 2 to
arbitrary multicomponent systems one can develop [36] a TDDFT for the coupled
system of electrons and nuclei described above. In analogy to sections 2.1 – 2.3,
one can establish three basic statements: First of all, there exists a rigorous 1-1
mapping between the vector of external potentials and the vector of electronic and
nuclear densities,

(
vext(r, t);V

1
ext(R, t), . . . , V K

ext(R, t)
) 1−1←→ (n(r, t);n1(R, t), . . . , nK(R, t)) . (66)

Once again, this 1-1 correspondence is valid for a fixed initial many-body state
Ψ(r1, . . . rN , {RAα}; t0). Besides this HK-type statement, one can derive a stationary-
action principle and a set of coupled TDKS equations for electrons and nuclei. The
latter read as follows:

i
∂

∂t
ϕj(r, t) =

(

−1

2
∇2

r + vs[n, {nB}](r, t)
)

ϕj(r, t) , (67)

j = 1, . . . , N

i
∂

∂t
ψAα(R, t) =

(

− 1

2MA
∇2

R + V A
s [n, {nB}](R, t)

)

ψAα(R, t) , (68)

A = 1, . . . ,K; α = 1, . . . , NA

with the nuclear densities

nA(R, t) =

NA∑

α=1

nAα(R, t) , nAα(R, t) = |ψAα(R, t)|2 , (69)

the electronic density

n(r, t) =

N∑

j=1

|ϕj(r, t)|2 , (70)
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and the KS potentials

vs[n, {nB}](r, t) = vext(r, t) +

∫

d3r′
n(r′, t)

|r − r′|

−
K∑

B=1

∫

d3R
ZBnB(R, t)

|r − R| + vxc[n, {nB}](r, t) , (71)

V A
s [n, {nB}](R, t) = V A

ext(R, t) − ZA

∫

d3r′
n(r′, t)

|R − r′|

+ZA

K∑

B=1

∫

d3R′ZBnB(R′, t)

|R − R′| + V A
xc [n, {nB}](R, t) . (72)

The xc potentials in (71) and (72) are formally given by functional derivatives of
the xc part of the quantum mechanical action functionals:

vxc(r, t) =
δAxc[n, {nB}]

δn(r, t)
(73)

V A
xc(R, t) =

δAxc[n, {nB}]
δnA(R, t)

. (74)

In molecules and clusters, genuine exchange (as well as correlation) among iden-
tical nuclei is very small because, at typical internuclear separations, the overlap
of nuclear wave functions is rather small.2 However, the exact xc functional also
contains self-exchange contributions which are not small and which cancel the self-
interaction terms contained in the Hartree potentials in Eqs. (71) and (72). Hence
it will be a very good approximation to represent V A

xc by the self-exchange terms
alone. This leads to

V Aα
s [n, {nB}](R, t) = V A

ext(R, t) − ZA

∫

d3r′
n(r′, t)

|R − r′|

+ZA

K∑

B=1
B 6=A

∫

d3R′ZBnB(R′, t)

|R − R′| + ZA

NA∑

β=1
β 6=α

∫

d3R′ZAnAβ(R′, t)

|R − R′| . (75)

Note that, within this approximation, the nuclear KS potential depends on the state
ψAα it acts on. This is analogous to the SIC scheme of Perdew and Zunger [37].

Clearly, a complete numerical solution of the coupled KS equations (67, 68) for
electrons and nuclei will be rather involved. Usually only the valence electrons need
to be treated dynamically. The core electrons can be taken into account approxi-
mately by replacing the electron-nucleus interaction (65) by suitable pseudopoten-
tials and by replacing the nuclear Coulomb potential in Eq. (64) by the appropriate
ionic Coulomb potential [38]. This procedure reduces the number of electronic KS
equations and hence the numerical effort considerably.

3.2 Classical treatment of nuclear motion

Further simplification is achieved by treating the nuclear motion classically. Numer-
ical schemes of this type have been derived in various ways [38, 39, 40, 41, 42, 43].
In this section we shall use the multicomponent formalism developed in section 3.1
as a starting point to derive classical equations of motion for the nuclei.

Applying Ehrenfest’s theorem to the nuclear KS equation (68), the classical
trajectory

Rclass
Aα (t) = 〈ψAα(t)|R̂|ψAα(t)〉 =

∫

d3R RnAα(R, t) (76)

2In atomic scattering processes this is not necessarily the case.
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of the αth nucleus of species A satisfies the equation of motion

MA
d2

dt2
Rclass

Aα (t) = FAα(t) (77)

where the force is given by

FAα(t) = −〈ψAα(t)|∇RV A
s |ψAα(t)〉 . (78)

Since the TDKS equations (67) – (72) reproduce the exact nuclear densities, Eq. (76)
yields the exact classical trajectory whenever species A contains only one nucleus.
When species A contains more than one nucleus we have a system of indistinguish-
able particles and then, strictly speaking, the trajectories of single nuclei cannot
be told apart: Only the total density nA(R, t) and hence the center-of-mass tra-
jectory of species A can be measured. In this case, trajectories of single nuclei can
be defined by Eq. (76) within some effective single-particle theory. TDKS theory is
particularly suitable for this purpose since the TDKS partial densities nAα lead to
the exact total density nA.

Employing the approximation (75) for the nuclear KS potential the force (78)
on the nucleus (Aα) simplifies to

FAα(t) = −
∫

d3R nAα(R, t)

[

∇RV A
ext(R, t) − ZA

∫

d3r∇R

n(r, t)

|R − r|

+ZA

K∑

B=1
B 6=A

∫

d3R′∇R

ZBnB(R′, t)

|R − R′| + ZA

NA∑

β=1
β 6=α

∫

d3R′∇R

ZAnAβ(R′, t)

|R − R′|




 . (79)

In many cases, the nuclear densities nAα(R, t) will be rather narrow functions, with
a strong peak at the classical trajectory Rclass

Aα (t). In such a situation, integrals
of the form

∫
d3R nAα(R, t)G(R) are well represented by Taylor-expanding G(R)

around the classical trajectory. This leads to
∫

d3R nAα(R, t)G(R) = G(Rclass
Aα (t)) + O(R − Rclass

Aα )2 . (80)

The first-order term vanishes due to the definition (76) of the classical trajectory.
Neglecting terms of second and higher order is equivalent to replacing the nuclear
densities by δ-functions:

nAα(R, t) = δ(R − Rclass
Aα (t)) . (81)

In this way the Newton equations (77,79) reduce to

MA
d2

dt2
Rclass

Aα (t) = −∇Rclass
Aα

[

V A
ext(R

class
Aα , t)

−
∫

d3r
ZAn(r, t)

|Rclass
Aα − r| +

K∑

B=1

NB∑

β=1
︸ ︷︷ ︸

(Bβ) 6=(Aα)

ZAZB

|Rclass
Aα − Rclass

Bβ |

]

(82)

and the electronic KS equations simplify to

i
∂

∂t
ϕj(r, t) =

(

− 1

2
∇2 + vext(r, t) +

∫

d3r′
n(r′, t)

|r − r′|

−
K∑

B=1

NB∑

β=1

ZB

|r − Rclass
Bβ (t)| + vxc[n, {Rclass

Bβ (t)}](r, t)
)

ϕj(r, t) . (83)
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Equations (82) and (83) are coupled and have to be solved simultaneously. This
scheme has been applied rather successfully to describe the melting of bulk sodium
[38]. Compared to the Car-Parrinello method [44, 45, 46] the scheme has the advan-
tage of not requiring the imposition of orthonormality constraints in the electronic
equations of motion.

One has to emphasize that Eqs. (82) and (83) do not involve the Born-Oppen-
heimer approximation although the nuclear motion is treated classically. This is an
important advantage over the quantum molecular dynamics approach [47, 48, 49, 50,
51, 52, 53, 54] where the nuclear Newton equations (82) are solved simultaneously
with a set of ground-state KS equations at the instantaneous nuclear positions. In
spite of the obvious numerical advantages one has to keep in mind that the classical
treatment of nuclear motion is justified only if the probability densities nAα(R, t)
remain narrow distributions during the whole process considered. The splitting of
the nuclear wave packet found, e. g., in pump-probe experiments [55, 56, 57, 58]
cannot be properly accounted for by treating the nuclear motion classically. In this
case, one has to face the complete system (67 - 72) of coupled TDKS equations for
electrons and nuclei.

4 Electrons in time-dependent electromagnetic fields

Up to this point we have exclusively dealt with time-dependent electric fields. The
objective of the present chapter is to incorporate magnetic effects. For simplicity,
only the electronic degrees of freedom are being discussed, i.e., the nuclear motion
is not considered. Magnetic fields couple both to the spin and to the electronic
orbital currents. Hence, the most general TDDFT should encompass both of these
couplings at the same time. However, to keep matters as simple as possible, we
shall treat the two couplings separately in the following sections.

4.1 Coupling to spin

In order to account for the coupling of a magnetic field B(r, t) to the electronic
spin, the external potential

V̂ (t) =

N∑

j=1

v(rj , t) =

∫

d3r n̂(r)v(r, t) (84)

represented in terms of the density operator

n̂(r) =
N∑

j=1

δ(r − rj) (85)

has to be complemented by a Zeeman term, i.e., V̂ (t) has to be replaced by

V̂B(t) =

∫

d3r n̂(r)v(r, t) −
∫

d3r m̂(r) · B(r, t) (86)

where m̂(r) represents the operator of the spin magnetization. For simplicity we
assume that the vector B has only one non-vanishing component, the z-component,
so that

V̂B(t) =

∫

d3r n̂(r)v(r, t) −
∫

d3r m̂z(r)Bz(r, t) . (87)
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If the system contains N↑ spin-up electrons and N↓ = N − N↑ spin-down electrons
we can define spin-up and spin-down density operators by

n̂↑(r) :=

N↑∑

j=1

δ(r − rj) (88)

n̂↓(r) :=

N∑

j=N↑+1

δ(r − rj) . (89)

In terms of these operators the total density n̂(r) and the magnetization m̂z(r) can
be expressed as

n̂(r) = n̂↑(r) + n̂↓(r) (90)

m̂z(r) = −µ0 [n̂↑(r) − n̂↓(r)] (91)

where µ0 is the Bohr magneton.
Defining furthermore the spin-up and spin-down potentials

v↑(r, t) = v(r, t) + µ0Bz(r, t) (92)

and
v↓(r, t) = v(r, t) − µ0Bz(r, t) , (93)

Eq. (87) simplifies to

V̂B(t) =

∫

d3r n̂↑(r)v↑(r, t) +

∫

d3r n̂↓(r)v↓(r, t) . (94)

Starting from the time-dependent many-body Schrödinger equation

i
∂

∂t
Ψ(t) =

(

T̂ + Û + V̂B(t)
)

Ψ(t) , (95)

a time-dependent HKS formalism can be established [59] in analogy to section 2:
The time-dependent spin densities

n↑(r, t) = 〈Ψ(t)|n̂↑(r)|Ψ(t)〉 (96)

n↓(r, t) = 〈Ψ(t)|n̂↓(r)|Ψ(t)〉 (97)

evolving from a fixed initial many-body state Ψ(t0) are in 1-1 correspondence with
the potentials (v↑(r, t), v↓(r, t)) provided that the latter can be expanded in Taylor
series around the initial time t0. The spin densities thus determine the potentials
v↑ = v↑[n↑, n↓], v↓ = v↓[n↑, n↓] uniquely up to within purely time-dependent (r-
independent) additive functions. Consequently the many-body wave function can
be considered as a functional Ψ(t) = Ψ[n↑, n↓](t) of the spin densities which is
unique up to within a purely time-dependent phase factor. Furthermore, following
the arguments in section 2.2, the spin densities of a given interacting system can be
determined variationally by solving the Euler-Lagrange equations

δAB [n↑, n↓]

δn↑(r, t)
= 0 (98)

δAB [n↑, n↓]

δn↓(r, t)
= 0 , (99)

where the action functional is formally defined as

AB [n↑, n↓] :=

∫ t1

t0

dt 〈Ψ[n↑, n↓](t)|i
∂

∂t
− T̂ − Û − V̂B |Ψ[n↑, n↓](t)〉 . (100)
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Finally, assuming non-interacting v-representability, the spin densities of the inter-
acting system of interest can be obtained from time-dependent spin orbitals

nσ(r, t) =

Nσ∑

j=1

|ϕjσ(r, t)|2 (101)

coming from the time-dependent KS equations

i
∂

∂t
ϕjσ(r, t) =

(

−1

2
∇2 + vsσ[n↑, n↓](r, t)

)

ϕjσ(r, t) (102)

j = 1 . . . Nσ, σ =↑↓

where the spin-dependent effective single-particle potential for electrons with spin
σ =↑, ↓ is given by

vsσ[n↑, n↓](r, t) = vσ(r, t) +

∫

d3r′
n(r′, t)

|r − r′| + vxcσ[n↑, n↓](r, t) . (103)

Eqs. (101) – (103) constitute the KS scheme of time-dependent spin-density func-
tional theory. With the xc action functional Axc[n↑, n↓] defined in analogy to
Eq. (43), the spin-dependent xc potentials can be represented as functional deriva-
tives:

vxcσ[n↑, n↓](r, t) =
δAxc[n↑, n↓]

δnσ(r, t)
. (104)

In the limit of vanishing magnetic field the external potentials in Eq. (103) become
identical

v↑(r, t) = v↓(r, t) = v(r, t) for B(r, t) ≡ 0 . (105)

Nevertheless, Eqs. (102) and (103) do not necessarily reduce to the ordinary TDKS
equations (40) and (41) in this limit. This is because the spin-dependent xc poten-
tials vxc↑ and vxc↓ are not identical except for the case of spin-saturated systems
(n↑ ≡ n↓).

4.2 Coupling to orbital currents

In order to describe the coupling of time-dependent magnetic fields to the electronic
orbital currents, the kinetic energy T̂ has to be replaced by

T̂A(t) =
N∑

j=1

1

2

(

−i∇rj
+

1

c
A(rj , t)

)2

(106)

where A(r, t) is the time-dependent vector potential related to the magnetic field
by

B(r, t) = ∇× A(r, t) . (107)

Since the vector potential is not a gauge-invariant quantity, particular attention
has to be paid to gauge transformations: If Ψ(r1, . . . , rN , t) is a solution of the
time-dependent Schrödinger equation

i
∂

∂t
Ψ(t) =

(

T̂A(t) + Û + V̂ (t)
)

Ψ(t) , (108)

then the transformed wave function

Ψ̃(r1, . . . , rN , t) = exp






− i

c

N∑

j=1

Λ(rj , t)






Ψ(r1, . . . , rN , t) (109)
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is a solution of (108) with the gauge-transformed potentials 3

ṽ(r, t) = v(r, t) +
1

c

∂

∂t
Λ(r, t) (110)

Ã(r, t) = A(r, t) + ∇Λ(r, t) . (111)

The physical (i.e. gauge-invariant) current density is given by

j(r, t) = 〈Ψ(t)|̂jp(r)|Ψ(t)〉 +
1

c
n(r, t)A(r, t) (112)

where ĵp(r) is the paramagnetic current density operator defined in Eq. (14). With
these preliminaries, the central Hohenberg-Kohn-like theorem [24, 60] to be proven
subsequently can be formulated as follows:

The current densities j(r, t) and j′(r, t) evolving from a common initial state
Ψ0 = Ψ(r1, . . . , rN , t0) under the influence of two four-potentials (v(r, t),A(r, t))
and (v′(r, t),A′(r, t)) which differ by more than a gauge transformation with Λ(r, t0) =
0 are always different provided that the potentials can be expanded in Taylor series
around the initial time t0.

Since the current density is gauge invariant the proof of the theorem can be
carried out with an arbitrary representative of the gauge class of (v,A) and an
arbitrary representative of the gauge class of (v′,A′). As representatives we choose
those four-potentials having a vanishing electric potential, i.e., for v(r, t) we make
a gauge transformation (110) satisfying

∂

∂t
Λ(r, t) = −c v(r, t) , Λ(r, t0) = 0 (113)

and for v′(r, t) we make a gauge transformation satisfying

∂

∂t
Λ′(r, t) = −c v′(r, t) , Λ′(r, t0) = 0 . (114)

The corresponding gauge-transformed vector potentials are denoted by Ã(r, t) and
Ã′(r, t). Thus we have to show that

(

0, Ã(r, t)
)

6=
(

0, Ã′(r, t)
)

(115)

implies
j(r, t) 6= j′(r, t) . (116)

If Ã(r, t0) 6= Ã′(r, t0), then the statement of the theorem is trivially true because
the initial paramagnetic currents and the initial densities are identical so that

j(r, t0) − j′(r, t0) =
1

c
n(r, t0)

(

Ã(r, t0) − Ã′(r, t0)
)

6= 0 . (117)

If Ã(r, t0) = Ã′(r, t0) the potentials must differ in some higher Taylor coefficient,
i.e.,

∂k

∂tk

(

Ã(r, t) − Ã′(r, t)
)
∣
∣
∣
∣
t=t0

{
= 0 ; k < l
6= 0 ; k = l

(118)

3In the context of electrodynamics, the gauge transformation (111) is usually complemented
by the transformation ϕ̃(r, t) = ϕ(r, t) − 1/c ∂Λ(r, t)/∂t where ϕ(r, t) is the electric potential. In
quantum mechanics, on the other hand, one works with the potential energy v(r, t) = qϕ(r, t). For
electrons (q = −e) the gauge transformation of φ then leads to (110) in atomic units.
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must be satisfied with an integer l > 0. Calculating the l-th time derivative of the
densities j(r, t) and j′(r, t) by applying the Heisenberg equation of motion l times
and taking the difference at the initial time t0 we obtain

(

i
∂

∂t

)l
(
j(r, t) − j′(r, t)

)∣
∣
t=t0

=
1

c
n(r, t0)

(

i
∂

∂t

)l
(
Ã(r, t) − Ã′(r, t)

)
∣
∣
∣
t=t0

6= 0 ,

(119)
where n(r, t0) is the particle density at t0. By virtue of (119) the current densities
j(r, t) and j′(r, t) will become different at times infinitesimally later than t0. This
completes the proof. As a consequence of this theorem the physical current density
j(r, t) determines the potentials v[j], A[j] uniquely up to within a gauge transfor-
mation (110), (111). Hence, by virtue of the Schrödinger equation (108), the many-
body wave function is a current-density functional Ψ[j](r1, . . . , rN , t), unique up to
within a gauge transformation (109). In a fixed gauge, of course, v, A and Ψ are
determined uniquely by the current density. Applying the theorem to noninteract-
ing particles then, once again, the potentials vs[j], As[j] and the Slater determinant
Φ[j] leading to the current density j(r, t) are uniquely determined in a fixed gauge.

In order to derive a TDKS scheme we consider a particular interacting system
with current density j0(r, t), produced by the external potentials v0(r, t), A0(r, t)
(in a given gauge). Assuming noninteracting v-representability, i.e., assuming the
existence of potentials vs,0, As,0 leading to j0, we can calculate j0 from the equations

i
∂

∂t
ϕj(r, t) =

(

1

2

(

−i∇ +
1

c
As,0[j0](r, t)

)2

+ vs,0[j0](r, t)

)

ϕj(r, t) (120)

j0(r, t) =
1

2i

N∑

k=1

(ϕ∗
k(r, t)∇ϕk(r, t) − ϕk(r, t)∇ϕ∗

k(r, t))

+
1

c

(
N∑

k=1

|ϕk(r, t)|2
)

As,0(r, t) . (121)

Once the existence of vs,0 and As,0 is assumed, uniqueness follows from the above
theorem. Up to this point the time-dependent HKS formalism is quite similar to the
case without magnetic fields developed in section 2. The variational representation
of vs,0 and As,0, however, turns out to be much more complicated. Following
Wacker, Kümmel and Gross [60] the quantum mechanical action functional

Av0,A0
[j] =

∫ t1

t0

dt 〈Ψ[j](t)|i ∂

∂t
− T̂A0

(t) − Û − V̂0(t)|Ψ[j](t)〉 (122)

has a stationary point at the true current density j0, i.e., the latter can be deter-
mined from the variational equation

δAv0,A0
[j]

δj(r, t)

∣
∣
∣
∣
j0

= 0 . (123)

Correspondingly, the action functional

As
vs0,As0

[j] =

∫ t1

t0

dt 〈Φ[j](t)|i ∂

∂t
− T̂As0

(t) − V̂s0(t)|Φ[j](t)〉 (124)

of noninteracting particles moving in the external potentials vs0, As0 has a station-
ary point at j0 as well, i.e.,

δAs
vs0,As0

[j]

δj(r, t)

∣
∣
∣
∣
j0

= 0 . (125)
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In order to deduce an integral equation determining the potentials vs0, As0, we
decompose Av0,A0

[j] into a universal part, B[j], and a functional Qv0,A0
[j] that

depends on the external potentials v0(r, t), A0(r, t):

Av0,A0
[j] = B[j] −Qv0,A0

[j] . (126)

The universal part is given by

B[j] =

∫ t1

t0

dt 〈Ψ[j](t)|i ∂

∂t
− T̂ − Û |Ψ[j](t)〉 , (127)

where T̂ is the kinetic energy (6). In terms of the functionals

n[j](r, t) = −
∫ t

t0

dt′ divj(r, t′) (128)

and

jp[j](r, t) = j(r, t) − 1

c
n[j](r, t) · A[j](r, t) (129)

the non-universal contribution to A[j] can be expressed as

Qv0,A0
[j] =

∫ t1

t0

dt

∫

d3r

{(

v0(r, t) +
1

2c2
A0(r, t)

2

)

n[j](r, t) +
1

c
A0(r, t) · jp[j](r, t)

}

.

(130)
Similarly, the action functional of noninteracting particles can be written as

As
vs0,As0

[j] = Bs[j] −Qs
vs0,As0

[j] . (131)

where

Bs[j] =

∫ t1

t0

dt 〈Φ[j](t)|i ∂

∂t
− T̂ |Φ[j](t)〉 (132)

Qs
vs0,As0

[j] =

∫ t1

t0

dt

∫

d3r

{(

vs0(r, t) +
1

2c2
As0(r, t)

2

)

n[j](r, t)

+
1

c
As0(r, t) · jps[j](r, t)

}

. (133)

Note that the functional

jps[j] = j(r, t) − 1

c
n[j](r, t)As[j](r, t) (134)

is different, in general, from the functional jp[j] given by Eq. (129). Defining the
universal xc functional as

Axc[j] = Bs[j] − B[j] (135)

the total action functional of the interacting system can be expressed as

Av0A0
[j] = Bs[j] −Qv0,A0

[j] −Axc[j] . (136)

Equating the functional derivatives in (123) and (125) and inserting the expressions
(131) and (136) we obtain

δQs
vs0,As0

[j]

δj(r, t)

∣
∣
∣
∣
j0

=
δQv0,A0

[j]

δj(r, t)

∣
∣
∣
∣
j0

+
δAxc[j]

δj(r, t)

∣
∣
∣
∣
j0

. (137)

This equation defines the TDKS potentials vs0, As0 implicitly in terms of the func-
tionals A[j] and As[j]. Clearly, Eq. (137) is rather complicated. The external-
potential terms Q and Qs are simple functionals of the density and the paramagnetic
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current density. The complexity of Eq. (137) arises from the fact that the density,
Eq. (128), and the paramagnetic currents, Eqs. (129), (134), are complicated func-
tionals of j. Hence a formulation directly in terms of the density and the param-
agnetic current density would be desirable. For electrons in static electromagnetic
fields, Vignale and Rasolt [61, 62, 63] have formulated a current-density functional
theory in terms of the density and the paramagnetic current density which has been
successfully applied to a variety of systems [63]. A time-dependent HKS formalism
in terms of the density and the paramagnetic current density, however, has not been
achieved so far.

Several extensions of the formalism presented here have been proposed to deal
with more general situations. Those include superconductors in time-dependent
electromagnetic fields [60, 64] and time-dependent ensembles either for the electrons
alone [65, 66] or for the coupled system of electrons and ions [42, 67]. As long as the
number of photons is large, i.e., À 1 in a volume given by the wave length cubed,
the electromagnetic fields can be treated as classical fields. For smaller photon
densities the quantum nature of electromagnetic radiation becomes important. In
this case, a time-dependent functional theory can be formulated [68] on the basis of
quantum electrodynamics. In this formulation the electromagnetic field is treated
as a quantum field to be determined self-consistently with the four-current vector
of the Dirac matter field.

5 Perturbative regime, basic equations

5.1 Time-dependent linear density response

In this section we shall derive [69] a formally exact representation of the linear
density response n1(rω) of an interacting many-electron system in terms of the
response function of the corresponding (non-interacting) Kohn-Sham system and a
frequency-dependent xc kernel.

We consider electronic systems subject to external potentials of the form

vext(r, t) =

{
v0(r) ; t ≤ t0
v0(r) + v1(r, t) ; t > t0

(138)

where v0(r) denotes the static external potential of the unperturbed system (typi-
cally the nuclear Coulomb attraction) and v1(r, t) is a time-dependent perturbation.
We assume, that at times t ≤ t0 the system is in the ground state corresponding to
v0(r). In this case, the initial density n0(r) can be obtained from the self-consistent
solution of the ordinary ground-state Kohn-Sham equations:

(

−1

2
∇2 + v0(r) +

∫

d3r′
n0(r

′)

|r − r′| + vxc[n0](r)

)

φj(r) = εjφj(r) , (139)

n0(r) =

N∑

j=1

|φj(r)|2 . (140)

By virtue of the static HK-theorem, the initial many-body ground state is uniquely
determined by the initial ground-state density n0. Hence, in this case, the time-
dependent density n(r, t) is a functional of the external potential alone,

n(r, t) = n[vext](r, t) , (141)

i.e., there is no additional dependence on the initial many-body state. By virtue
of the fundamental 1-1 correspondence between time-dependent densities and time-
dependent potentials, proven by Runge and Gross [7], the functional n[vext] can be
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inverted, i.e.,
vext(r, t) = vext[n](r, t) . (142)

Within the realm of perturbation theory, i.e., for sufficiently small v1(r, t) the func-
tional n[vext] can be expanded into a functional Taylor series with respect to the
perturbation v1(r, t),

n(r, t) − n0(r) = n1(r, t) + n2(r, t) + n3(r, t) + . . . , (143)

where the lower indices denote the orders in v1. The first order density response n1

is given by

n1(r, t) =

∫

dt′
∫

d3r′ χ(r, t, r′, t′) v1(r
′, t′) (144)

with the density-density response function

χ(r, t, r′, t′) =
δn[vext](r, t)

δvext(r′, t′)

∣
∣
∣
∣
v0

. (145)

Owing to the static HK theorem, the initial potential v0 = vext[n0] is a functional
of the unperturbed ground-state density n0, so that the response function χ, by
Eq. (145), is a functional of n0 as well.

For non-interacting particles moving in external potentials vs(r, t), the Runge-
Gross theorem holds as well. Therefore the functional

n(r, t) = n[vs](r, t) (146)

can be inverted,
vs(r, t) = vs[n](r, t) , (147)

and the Kohn-Sham response function, i.e., the density-density response function
of non-interacting particles with unperturbed density n0 is given by

χs(r, t, r
′, t′) =

δn[vs](r, t)

δvs(r′, t′)

∣
∣
∣
∣
vs[n0]

. (148)

By inserting the functional (141) into the right-hand side of Eq. (147) one has
formally constructed a unique functional vs[vext] such that the time-dependent den-
sity of noninteracting particles moving in vs(r, t) is identical with the density of
Coulomb-interacting particles moving in vext(r, t). The potential vs(r, t) corre-
sponding to a given vext(r, t), is the time-dependent Kohn-Sham potential (41):

vs(r, t) = vext(r, t) +

∫

d3r′
n(r′, t)

|r − r′| + vxc(r, t) . (149)

By virtue of the functional chain rule, the functional derivative of vs with respect to
vext provides a link of the interacting response function (145) to its noninteracting
counterpart:

χ(r, t, r′, t′) =

∫

d3x

∫

dτ
δn(r, t)

δvs(x, τ)

δvs(x, τ)

δvext(r′, t′)

∣
∣
∣
∣
n0

. (150)

Making use of the functional chain rule once more to calculate the functional deriva-
tive of vs with respect to vext one gets

δvs(r, t)

δvext(r′, t′)

∣
∣
∣
∣
n0

= δ(r − r′) δ(t − t′)

+

∫

d3x

∫

dτ

(
δ(t − τ)

|r − x| +
δvxc(r, t)

δn(x, τ)

)
δn(x, t)

δvext(r′, t′)
. (151)
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By inserting (151) into (150) and using the definitions (145) and (148) we end up
with a Dyson-type equation relating the interacting and the noninteracting response
functions to each other:

χ(r, t, r′, t′) = χs(r, t, r
′, t′) +

∫

d3x

∫

dτ

∫

d3x′

∫

dτ ′ χs(r, t,x, τ)

×
(

δ(τ − τ ′)

|x − x′| + fxc[n0](x, τ,x′, τ ′)

)

χ(x′, τ ′, r′, t′) , (152)

where the so-called time-dependent xc kernel

fxc[n0](r, t, r
′, t′) :=

δvxc[n](r, t)

δn(r′, t′)

∣
∣
∣
∣
n0

(153)

is a functional of the initial ground-state density n0. Equations (152) - (153) are
the central result of our analysis. In previous work, see e.g. Ref. [70], it has been
common practice to define fxc by Eq. (152). The present derivation of Eq. (152)
from TDDFT shows that fxc, apart from its relation to the response functions χ
and χs, can also be represented as the functional derivative of the TD xc potential.
Multiplying Eq. (152) by the perturbing potential v1(r

′, t′) and integrating over
r′ and t′ leads to the time-dependent Kohn-Sham equations for the linear density
response:

n1(r, t) =

∫

dt′
∫

d3r′ χs(r, t, r
′, t′) vs,1(r

′, t′) , (154)

where the effective potential

vs,1(r, t) = v1(r, t)+

∫

d3r′
n1(r

′, t)

|r − r′| +

∫

d3r′
∫

dt′ fxc[n0](r, t, r
′, t′)n1(r

′, t′) (155)

consists of the external perturbation v1 and the Hartree- and exchange-correlation
contributions to first order in the perturbing potential v1. We emphasize that
Eqs. (154) and (155), postulated in previous work [10, 71, 72], constitute an exact
representation of the linear density response. In other words, the exact linear den-
sity response n1(r, t) of an interacting system can be written as the linear density
response of a noninteracting system to the effective perturbation vs,1(r, t). Com-
bining Eqs. (154) and (155) and taking the Fourier transform with respect to time,
the exact frequency-dependent linear density response is seen to be

n1(r, ω) =

∫

d3y χs(r,y;ω)v1(y, ω) (156)

+

∫

d3y

∫

d3y′χs(r,y;ω)

(
1

|y − y′| + fxc[n0](y,y′;ω)

)

n1(y
′, ω) .

The Kohn-Sham response function χs is readily expressed in terms of the static
unperturbed Kohn-Sham orbitals φk:

χs(r, r
′;ω) =

∑

j,k

(fk − fj)
φj(r)φ

∗
k(r)φ∗

j (r
′)φk(r′)

ω − (εj − εk) + iη
. (157)

Here, (fk, fj) are the occupation numbers (0 or 1) of the KS orbitals. The sum-
mation in (157) ranges over both occupied and unoccupied orbitals, including the
continuum states.

In this section we only dealt with the linear response to time-dependent elec-
tric fields of systems at zero temperature. The corresponding formalism for sys-
tems at finite temperature in thermal equilibrium was developed in [73, 74]. The
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current-density-functional response theory for arbitrary time-dependent electromag-
netic fields has been worked out by Ng [75]. The exchange-correlation kernel fxc,
given by Eq. (153), comprises all dynamic exchange and correlation effects to linear
order in the perturbing potential. Depending on physical context, fxc has different
names: In the theory of the homogeneous electron gas [70, 76, 77, 78] the Fourier
transform, fxc(q, ω), of fxc(r, t, r

′, t′) with respect to (r − r′) and (t− t′) is propor-
tional to the so-called local field correction

G(q, ω) = − q2

4π
fxc(q, ω) . (158)

In the theory of classical liquids [79], fxc plus the particle-particle interaction is
known as Ornstein-Zernike function. In practice, of course, this quantity is only
approximately known. Suitable approximations of fxc will be discussed in section
6. In order to construct such approximate functionals, it is useful to express fxc

in terms of the full response function χ. An exact representation of fxc is readily
obtained by solving Eq. (144) for v1 and inserting the result in Eq. (155). Eq. (154)
then yields

fxc[n0](r, t, r
′, t′) = χ−1

s [n0](r, t, r
′, t′) − χ−1[n0](r, t, r

′, t′) − δ(t − t′)

|r − r′| , (159)

where χ−1
s and χ−1 stand for the kernels of the corresponding inverse integral opera-

tors whose existence on the set of densities specified by Eqs. (138) and (144) follows
from Eq. (25), as mentioned in section 2.1. The frequency-dependent response oper-
ators χ(r, r′;ω) and χs(r, r

′;ω), on the other hand, can be non-invertible at isolated
frequencies [80, 81]. Ng and Singwi [73, 82] have argued, however, that these ex-
amples are typical of finite systems while for large systems in the thermodynamic
limit invertibility of the frequency-dependent response operators is guaranteed by
the second law of thermodynamics.

As a consequence of causality, the response functions χ(r, t, r′, t′) and χs(r, t, r
′, t′)

vanish for t′ > t. The same statement holds true for the kernels χ−1(r, t, r′, t′) and
χ−1

s (r, t, r′, t′) of the inverse response operators and hence, by Eq. (159), the xc
kernel must satisfy

fxc(r, t, r
′, t′) = 0 for t′ > t . (160)

In particular, fxc(r, t, r
′, t′) is not symmetric under exchange of (r, t) and (r′, t′).

Hence, by virtue of Schwarz’ lemma for functionals [83], fxc(r, t, r
′, t′) cannot be a

second functional derivative δ2Axc/δn(r, t)δn(r′, t′). Since, on the other hand, fxc

is the functional derivative of vxc one concludes that the exact vxc[n](r, t) cannot be
a functional derivative. This is in contradiction to the stationary action principle
described in section 2.2. which leads to the representation (42) of vxc as a functional
derivative. This contradiction is currently an unresolved problem. It appears that
causality somehow has to be taken into account explicitly in the variational principle
(36). We emphasize once more that these considerations do not affect the validity
of the TDKS equations (39) – (41) nor do they affect the validity of the response
equations (152) – (156). Only the variational representation (42) of vxc appears
doubtful.

We finally mention that the chain of arguments leading to Eq. (152) can be
repeated within static HKS theory as well. This yields

χstat(r, r′) = χstat
s (r, r′)

+

∫

d3x

∫

d3x′ χstat
s (r,x)

(
1

|x − x′| + f stat
xc [n0](x,x′)

)

χstat(x′, r′) , (161)
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where χstat and χstat
s are the full and the KS response functions to static perturba-

tions and

fxc[n0](x,x′) :=
δvxc[n](x)

δn(x′)

∣
∣
∣
∣
n0

=
δ2Exc[n]

δn(x)δn(x′)

∣
∣
∣
∣
n0

. (162)

On the other hand, taking the Fourier transform of Eq. (152) with respect to (t− t′)
one obtains

χ(r, r′;ω) = χs(r, r
′;ω)

+

∫

d3x

∫

d3x′ χs(r,x;ω)

(
1

|x − x′| + fxc[n0](x,x′;ω)

)

χ(x′, r′;ω) . (163)

Subtracting the zero-frequency limit of this equation from Eq. (161) and using the
fact that

χstat
s (r, r′) = χs(r, r

′;ω = 0) (164)

χstat(r, r′) = χ(r, r′;ω = 0) (165)

one concludes that
∫

d3x

∫

d3x′ χs(r,x;ω = 0)
(
fxc[n0](x,x′;ω = 0) − f stat

xc [n0](x,x′)
)
χ(x′, r′;ω = 0) = 0 .

(166)
Acting on this equation with χ̂−1

s from the left and with χ̂−1 from the right, one
obtains the rigorous identity [84]

lim
ω→0

fxc[n0](x,x′;ω) =
δ2Exc[n]

δn(x)δn(x′)

∣
∣
∣
∣
n0

. (167)

5.2 Time-dependent higher-order response

Recently there has been a great deal of interest in nonlinear phenomena, both from
a fundamental point of view, and for the development of new nonlinear optical
and optoelectronic devices. Even in the optical case, the nonlinearity is usually
engendered by a solid or molecular medium whose properties are typically deter-
mined by nonlinear response of an interacting many-electron system. To be able to
predict these response properties we need an efficient description of exchange and
correlation phenomena in many-electron systems which are not necessarily near to
equilibrium. The objective of this chapter is to develop the basic formalism of
time-dependent nonlinear response within density functional theory, i.e., the calcu-
lation of the higher-order terms of the functional Taylor expansion Eq. (143). In
the following this will be done explicitly for the second- and third-order terms

n2(x) =
1

2!

∫

dy

∫

dy′χ(2)(x, y, y′)v1(y)v1(y
′) (168)

n3(x) =
1

3!

∫

dy

∫

dy′

∫

dy′′χ(3)(x, y, y′, y′′)v1(y)v1(y
′)v1(y

′′) . (169)

The extension to terms of arbitrary order is straightforward. For convenience, we
use the four-vector notation

x ≡ (r, t) and

∫

dx ≡
∫

d3r

∫

dt . (170)

The second-and third-order response functions of the interacting system are formally
given by the functional derivatives

χ(2)(x, y, y′) =
δ2n(x)

δvext(y)δvext(y′)

∣
∣
∣
∣
n0

(171)

χ(3)(x, y, y′, y′′) =
δ3n(x)

δvext(y)δvext(y′)δvext(y′′)

∣
∣
∣
∣
n0

(172)
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of the time-dependent density with respect to the time-dependent external potential
vext evaluated at the initial ground-state density n0. From ordinary time-dependent
perturbation theory, these quantities are given by [85]

χ(2)(x, y, y′) = (−i)2
∑

P

θ(t − τ)θ(t − τ ′)

〈Ψ0|[[n̂H(x), n̂H(y)], n̂H(y′)]|Ψ0〉 (173)

χ(3)(x, y, y′, y′′) = (−i)3
∑

P

θ(t − τ)θ(t − τ ′)θ(t′ − τ ′′)

〈Ψ0|[[[n̂H(x), n̂H(y)], n̂H(y′)], n̂H(y′′)]|Ψ0〉 (174)

where the sum has to be taken over all permutations P of y, y′, y′′ and the index
H denotes the Heisenberg picture corresponding to the unperturbed Hamiltonian.
From the time-translational invariance of the unperturbed system it follows that
the response functions (145), (171) and (172) only depend on the differences of the
time-arguments. Obviously, the full response functions (171) and (172) are very
hard to calculate.

The response functions of systems of noninteracting particles, on the other hand,
are functional derivatives of the density with respect to the time-dependent single-
particle potential vs:

χ(2)
s (x, y, y′) =

δ2n(x)

δvs(y)δvs(y′)

∣
∣
∣
∣
n0

(175)

χ(3)
s (x, y, y′, y′′) =

δ3n(x)

δvs(y)δvs(y′)δvs(y′′)

∣
∣
∣
∣
n0

. (176)

These functions can be expressed in terms of single-particle orbitals, similar to the
linear response function (157).

To obtain the higher-order expressions of the density response, we use the func-
tional chain rule in Eq. (171):

δ2n(x)

δvext(y)δvext(y′)
=

δ

δvext(y)

∫

dz
δn(x)

δvs(z)

δvs(z)

δvext(y′)

=

∫

dz

∫

dz′
δ2n(x)

δvs(z′)δvs(z)

δvs(z
′)

δvext(y)

δvs(z)

δvext(y′)

+

∫

dz
δn(x)

δvs(z)

δ2vs(z)

δvext(y)vext(y′)
. (177)

As has been outlined in Section 2, the full time-dependent Kohn-Sham potential

vs(x) = vext(x) + vH(x) + vxc(x) (178)

is a unique functional of the external potential vext. Hence, we get

δ2vs(z)

δvext(y)δvext(y′)
=

δ

δvext(y)

∫

dz′
δ (vH(z) + vxc(z))

δn(z′)

δn(z′)

δvext(y′)

=

∫

dz′
∫

dz′′
δ2 (vH(z) + vxc(z))

δn(z′′)δn(z′)

δn(z′′)

δvext(y)

δn(z′)

δvext(y′)

+

∫

dz′
δ (vH(z) + vxc(z))

δn(z′)

δ2n(z′)

δvext(y)δvext(y′)
. (179)

Combining Eqs. (177) and (179) and evaluating all functionals at the ground-state
density n0, we obtain a Dyson-type relation for the second-order response function
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(171):

χ(2)(x, y, y′) =

∫

dz

∫

dz′ χ(2)
s (x, z, z′)

δvs(z)

δvext(y)

∣
∣
∣
∣
n0

δvs(z
′)

δvext(y′)

∣
∣
∣
∣
n0

+

∫

dz χs(x, z)

∫

dz′
∫

dz′′ gxc(z, z′, z′′)χ(z′, y)χ(z′′, y′)

+

∫

dz χs(x, z)

∫

dz′ (w(z, z′) + fxc(z, z′)) χ(2)(z′, y, y′) ,(180)

where the time-dependent second-order xc kernel gxc is defined as:

gxc(z, z′, z′′) ≡ δ2vxc(z)

δn(z′)δn(z′′)

∣
∣
∣
∣
n0

. (181)

To arrive at Eq. (180) we have used the definitions (145), (148), (171) and (175)
of the density response functions. Furthermore, we have abbreviated the kernel of
the (instantaneous) Coulomb interaction by w(x, x′) ≡ δ(t − t′)/|r − r′|. Finally,
by inserting Eq. (180) into (168) one arrives at the time-dependent Kohn-Sham
equations for the second-order density response:

n2(x) =
1

2

∫

dz

∫

dz′ χ(2)
s (x, z, z′)vs,1(z)vs,1(z

′)

+
1

2

∫

dz

∫

dz′
∫

dz′′ χs(x, z)gxc(z, z′, z′′)n1(z
′)n1(z

′′)

+

∫

dz

∫

dz′ χs(x, z) (w(z, z′) + fxc(z, z′)) n2(z
′) . (182)

Solving Eqs. (154) and (155) first, allows for the subsequent solution of the selfcon-
sistent Eq. (182) which is quadratic in the (effective) perturbing potential (155).

In similar fashion, one can set up the equation for the third-order density re-
sponse (169):

n3(x) =
1

6

∫

dy

∫

dy′

∫

dy′′ χ(3)
s (x, y, y′, y′′)vs,1(y)vs,1(y

′)vs,1(y
′′)

+
1

2

∫

dy

∫

dy′

∫

dz

∫

dz′ χ(2)
s (x, y, y′)vs,1(y)gxc(y

′, z, z′)n1(z)n1(z
′)

+

∫

dy

∫

dy′

∫

dy′′ χ(2)
s (x, y, y′)vs,1(y) (w(y′, y′′) + fxc(y

′, y′′)) n2(y
′′)

+
1

6

∫

dy

∫

dz

∫

dz′
∫

dz′′ χs(x, y)hxc(y, z, z′, z′′)n1(z)n1(z
′)n1(z

′′)

+

∫

dy

∫

dy′

∫

dy′′ χs(x, y)gxc(y, y′, y′′)n1(y
′)n2(y

′′)

+

∫

dy

∫

dy′ χs(x, y) (w(y, y′) + fxc(y, y′))n3(y
′) . (183)

The quantity hxc occurring in this equation is the third-order functional derivative
of the time-dependent xc potential with respect to the time-dependent densities:

hxc(y, z, z′, z′′) ≡ δ3vxc(y)

δn(z)δn(z′)δn(z′′)

∣
∣
∣
∣
n0

. (184)

Interestingly, the equations (154), (155), (182) and (183) for the i-th order density
responses all exhibit the same structure:

ni(x) = Mi(x) +

∫

dy

∫

dy′ χs(x, y) (w(y, y′) + fxc(y, y′)) ni(y
′) i = 1, 2, 3 ,

(185)
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where the functionals Mi(x) are known after the solution of the (i − 1)th order.
This establishes a hierarchy of Kohn-Sham equations for the time-dependent density
response.

The frequency-dependent nonlinear density responses are given by the Fourier
transforms of Eqs.(185). For monochromatic perturbations, the expressions for the
higher-order frequency dependent density shifts decouple in the frequency variable.
The corresponding formulae and explicit expressions for the Kohn-Sham response
functions up to third order are given in work of Senatore and Subbaswamy [86].
The corresponding static higher-order response has been worked out and applied to
solids by Gonze and Vigneron [87].

6 The time-dependent exchange-correlation poten-

tial: Rigorous properties and approximate func-

tionals

6.1 Approximations based on the homogeneous electron gas

The simplest possible approximation of the time-dependent xc potential is the so-
called time-dependent or “adiabatic” local density approximation (ALDA). It em-
ploys the functional form of the static LDA with a time-dependent density:

vALDA
xc [n](r, t) = vhom

xc (n(r, t)) =
d

dρ

(
ρεhom

xc (ρ)
)∣
∣
ρ=n(r,t)

. (186)

Here εhom
xc is the xc energy per particle of the homogeneous electron gas. By its

very definition, the ALDA can be expected to be a good approximation only for
nearly homogeneous densities, i.e., for functions n(r, t) that are slowly varying both
spatially and temporally. It will turn out, however, that the ALDA gives rather
accurate results even for rapidly varying densities (see sections 7 and 8). For the
time-dependent xc kernel (153), Eq. (186) leads to

fALDA
xc [n0](r, t, r

′, t′) = δ(t − t′)δ(r − r′)
d2

dρ2

(
ρεhom

xc (ρ)
)∣
∣
ρ=n0(r)

. (187)

The Fourier-transformed quantity

fALDA
xc [n0](r, r

′;ω) = δ(r − r′)
d2

dρ2

(
ρεhom

xc (ρ)
)∣
∣
ρ=n0(r)

. (188)

has no frequency-dependence at all.
In order to incorporate the frequency-dependence of fxc in some approximate

fashion, Gross and Kohn [71] suggested to use the frequency-dependent xc kernel
fhom
xc of the homogeneous electron gas in the sense of an LDA:

fLDA
xc [n0](r, r

′;ω) := fhom
xc (n0(r), |r − r′|;ω) . (189)

The LDA of non-local quantities, such as response functions, always involves
some ambiguity [1, 2] as to whether the inhomogeneous n0 is to be evaluated at
r, at r′, or at some suitably chosen mean value of r and r′. Of course, in the
limit of slowly varying n0(r) (i. e. in the limit where the LDA should be a good
approximation) the choice does not matter. In addition to the LDA replacement
fxc → fhom

xc , Gross and Kohn [71] made the assumption that n1(r, ω) is slowly
varying on the length scale given by the range of fhom

xc (n0(r), |r−r′|;ω). Under this
assumption, the change in the xc potential can be calculated as

v(1)
xc (r, ω) = n1(r, ω)

∫

d3r′ fhom
xc (n0(r), |r − r′|;ω) . (190)
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In terms of the Fourier transform of fhom
xc with respect to (r−r′), Eq. (190) amounts

to the approximation

fGK
xc [n0](r, r

′;ω) = δ(r − r′)fhom
xc (n0(r), q = 0;ω) . (191)

This approximation requires the xc kernel of the homogeneous electron gas as input.
In order to investigate this quantity we consider Eq. (159) in the homogeneous case.
Fourier transformation with respect to (r − r′) and (t − t′) leads to

fhom
xc (n0, q;ω) =

1

χhom
s (n0, q;ω)

− 1

χhom(n0, q;ω)
− 4π

q2
. (192)

The response function χhom
s of a non-interacting homogeneous system is the well-

known Lindhard function. The full response function χhom, on the other hand, is
not known analytically. However, some exact features of χhom are known. From
these, the following exact properties of fhom

xc can be deduced:

1. As a consequence of the compressibility sum rule one finds [76]

lim
q→0

fhom
xc (q, ω = 0) =

d2

dn2
(nεhom

xc (n)) ≡ f0(n) . (193)

This shows that fALDA
xc , as given by Eq. (188), is identical with the zero-

frequency limit of fGK
xc .

2. The third-frequency-moment sum rule leads to [88]

lim
q→0

fhom
xc (q, ω = ∞)

= −4

5
n2/3 d

dn

(
εhom
xc (n)

n2/3

)

+ 6n1/3 d

dn

(
εhom
xc (n)

n1/3

)

≡ f∞(n) . (194)

3. According to the best estimates [89, 90] of εhom
xc , the following relation holds

for all densities:
f0(n) < f∞(n) < 0 . (195)

4. The large-q behavior at zero frequency is given by [91]

lim
q→∞

fhom
xc (q, ω = 0) = −2n1/3 d

dn

(

n−1/3εhom
xc (n)

)

− 4π

q2
B(n) . (196)

The function B(n) has been fitted [92] to Monte-Carlo results. The resulting
parametrization

B(n) =
1 + 2.15x + 0.435x3

3 + 1.57x + 0.409x3
, x =

√
rs =

(
3

4πn

)1/6

(197)

reproduces the Monte-Carlo results with a precision of about 1% in the density
range 0 ≤ rs ≤ 10.

5. The short-wavelength behavior in the high-frequency limit is given by [93, 94]

lim
q→∞

fhom
xc (q, ω = ∞) = −2

3
· 4π

q2
(1− g(0)) + 6n1/3 d

dn

(

n−1/3εhom
xc (n)

)

(198)

where g(r) denotes the pair correlation function.
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6. fhom
xc (q, ω) is a complex-valued function satisfying the symmetry relations

<fhom
xc (q, ω) = <fhom

xc (q,−ω) (199)

=fhom
xc (q, ω) = −=fhom

xc (q,−ω) . (200)

7. fhom
xc (q, ω) is an analytic function of ω in the upper half of the complex ω-

plane and approaches a real function f∞(q) for ω → ∞ [70]. Therefore, the
function (fhom

xc (q, ω) − f∞(q)) satisfies standard Kramers-Kronig relations:

<fhom
xc (q, ω) − f∞(q) = P

∫
dω′

π

=fhom
xc (q, ω′)

ω′ − ω
(201)

=fhom
xc (q, ω) = −P

∫
dω′

π

<fhom
xc (q, ω′) − f∞(q)

ω′ − ω
. (202)

8. The imaginary part of fhom
xc exhibits the high-frequency behavior

lim
ω→∞

=fhom
xc (q, ω) = − c

ω3/2
(203)

for any q < ∞ [95]. A second-order perturbation expansion [95, 96] of the
irreducible polarization propagator leads to the high-density limit

c =
23π

15
. (204)

Other authors [97, 98] find c = 46π/15; see also Ref. [94].

9. In the same limit, the real part of fhom
xc behaves like [71]

lim
ω→∞

<fhom
xc (q, ω) = f∞(q) +

c

ω3/2
. (205)

Since c > 0, the infinite-frequency value f∞ is approached from above. This
implies, in view of the relation (195), that <fhom

xc (q = 0, ω) cannot grow
monotonically from f0 to f∞.

The above features of fhom
xc are valid for a three-dimensional electron gas. Analogous

results have been obtained for the two-dimensional case [95, 99, 100].
Taking into account the exact high- and low-frequency limits, Gross and Kohn

[71] proposed the following parametrization for the imaginary part of fhom
xc :

=fhom
xc (q = 0, ω) =

a(n)ω

(1 + b(n)ω2)5/4
, (206)

where
a(n) = −c(γ/c)5/3(f∞(n) − f0(n))5/3 (207)

b(n) = (γ/c)4/3(f∞(n) − f0(n))4/3 (208)

γ =
(Γ(1/4))2

4
√

2π
. (209)

f0, f∞, and c are given by Eqs. (193), (194), and (204), respectively. Using the
Kramers-Kronig relation (201), the real part can be expressed as

<fhom
xc (q = 0, ω)

= f∞ +
a

πs2

√

8

b

[

2E

(
1√
2

)

− 1 + s

2
Π

(
1 − s

2
,

1√
2

)

− 1 − s

2
Π

(
1 + s

2
,

1√
2

)]

, s2 = 1 + bω2 . (210)
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Figure 1: Real part of the parametrization for fhom
xc (q = 0, ω), from Ref. [88].

E and Π are complete elliptic integrals of the second and third kind in the standard
notation of Byrd and Friedman [101]. This completes the explicit form of the Gross-
Kohn approximation (191).

Figs. 1 and 2 show the real and imaginary part of fhom
xc as calculated from (206)

and (210). The functions are plotted for the two density values corresponding to
rs = 2 and rs = 4. For the lower density value (rs = 4), a considerable frequency
dependence is found. The dependence on ω becomes less pronounced for higher
densities. In the extreme high-density limit, the difference between f0 and f∞
tends to zero. One finds the exact result

f∞ − f0 ∼ r2
s for rs → 0 . (211)

At the same time, the depth of the minimum of =fhom
xc decreases, within the

parametrization (206) proportional to r2
s .

We finally mention that an extension of the parametrization (206) to non-
vanishing q was given by Dabrowski [102]. The spin-dependent case was treated
by Liu [103]. A similar interpolation for the exchange-correlation kernel of the
2-dimensional electron gas has been derived by Holas and Singwi [95].

In the construction and improvement of static ground-state density functionals,
various exact constraints such as xc hole normalization [104] and scaling relations
[105] have been extremely useful. While the development of explicit time-dependent
functionals is at a comparatively early stage, there are some constraint conditions
which can be useful in the time-dependent context. First of all, some of the ex-
act properties of the homogeneous-electron-gas kernel fhom

xc are readily general-
ized to the inhomogeneous case: Causality leads to Kramers-Kronig relations for
fxc(r, r

′;ω) analogous to Eqs. (201) and (202), and the fact that fxc(r, t, r
′, t′) is a

real-valued quantity implies that

fxc(r, r
′;ω) = fxc(r, r

′;−ω)∗ . (212)

Besides that, the response functions χs and χ satisfy the symmetry relations [106]

χ(r, r′;ω) = χ(r′, r;ω) (213)

χs(r, r
′;ω) = χs(r

′, r;ω) (214)

provided that the unperturbed system has time-reversal symmetry. Equation (163)
then implies that

fxc(r, r
′;ω) = fxc(r

′, r;ω) . (215)

30



0 1 2 3

ω (a.u.)

−8

−6

−4

−2

0

Im
 f

x
c
 (

a
.u

.)

r
s
 = 2

r
s
 = 4

Figure 2: Imaginary part of the parametrization for fhom
xc (q = 0, ω), from Ref. [88].

Further exact constraints can be deduced from the quantum mechanical equation
of motion (15). For the operator

r̂ =

∫

d3r rn̂(r) (216)

Eq. (15) leads to

d

dt
〈Ψ(t)|r|Ψ(t)〉 =

d

dt

∫

d3r rn(r, t) = i〈Ψ(t)|[Ĥ(t), r̂]|Ψ(t)〉 (217)

where
Ĥ(t) = T̂ + Û + V̂ext(t) . (218)

Taking the time derivative of Eq. (217) and employing the equation of motion (15)
once more one obtains

d2

dt2

∫

d3r rn(r, t) = −〈Ψ(t)|[Ĥ(t), [Ĥ(t), r̂]]|Ψ(t)〉 (219)

because ∂
∂t [Ĥ(t), r̂] ≡ 0. Using the translational invariance of the Coulomb in-

teraction Û the double commutator in (219) is readily calculated, leading to the
traditional Ehrenfest theorem:

d2

dt2

∫

d3r rn(r, t) = −
∫

d3rn(r, t)∇vext(r, t) . (220)

Likewise, for noninteracting systems described by Hamiltonians of the form

Ĥs(t) = T̂ + V̂s(t) (221)

one obtains
d2

dt2

∫

d3r rns(r, t) = −
∫

d3rns(r, t)∇vs(r, t) . (222)

For the unique KS potential

vs[n](r, t) = vext(r, t) + vH [n](r, t) + vxc[n](r, t) (223)
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which reproduces the density n(r, t) of the interacting system, Eq. (222) leads to

d2

dt2

∫

d3r rn(r, t) = −
∫

d3rn(r, t)∇ (vext(r, t) + vH [n](r, t) + vxc[n](r, t)) .

(224)
Subtracting Eq. (220) from Eq. (224) one obtains the rigorous result

∫

d3rn(r, t)∇vxc[n](r, t) = 0 . (225)

To arrive at Eq. (225) we have used the fact that the Hartree potential

vH [n](r, t) =

∫

d3r′
n(r′, t)

|r − r′| (226)

satisfies the equation ∫

d3rn(r, t)∇vH [n](r, t) = 0 . (227)

Equation (225) was first obtained by Vignale [107] from invariance properties of the
xc action functional Axc defined in Eq. (43). The derivation given here [108, 109]
has the advantage of being independent of the stationary action principle.

Applying the equation of motion (15) to the angle operator ϕ̂ and using the
rotational invariance of the Coulomb interaction Û , one obtains

d2

dt2
〈Ψ(t)|ϕ̂|Ψ(t)〉 = −

∫

d3rn(r, t)r ×∇vext(r, t) . (228)

Subtraction of the corresponding equation for the KS potential (223) then leads to
the exact constraint ∫

d3rn(r, t)r ×∇vxc[n](r, t) = 0 . (229)

Corresponding properties of the exact xc kernel are obtained by evaluating the
left-hand sides of Eqs. (225) and (229) at the density

n(r, t) = n0(r) + δn(r, t) , (230)

where δn(r, t) is an arbitrary deviation from the ground-state density n0(r). To
first order in δn one obtains from Eq. (225)

0 =

∫

d3r n0(r)∇vxc[n0](r)

+

∫

d3r′
∫

dt′ δn(r′, t′)

[

δ(t − t′)∇r′vxc[n0](r
′)

+

∫

d3r n0(r)∇rfxc[n0](r, t, r
′, t′)

]

. (231)

The first integral on the right-hand side of this equation must vanish. (This is the
static limit [110] of Eq. (225).) Since δn is arbitrary, the second integral leads to
the identity

∫

d3r n0(r)∇rfxc[n0](r, t, r
′, t′) = −δ(t − t′)∇r′vxc[n0](r

′) . (232)

Taking the Fourier-Transform of this equation with respect to (t − t′) one obtains
the constraint

∫

d3r n0(r)∇rfxc[n0](r, r
′;ω) = −∇r′vxc[n0](r

′) . (233)
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Applying the same procedure to Eq. (229) one arrives at [108, 109]
∫

d3r n0(r)r ×∇rfxc[n0](r, r
′;ω) = −r′ ×∇r′vxc[n0](r

′) . (234)

Finally, multiplying Eqs. (233) and (234) by n0(r
′) and integrating over r′ leads to

∫

d3r

∫

d3r′n0(r)n0(r
′)∇rfxc[n0](r, r

′;ω) = 0 (235)

and ∫

d3r

∫

d3r′n0(r)n0(r
′)r ×∇rfxc[n0](r, r

′;ω) = 0 . (236)

Equation (233) was first obtained by Vignale [111] from a new sum rule for the
response function. The ALDA satisfies the constraints (233) and (234) while the
Gross-Kohn approximation (191) is easily seen to violate them. This fact is closely
related to the violation of the Harmonic Potential Theorem which will be discussed
in detail below.

Another type of constraint on theories of time-dependent phenomena in inter-
acting inhomogeneous systems is obtained by taking expectation values of repeated
commutators of current operators with the Hamiltonian. In this way one obtains ex-
act relations for frequency moments of response functions. Very recently Sturm [94]
has given a detailed study of the odd frequency moments of the dielectric function
in inhomogeneous systems, and has explored odd moments up to the seventh. The
ALDA satisfies the first, third and fifth frequency moment sum rules but violates
the seventh as was demonstrated by Sturm for metals in the nearly free electron
approximation.

Finally, another rigorous constraint [112] is known as the Harmonic Potential
Theorem (HPT), as it relates to the motion of interacting many-electron systems in
an externally-imposed harmonic oscillator potential v(r) = 1

2r·K·r plus the potential
−F(t)·r describing a spatially uniform, time-dependent external force F(t). Here
K is a spring-constant matrix which can be assumed symmetric without loss of
generality. (Suitable choices of K yield various physical situations: for example,
the choice K = diag(k, k, k) corresponds to a spherical quantum dot or “Hooke’s
atom”, while the choice K = diag(0, 0, k) yields a parabolic quantum well such
as may be grown in the Ga1−xAlxAs system by molecular beam epitaxy.) The
harmonic external potential is special, being the only confining potential which
retains its form when one transforms to a homogeneously accelerated reference
frame. To see that it does so, consider [113] a moving frame whose origin has the
space coordinate X(t) relative to the rest frame. The observer in this frame sees a
total external potential

v̄(r̄, t) =
1

2
r · K · r+mẌ · r̄ − F(t) · r (237)

where r̄ = r − X(t) is the position coordinate in the new frame, and the second
term in (237) is the centrifugal or fictitious potential due to motion of the frame.
If X(t) satisfies the classical equation of motion

mẌ(t) = −K · X(t) + F(t) (238)

then one obtains the potential in the moving frame as

v̄(r̄, t) =
1

2
r̄ · K · r̄ + c(t) . (239)

This transformed external potential (239) has the same form as the potential for
the undriven (F = 0) harmonic well problem in the rest frame, except for the term c
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which depends on time but not on r̄. Furthermore, because the (Coulomb or other)
particle-particle interaction is a function only of differences ri − rj = r̄i − r̄j , the
interaction potential is also invariant under the transformation to the accelerated
frame. Thus, both classically and quantum mechanically, any state or motion in the
rest frame has a counterpart motion with superimposed translation X(t), provided
that (238) is satisfied. In particular

for harmonically-confined interacting systems there exist quantum states in which
the ground-state many-body wavefunction is translated rigidly (up to a phase factor)
as in classical motion, and hence the ground-state number density n0(r) is replaced
by the rigidly moving density n(r, t) = n0(r − X(t)).

(240)

This conclusion is the Harmonic Potential Theorem (HPT). It is an extension of
the generalized Kohn Theorem [114]: the latter only refers to the frequency de-
pendence of linear response and does not address the spatial profile of the moving
density. The HPT can be also proved more formally [112] by explicit construction
of the moving many-body wavefunction as seen in the rest frame. It is important to
note that systems confined by a scalar harmonic potential (e.g. quantum dots) are
spatially finite in at least one dimension, and have strong spatial inhomogeneity at
their edges. Thus the HPT constitutes an exact result beyond the level of linear re-
sponse for the time-dependent behavior of an inhomogeneous, interacting many-body
system. As such, it poses an interesting constraint on approximate general theories
of time-dependent many-body physics, such as local-density versions of TDDFT. Of
course, since the HPT is valid generally it is also valid for linear response. Vignale
[107] has shown that the HPT result holds even with the inclusion of a homogeneous
magnetic field.

Another closely related constraint is that of Galileian invariance. Suppose that a
many-body wavefunction Ψ(r1, r2, ..., rN ) satisfies the time-independent interacting
N-particle Schrödinger equation with an external one-particle potential v(r). Then,
provided that the inter-particle interaction depends on coordinate differences only,
it is readily verified that a boosted wavefunction of the form

exp(−iS(t) + iU·
N∑

j=1

rj)Ψ(r1 − Ut, r2 − Ut, ..., rN − Ut) , (241)

where S(t) is the corresponding classical action [112], satisfies the time-dependent
interacting N-body Schrödinger equation with boosted external potential v(r−Ut).

Because the phase factor disappears in forming |Ψ|2, this result implies that all
many-body probability densities are rigidly boosted when the external one-body
potential is boosted. In particular, the one-particle density is rigidly boosted, and
this particular aspect of Galileian invariance should apply to TDDFT which deals
directly with densities. In applying this criterion, it will clearly be necessary to
relax the condition used in section 5 that the initial many-body wavefunction be
the ground-state wavefunction. In fact, to represent a system boosted to constant
velocity U, the initial wavefunction must contain the additional phase factor shown
in Eq. (241)

The following question now arises: which approximations in TDDFT satisfy
the HPT and Galileian invariance? By noting that the ALDA xc potential rigidly
follows the density when the latter is rigidly moved, and by examining the TDKS
equations for harmonic confinement with and without a driving field Dobson [112]
showed that the ALDA satisfies the HPT for motion of arbitrary amplitude. The
same proof in fact shows that any approximation to TDDFT satisfies the HPT
provided that the xc potential rigidly follows a rigidly translated density. This
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rigid-following condition will be termed Generalized Translational Invariance and
can be expressed as:

vxc[n
′](r, t) = vxc[n](r − X(t)) (242)

Here n(r) is an arbitrary time-independent density and n′(r, t) = n(r − X(t)) is
the same density rigidly boosted. (The otherwise-arbitrary displacement function
X(t) will need to be zero at the initial time t0, and the initial many body state
will need to be the ground-state, in order for vxc in (242) to be defined in the same
manner used earlier in this chapter.) Eq. (242) simply says that a rigid (possibly
accelerated) motion of the density implies a similar rigid motion of the xc potential.
Equation (242) was first demonstrated by Vignale [107] from the covariance of the
time-dependent Schrödinger equation under transformation to an accelerated rest
frame. Vignale also generelalized the treatment to include a magnetic field. The
same condition (242) with X(t) = Ut will also ensure that an approximation to vxc

satisfies Galileian invariance.
Perhaps surprisingly, the Gross-Kohn approximation (191) unlike the ALDA,

does not satisfy the HPT constraint. This was proved in Ref. [112] by exhibiting a
specific counterexample.

The question now arises how one might correct this situation. One attempt
[112] is based on the heuristic picture that, in the rigid HPT motion, all the relative
particle motions [115], and therefore the exchange and correlation phenomena, are
exactly as in the ground-state. In particular, the static exchange-correlation kernel
fxc(n, ω = 0) is appropriate for this very special motion, even though the frequency
of the HPT motion has the high value ω = ωP . This is why the ALDA succeeds
with the HPT motion: it uses fxc(n, ω = 0) in all circumstances and therefore is
fortuitously exact for HPT motion. The original GK formalism requires the use
of fxc(n, ω = ωP ), and this is the core of the difficulty. (A similar difficulty was
also demonstrated [112] for hydrodynamic theory of plasmons where, once again,
the frequency dependence of a coefficient, β2(ω → ∞) 6= β2(ω → 0), is to blame, β
being the pressure or diffusion coefficient.)

While most motions are not simple rigid displacements, there will be an element
of this type of motion, as well as an element of compression, in more general motions
provided that the original density is spatially inhomogeneous. In the linear response
regime, a well-defined separation between these two components of the motion can
be made [112] by first introducing the fluid velocity u(r, t) = J(r, t)/n(r, t) where the
exact current density J can be obtained from the TDKS orbitals as demonstrated
in section 2.3. A fluid element displacement X(r, t) is then defined for a general
motion by

X(r,t) = r+

∫ t

t0

u(r, t′)dt′ , u =
∂X

∂t
(243)

and by integrating the linearized continuity equation with respect to t at fixed r

we obtain an expression for the perturbation to the equilibrium density n0(r) in a
small motion:

n1(r, t) = −∇ · [n0(r)X(r, t)] = −n0(r)∇ · X(r, t) − X(r, t) · ∇n0(r) . (244)

For an arbitrary motion,we denote the first term in (244) as

n1a(r, t) = −n0(r)∇ · X(r, t) (245)

and interpret n1a as the compressive part of the density perturbation, to be asso-
ciated with fxc(ω) where ω is the actual frequency of the linear motion. The other
density component from (244) is

n1b(r, t) = −X(r, t)·∇n0(r) (246)
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and this is the part one would have obtained if the equilibrium density had been
rigidly translated, suggesting that it should be associated with a zero-frequency
kernel fxc(ω = 0). These two components make up the total density perturbation,

n1 = n1a + n1b , (247)

and the above arguments suggest that the xc potential for small-amplitude motion
at frequency ω should be

v1xc(r, ω) = fxc(n0(r), ω)n1a(r, ω) + fxc(n0(r), ω = 0)n1b(r, ω) . (248)

It is immediately apparent that (248) will give the correct zero-frequency xc poten-
tial value for Harmonic Potential Theorem motion. For this motion, the gas moves
rigidly implying X is independent of r so that the compressive part, n1a, of the
density perturbation from (245) is zero. Equally, for perturbations to a uniform
electron gas, ∇n0 and hence n1b is zero, so that (248) gives the uniform-gas xc
kernel fxc(ω) at the actual frequency ω, as required.

A modification similar to (248) was also proposed in [112] for the pressure or
diffusion term in hydrodynamics, and the resulting formalism has had some success
with a unified description of boundary conditions and plasmon modes on parabolic
wells [116].

Since the fluid displacement during linear response at a definite frequency ω is
given by X = J/(iωn), the postulated Eq. (248) suggests that vxc is not a local
function of the density but rather of the current density J. There are, however, pre-
liminary indications that, for nonlinear phenomena such that a definite frequency
cannot be assigned to the motion the fluid displacement X may yield a more di-
rect formulation of xc phenomena than does the current density (see later in this
chapter).

Numerical applications of the new formalism implied by (248) are under develop-
ment [117]. Preliminary indications are that the ALDA, the Gross-Kohn approxima-
tion (191) and (248) will all give substantially different results for at least one of the
plasmon modes of a low-density parabolic quantum well, say for rs = 6. (The modes
in question are the HPT (“Kohn” or “sloshing”) mode, the standing plasmon modes
[118], and also the 2D plasmon mode at substantial surface-directed wavenumber
q‖ for which case the frequency is not constrained by model-independent theorems
[119].)

Vignale [107] has given an alternative method to ensure that any xc formalism
with finite memory (i.e.with frequency-dependent xc kernel) will satisfy the HPT.
Starting from a simple Ansatz for the action integral, he derived an xc potential

v1xc(r, t) =

∫ t

t0

fxc(n0(r), t − t′)δnrel(r, t
′)dt′ (249)

where
δnrel(r, t) = n(r + Rcm(t)) − n0(r) (250)

is the density perturbation seen by an observer moving with the global center of
mass

Rcm(t) =
1

N

∫

rn(r, t)d3r. (251)

This approach does ensure satisfaction of the HPT. It differs from the method
described above in that it is very much less local, requiring a determination of the
global center of mass from (251) at each instant t. One can imagine situations where
the two formalisms will give very different results. For example, consider two well-
separated layers of electron gas confined in parallel parabolic wells. At the Hartree
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and Hartree-Fock levels there is no interaction between these wells in the absence
of significant wavefunction overlap (and in the absence of any perturbation which
might break the symmetry in the plane of the electron gas layers). For sufficient
separations any residual van der Waals interaction can be made as small as desired,
so the q‖ = 0 modes of oscillation of the two wells will be uncoupled. First consider
a motion in which the two electron gases execute HPT motion (sloshing sideways)
in phase. Then the global electronic center of mass also executes HPT motion
and the Vignale method will give the correct HPT motion of the combined system.
Secondly, however, consider the mode in which the two sloshing motions are 180
degrees out of phase. Then the global center of mass is stationary and the Vignale
correction makes no difference, leaving the GK formalism unmodified. But this
method is known not give the HPT motion correctly, as discussed above. The
method described by Eq. (248), on the other hand, is more local in its effect and it
corrects the motion of each well separately, giving the correct HPT motion of each
gas even for the 180 degrees phase mode.

In general, for systems far from equilibrium it is not at all clear how one should
approximate the full xc potential vxc[n](r, t). The most general possible nonlinear
dependence of vxc[n](r, t) on n must involve at least terms with n evaluated at one
space-time point ξ′ ≡ (r′, t′), terms with n evaluated at two spacetime points ξ′ and
ξ′′, terms with n evaluated at three points ξ′, ξ′′, ξ′′′, and so on. (Even this might
not cover all possibilities, but the only counterexamples so far noted have involved
essentially singular functions [120].) Thus in general we expect to require nonlinear
functions W (i) such that

vxc[n](ξ) =

∫

dξ′W (1)(n(ξ′), ξ, ξ′)+

∫

dξ′dξ′′W (2)(n(ξ′), n(ξ′′), ξ, ξ′, ξ′′)+... (252)

The functional derivative of (252) is

δvxc(ξ)

δn(ξ′)
=

∂W (1)

∂n
(n(ξ′), ξ, ξ′)+

∫

dξ′′[W
(2)
1 (n(ξ′), n(ξ′′), ξ, ξ′, ξ′′)+W

(2)
2 (n(ξ′′), n(ξ′), ξ, ξ′′, ξ′)]+...

(253)

where W
(2)
1 ≡ ∂W (n′, n′′, ξ, ξ′, ξ′′)/∂n′ and W

(2)
2 ≡ ∂W (2)(n′, n′′, ξ, ξ′, ξ′′)/∂n′′.

Considerable simplification is achieved by postulating the following local-density
Ansatz (254) [121] for the functional derivative

δvxc(r, t)

δn(r′, t′)
≈ fhom

xc (n(r′, t′), |r − r′| , t − t′) (254)

where fhom
xc (n, |r − r′| , t− t′) is the nonlocal, delayed xc kernel of the uniform elec-

tron gas of density n. Clearly, in the limit of weakly inhomogeneous systems, i.e.,
for systems with densities n(r′, t′) → const this Ansatz becomes exact. We now
seek a functional vxc[n](r, t) whose functional derivative δvxc(r, t)/δn(r′, t′) is given
by (254). The task of finding such a vxc is possible because (254) is a function of
density at one point only. Hence the integral terms in (252) and (253) involving
W (2) and higher must be discarded and it follows that

∂W (1)

∂n
(n(r′, t′), rt, r′t′) = fhom

xc (n(r′, t′), |r − r′| , t − t′). (255)

Thus W (1) is a density integral of fhom
xc (n, r, τ). Assuming that vxc is zero in a

zero-density system, and defining

Wxc(n, r, τ) =

∫ n

0

fhom
xc (ρ, r, τ)dρ (256)
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we then obtain

vxc[n](r, t) =

∫

dt′d3r′Wxc(n(r′, t′), |r − r′| , t − t′). (257)

The Ansatz (257) makes vxc(r, t) depend principally on the density near the
point r, at a range of times t′ which are near to, but earlier than, t. In the following
we propose to improve this by noting that, if there is streaming in the many-body
fluid, the memory of past densities is likely to be greatest when one remains with
the same fluid element rather than remaining with the same spatial point r. Thus
we propose [122] instead of (257)

vxc[n](r, t) =

∫

dt′d3r′Wxc(n(r′, t′),
∣
∣R(t′ | r, t) − r

′∣∣ , t − t′). (258)

where Wxc is still given by (256).
In (258) the density from a past time t′ which most strongly influences vxc(r,t)

is the density at position r′ = R(t′ | r, t), where the trajectory function R(t′|r, t)
of a fluid element is its position at time t′, given that its position at time t is r.
R can be defined unambiguously by demanding that its time derivative is the fluid
velocity u = J/n formed from the current density J(r, t):

∂

∂t′
R(t′|r, t) = u(R, t′) ≡ J(R, t′)/n(R, t′) (259)

where all occurrences of R have the same arguments as on the left-hand side of Eq.
(259). The boundary condition on (259) is

R(t|r, t) = r. (260)

In (258) one acknowledges that the physics of delayed correlation will have its
maximum degree of spatial locality if the observer is riding on a fluid element rather
than observing from a fixed location r. Eqs. (258) – (260) represent our general
expression for the dynamic xc potential. The use of (258) in place of (257) will turn
out to provide a nonlinear theory which, regardless of its validity in other respects,
at least satisfies both the nonlinear Harmonic Potential Theorem [112] and the
requirements of Galileian invariance [107]. To demonstrate that (258) satisfies the
HPT, we show that it satisfies the generalized Galileian invariance condition (242).
The only difficulty is that (258) has an implicit and highly nonlocal dependence on
n(r′, t) via the current density dependence of R. From [112], however, it follows
that for HPT motion the TDKS equations involve not only a rigidly boosted density
n′(r, t) = n0(r − X(t)), but also a boosted current J′(r, t) = n′(r, t)Ẋ(t) because
of the phase factor introduced by the motion into the KS wavefunctions. Thus the
fluid velocity is just u(r, t) = Ẋ(t). From (259) and (260) it then follows that

R[n′](t′ | r, t) = r + X(t′) − X(t) (261)

Putting this into (258) we find

vxc[n
′](r, t) =

∫

dt′d3r′Wxc(n(r′ − X(t′), t′), |r + X(t′) − X(t)−r′| , t − t′)

=

∫

dt′d3r′Wxc(n(r′ − X(t′), t′), |(r − X(t)) − (r′ − X(t′))| , t − t′)

= vxc[n](r − X(t), t). (262)

Thus (258) satisfies (242). Hence the HPT and Galileian invariance requirements
are satisfied.
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Apart from its presumed nonlinear capabilities, (258), is also more general than
the linear response work in preceding sections because it invokes the spatial nonlo-
cality of the uniform gas xc kernel fxc, making it more comparable to the work of
Dabrowski [102]. To compare it with the discussions above, we now make the local
approximation

fhom
xc (r, t; r′t′) ≈ δ(r − r′)fhom

xc (n, q = 0, t − t′) (263)

If this local approximation is employed in Eqs. (256) and (257), the resulting
vxc[n](r, t) does not satisfy the HPT and the requirements of Galileian invariance
because, when linearized, it reduces to the Gross-Kohn form (191) and this is known
[112] not to satisfy the HPT. However, combined with Eq. (258), the local approx-
imation (263) leads to

vxc[n](r, t) =

∫

dt′wxc(n(R(t′ | r, t), t′), t − t′) (264)

where

wxc(n, τ) =

∫ n

0

fhom
xc (ρ, q = 0, τ)dρ. (265)

We now show that the functional (264), when linearized, gives precisely the modified
linear-response xc kernel fxc of Eq. (248). To this end we consider small motions
around a static equilibrium, in the sense that the displacement

x(r, t) ≡ R(t|r, t0) − r (266)

of each fluid element from its initial (t = t0) position r is small. Under these
circumstances both the fluid displacement X and the current J in (259) are small
(first-order) quantities. Thus we may write

R(t′|r, t) = r + O(x) = R(t′|r, t0) + O(x) (267)

and using this in (259) we find

∂

∂t′
R(t′|r, t) = J(R(t′|r, t0))/n0(r) + O(x2) =

∂

∂t′
R(t′|r, t0) + O(x2). (268)

Integrating both sides of (268) with respect to t′, starting from t′ = t, we find

R(t′|r, t) − R(t|r, t) = R(t′|r, t0) − R(t|r, t0) + O(x2), (269)

so that, by (269) and (266)

R(t′ | r, t) = r + x(t′) − x(t) + O(x2). (270)

In the linear limit we can also integrate the linearized continuity equation

∂n1

∂t
+ ∇ · [n0(r)u(r, t)] = 0 (271)

to give the density perturbation n1 in terms of the fluid displacement x :

n1(r, t) = −∇ · [n0(r)x(r, t)] + O(x2). (272)

We can now use (270) and (272) to expand the density argument of wxc in the
nonlinear functional (264):

n(R(t′|r, t), t′) = n(r + x(r, t′) − x(r, t), t′) + O(x2)
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= n0(r) + ∇n0(r) · (x(r, t′) − x(r, t)) + n1(r, t
′) + O(x2)

= n0(r) −∇n0(r)·x(r, t) − n0(r)∇ · x(r, t′) + O(x2). (273)

In deriving (273), we used (270) in the first step, standard linearization in the
second step and (272) in the third step. Putting (273) into the proposed nonlinear
xc potential (264) we find

vxc(r, t) =

∫ ∞

−∞

wxc(n0(r), t − t′)dt′ −∇n0(r)·x(r, t)

∫ ∞

−∞

∂wxc

∂n
(n0(r), t − t′)dt′

(274)
−n0(r)

∫ ∞

−∞
∂wxc

∂n (n0(r), t − t′)∇ · x(r, t′)dt′ + O(x2)

Integrating (256) with respect to time and using fhom
xc (n) = dvhom

xc (n)/dn, we find
that the first term in (274) is just the xc potential vhom

xc (n0(r)) of the static, unper-
turbed problem. The linear correction to this equilibrium value of the xc potential
is then, by (274) and (256),

v1xc(r, t) = (

∫ ∞

−∞

fxc(n0(r), t − t′)dt′)n1B(r, t) +

∫ ∞

−∞

fxc(n0(r), t − t′)n1A(r, t′)dt′.

(275)
where

n1A(r, t) = −n0(r)∇ · x(r, t) , n1B(r, t) = −x(r, t)·∇n0(r) (276)

Fourier-transforming (275) and writing the terms in reverse order we find

v1xc(r, ω) = fxc(n0(r), ω)n1A(r, ω) + fxc(n0(r), ω = 0)n1B(r, ω). (277)

This is identical to the form (248). To summarize, we have proposed a rather bold
Ansatz, Eq. (258), for the time-dependent xc potential vxc(r, t) of an arbitrary sys-
tem which could be far from equilibrium. This Ansatz carries a nonlocal space and
time dependence based on uniform-gas data, but accesses the actual system density
n(r, t) in a simple local fashion. The assumption of local space dependence in the
uniform gas yields a simpler form again, Eq. (264). It remains to be seen whether
our relatively simple forms can cope with the gamut of nonlinear phenomena in
systems far from equilibrium. As a first step it would be interesting to investigate
second-and higher-order nonlinear susceptibilities described in section 5.2. Com-
puter codes for investigating the fully nonlinear case may be adaptable from the
work of Galdrikian et al. [123], who have investigated strongly driven quantum wells.
Regardless of the applicability of our method to general nonlinear phenomena, the
use of the trajectory function R(t′ | r, t) in (258) and (264) guarantees two things:
firstly, satisfaction of the generalized Galileian invariance condition (242) and hence
of the Harmonic Potential Theorem (240), for motion of arbitrarily large amplitude;
and secondly, for systems close to equilibrium the more local version (264) reduces
to the linear time-delayed or frequency-dependent formalism previously proposed
by Dobson [112].

6.2 Time-dependent optimized effective potential

The approximate xc potentials described so far were derived from the homogeneous
electron gas in one or another way. All of them have one deficiency in common:
They contain spurious self-interaction contributions. It is known from static DFT
that the removal of self-interaction is an important ingredient in the construction of
good xc potentials. Various approaches to the construction of self-interaction-free
functionals are known in the static case [37, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135]. One of these is the so-called optimized potential method (OPM)
[133, 134, 135]. This method takes as starting point a given expression for the total

40



energy E[φ1 . . . φN ] of an N -electron system as a functional of a set of single-particle
orbitals {φj(r)} (e. g. the Hartree-Fock total energy functional in the exchange-only
case). Then, the variationally best local effective potential is determined such that,
when inserted in a stationary single-particle Schrödinger equation, it yields the
set of N eigenfunctions (corresponding to the N lowest eigenvalues) that minimize
E[φ1 . . . φN ]. In practice, the full OPM scheme is computationally quite involved
since it requires the numerical solution of an integral equation for vxc(r). As a
consequence, complete OPM calculations have been performed mainly for problems
where the potential is a function of a single variable, e. g. for spherically symmetric
atoms [134] –[140]. There exists, however, an approximate OPM scheme, recently
proposed by Krieger, Li, and Iafrate (KLI) [141] – [149], which is numerically as
easy to handle as the ordinary KS scheme. This simplified OPM has been applied
very successfully to the calculation of atomic properties [6]. In many respects this
method is currently the most accurate density-functional scheme.

In the present section we shall describe the construction of a self-interaction-
free xc potential which can be viewed as a time-dependent version of the optimized
potential method (TDOPM). The approach leads to vxc as a function of (r, t) rather
than to vxc as an explicit functional of the density. In order to derive such a
time-dependent generalization of the OPM we consider an N -electron system at
some finite time t0 which, for all times up until t0, has been in the ground state
associated with an external potential v0(r) (e.g., a nuclear Coulomb potential). We
assume that the corresponding stationary OPM problem has been solved for that
system, i. e. a local effective potential and a set of N single-particle orbitals {φj}
(with energy eigenvalues εj) minimizing a given energy functional E[φ1 . . . φN ] are
assumed to be known. Again, at t = t0 an additional time-dependent potential
v1(r, t) is switched on. Our goal is to determine the time evolution of the system
under the influence of the total external potential v(r, t) = v0(r)+v1(r, t) from t0 up
until an arbitrary later time t1. To construct an optimized local effective potential
we start with the quantum mechanical action [150]

A[ϕ1 . . . ϕN ] =

N∑

j

∫ t1

−∞

dt

∫

d3r ϕ∗
j (r, t)

(

i
∂

∂t
+

∇2

2

)

ϕj(r, t)

−
∫ t1

−∞

dt

∫

d3r n(r, t)v(r, t) − 1

2

∫ t1

−∞

dt

∫

d3r

∫

d3r′
n(r, t)n(r′, t)

|r − r′| − Axc[ϕ1 . . . ϕN ](278)

written as a functional of N time-dependent single-particle orbitals {ϕj(r, t)} where

n(r, t) =
∑N

j |ϕj(r, t)|2. In a time-dependent exchange-only theory Axc[ϕ1 . . . ϕN ]
—the xc part of the quantum mechanical action—would be replaced by the time-
dependent Fock expression

Axc ≈ Ax = −1

2

N∑

i,j

δσiσj

∫ t1

−∞

dt

∫

d3r

∫

d3r′
ϕ∗

i (r
′, t)ϕj(r

′, t)ϕi(r, t)ϕ
∗
j (r, t)

|r − r′| (279)

(σj denotes the spin orientation of the jth orbital). We note that the integrand
of (279) is a local expression with respect to the time-coordinate, i.e., all orbitals
depend on the same time argument t. With approximate functionals of this type,
the causality problem described in section 5.2 does not occur. The orbitals are
solutions of the time-dependent Schrödinger equation

i
∂

∂t
ϕj(r, t) =

(

−∇2

2
+ vs(r, t)

)

ϕj(r, t) , j = 1, . . . , N , (280)

with ϕj(r, t) = φj(r) exp[−iεj(t−t0)] for −∞ < t ≤ t0. The local effective potential
is given by

vs(r, t) = v(r, t) + vH(r, t) + vTDOPM
xc (r, t) , (281)
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where vH(r, t) =
∫

d3r′n(r′, t)/|r−r′| denotes the time-dependent Hartree potential.
The total potential vs(r, t) has to be determined in such a way that the {ϕj(r, t)},
resulting from Eq. (280), render the total action functional A[ϕ1 . . . ϕN ] stationary.
Therefore, we have to solve the following variational problem:

δA[ϕ1 . . . ϕN ]

δvs(r, t)
=

N∑

j

∫ +∞

−∞

dt′
∫

d3r′

(

δA[ϕ1 . . . ϕN ]

δϕj(r′, t′)

δϕj(r
′, t′)

δvs(r, t)
+

δA[ϕ1 . . . ϕN ]

δϕ∗
j (r

′, t′)

δϕ∗
j (r

′, t′)

δvs(r, t)

)

= 0 . (282)

We first compute the functional derivatives δA/δϕj and δA/δϕ∗
j : defining

uxcj(r, t) =
1

ϕ∗
j (r, t)

δAxc[ϕ1 . . . ϕN ]

δϕj(r, t)
, (283)

we obtain

δA[ϕ1 . . . ϕN ]

δϕj(r′, t′)
=

[

−i
∂

∂t′
−

(

−∇′2

2
+ v(r′, t′) + vH(r′, t′) + uxcj(r

′, t′)

)]

ϕ∗
j (r

′, t′)θ(t1−t′)

(284)
and an analogous expression for δA/δϕ∗

j which, for all reasonable (i. e. real) func-
tionals A[ϕ1 . . . ϕN ], is the complex conjugate of (284). θ(x) denotes the usual step
function (1 for x > 0, 0 for x < 0). To arrive at Eq. (284) the first term of Eq. (278)
has to be integrated by parts with respect to the time coordinate. We impose the
usual boundary condition on ϕj(r, t) at t = t1, i. e. δϕj(r, t1) = 0, thus obtaining
a zero boundary contribution. The other boundary contribution at t = −∞ van-
ishes, too, because the action functional (278), in order to be well-defined, is to be
calculated by introducing the usual factor eηt in the integrand and taking limη→0+

after the integration. Substituting Eq. (281) into (284) and making use of the fact
that ϕ∗

j solves the complex conjugate of the Schrödinger equation (280), we find

A[ϕ1 . . . ϕN ]

δϕj(r′, t′)
=

[
vTDOPM
xc (r′, t′) − uxcj(r

′, t′)
]
ϕ∗

j (r
′, t′) θ(t1 − t′) . (285)

In order to evaluate δA/δvs from Eq. (282), we further need the functional deriva-
tives δϕj/δvs and δϕ∗

j/δvs. The stationary OPM eigenfunctions {φj(r), j = 1, . . . ,∞}
form a complete orthonormal set, and so do the time-evolved states {ϕj(r, t), j =
1, . . . ,∞} for any time t ∈ [−∞, t1], and we denote this set by Φt. Now consider Φt

as unperturbed states, remembering that at t = t1 the orbitals are held fixed with
respect to variations in the total potential. We therefore start from t = t1, subject
the system to an additional small perturbation δvs(r, t) and let it evolve backward
in time. The corresponding perturbed wave functions ϕ′

j(r, t) are determined by
the backward Schrödinger equation

i
∂

∂t
ϕ′

j(r, t) =

(

− ∇2

2
+ vs(r, t) + δvs(r, t)

)

ϕ′
j(r, t) , j = 1, . . . , N (286)

with the initial condition ϕ′
j(r, t1) = ϕj(r, t1). This problem cannot be treated

directly with time-dependent perturbation theory as described in standard text
books because the unperturbed Hamiltonian is already time-dependent. Neverthe-
less, Dirac’s method of variation of constants can be applied in a straightforward
manner. We expand, at each given t, the perturbed wave function ϕ′

j(r, t) in terms
of the set Φt,

ϕ′
j(r, t) =

∞∑

k=1

cjk(t)ϕk(r, t) , (287)
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and insert this expansion in (286), utilizing Eq. (280). The resulting equation

i

∞∑

k=1

ċjk(t)ϕk(r, t) =

∞∑

k=1

cjk(t)δvs(r, t)ϕk(r, t) (288)

is then multiplied by ϕ∗
l (r, t) and integrated over all space; the orthonormality of

Φt yields

ċjl(t) =
1

i

∞∑

k=1

cjk(t)

∫

d3r ϕ∗
l (r, t)δvs(r, t)ϕk(r, t) . (289)

We now make the usual ansatz for a perturbation expansion,

cjk(t) = c
(0)
jk (t) + c

(1)
jk (t) + . . . (290)

and collect corresponding orders on each side of Eq. (289). This yields

ċ
(0)
jl (t) = 0

ċ
(1)
jl (t) =

1

i

∞∑

k=1

c
(0)
jk (t)

∫

d3r ϕ∗
l (r, t)δvs(r, t)ϕk(r, t) (291)

...

Since, in our case, the wave function evolves backward from the fixed state ϕj(r, t1)

we find c
(0)
jk (t) = δjk and c

(1)
jk (t1) = 0, leading to

c
(1)
jl (t) =

1

i

∫ t

t1

dt′
∫

d3r ϕ∗
l (r, t

′)δvs(r, t
′)ϕj(r, t

′) . (292)

It follows that the first-order correction to the wave function ϕj(r, t) under the
influence of δvs(r, t) is given by

δϕj(r, t) =
∞∑

k=1

c
(1)
jk (t)ϕk(r, t) = i

∞∑

k=1

∫ t1

t

dt′
∫

d3r′ϕ∗
k(r′, t′)δvs(r

′, t′)ϕj(r
′, t′)ϕk(r, t) .

(293)
Therefore, the desired functional derivative is

δϕj(r
′, t′)

δvs(r, t)
= i

∞∑

k=1

ϕ∗
k(r, t)ϕj(r, t)ϕk(r′, t′) θ(t1 − t) θ(t − t′) . (294)

Once again, δϕ∗
j/δvs leads to the complex conjugate expression. We can now insert

(285) and (294) in the variational equation (282), and the result is the TDOPM
integral equation for the local exchange-correlation potential vxc(r, t):

i

N∑

j

∫ t1

−∞

dt′
∫

d3r′
[
vTDOPM
xc (r′, t′) − uxcj(r

′, t′)
]
ϕj(r, t)ϕ

∗
j (r

′, t′)K(r, t, r′, t′)+c.c. = 0 .

(295)
The kernel

K(r, t, r′, t′) =
∞∑

k=1

ϕ∗
k(r, t)ϕk(r′, t′) θ(t − t′) (296)

can be identified with the Green’s function of the system, which satisfies the differ-
ential equation

[

i
∂

∂t′
−

(

−∇′2

2
+ vs(r

′, t′)

)]

K(r, t, r′, t′) = −iδ(r − r′)δ(t − t′) (297)
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with the initial condition K(r, t, r′, t′) = 0 for t′ > t. The TDOPM scheme is
now complete: the integral equation (295) has to be solved for vxc(r, t) in combi-
nation with the Schrödinger equation (280) and the differential equation (297) for
K(r, t, r′, t′), both with the appropriate initial conditions. It is easy to show that
in the time interval [−∞, t1] the exchange-correlation potential vxc(r, t) is only de-
termined up to within a purely time-dependent function c(t) (as expected in view
of the time-dependent HK theorem discussed in section 2).

We now demonstrate that for t < t0 or for a time-independent external potential
(v1(r, t) ≡ 0) the TDOPM reduces to the stationary OPM. For this purpose we
rewrite Eq. (295) in the following way (using the fact that vxc is real):

i

N∑

j

∫ t1

−∞

dt′
∫

d3r′
[
vTDOPM
xc (r′, t′) − uxcj(r

′, t′)
]
ϕj(r, t)ϕ

∗
j (r

′, t′)

∞∑

k=1
k 6=j

ϕ∗
k(r, t)ϕk(r′, t′) θ(t − t′) + c.c.

= i

N∑

j

ϕj(r, t)ϕ
∗
j (r, t)

∫ t

−∞

dt′
∫

d3r′
(
uxcj(r

′, t′) − u∗
xcj(r

′, t′)
)
ϕj(r

′, t′)ϕ∗
j (r

′, t′) . (298)

In the static case, the orbitals {ϕj(r, t)} are replaced by {φj(r) exp[−iεj(t−t0)]}. It
is reasonable to assume that the exchange-correlation functional Axc then becomes

Axc[ϕ1 . . . ϕN ] −→
∫ t1

−∞

dt′ Exc[ϕ1(t
′) . . . ϕN (t′)] , (299)

where Exc[φ1 . . . φN ] is the corresponding ground state exchange-correlation energy
functional. Definition (283) then yields

ustatic
xcj (r, t) =

[

1

φ̃∗
j (r)

δExc[φ̃1 . . . φ̃N ]

δφ̃j(r)

]

φ̃j(r)=φj(r)e
−iεj(t−t0)

. (300)

We assume that the value of Exc[φ1 . . . φN ] remains unchanged if the arguments
{φj(r)} are multiplied by phase factors eiαj . If this is the case, we can use the
identity

ϕj(r, t) =
√

ϕj(r, t)ϕ∗
j (r, t)

ϕj(r, t)ϕ
∗
j (r0, t)

|ϕj(r, t)ϕ∗
j (r0, t)|

ei arg(ϕj(r0,t)) (301)

(where r0 is an arbitrary reference point) and write Exc in Eq. (299) as a functional
of the combinations ϕj(r, t)ϕ

∗
j (r

′, t). Then it is not difficult to show that ustatic
xcj is

independent of time and that the right-hand side of (298) is zero. We therefore
obtain

i
N∑

j

∫ t1

−∞

dt′
∫

d3r′
[
vOPM
xc (r′) − ustatic

xcj (r′)
]
φj(r)φ

∗
j (r

′)
∞∑

k=1
k 6=j

φ∗
k(r)φk(r′)e−i(εj−εk)(t−t′)θ(t − t′)

+ c.c. = 0 . (302)

Performing the integration over t′ we find the stationary OPM integral equation
[134]

lim
η→0+

N∑

j

∫

d3r′
[
vOPM
xc (r′) − ustatic

xcj (r′)
]
φj(r)φ

∗
j (r

′)

∞∑

k=1
k 6=j

φ∗
k(r)φk(r′)

εj − εk − iη
+ c.c. = 0 .

(303)
The derivation of Eq. (303) shows that in order to recover the static limit from the
time-dependent formalism one had to extend the time integral in Eq. (278) to −∞;
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a finite lower time boundary does not correctly account for memory effects in vxc

and therefore results in an unphysical time dependence even in the static case.
The numerical implementation of the full TDOPM is an extremely demanding

task. It is therefore most desirable to obtain a simplified scheme. To this end we
shall perform a transformation of Eq. (295) similar to the one proposed by KLI in
the stationary case [146, 149]. This will lead to an alternative but still exact form
of the TDOPM scheme which allows one to construct approximations of vxc(r, t)
which are explicit functionals of the orbitals {ϕj}, thereby avoiding the need to
solve the integral equation. Following Refs. [146, 149], we define

pj(r, t) =
− i

ϕ∗
j (r, t)

∫ t1

−∞

dt′
∫

d3r′
[
vTDOPM
xc (r′, t′) − uxcj(r

′, t′)
]
ϕ∗

j (r
′, t′)

∞∑

k=1
k 6=j

ϕ∗
k(r, t)ϕk(r′, t′)θ(t−t′)

(304)
and

uxcj(t) =

∫

d3r nj(r, t)uxcj(r, t) (305)

where nj(r, t) = |ϕj(r, t)|2. Eq. (298) can then be written as

N∑

j

nj(r, t)pj(r, t) + c.c. = − i

N∑

j

nj(r, t)

∫ t

−∞

dt′
(
uxcj(t

′) − u∗
xcj(t

′)
)

,

(306)
and it is easy to show that

∫

d3r nj(r, t)pj(r, t) = 0 . (307)

Evaluating ϕj(r, t)[−i ∂/∂t + ∇2/2 − vs(r, t)]ϕ
∗
j (r, t)pj(r, t) one finds that pj(r, t)

satisfies the following differential equation:

1

2
∇ · (nj(r, t)∇pj(r, t)) − i nj(r, t)

∂

∂t
pj(r, t) − i Jj(r, t) · ∇pj(r, t)

= −nj(r, t)
[

vTDOPM
xc (r, t) − uxcj(r, t) −

(

vxcj(t) − uxcj(t)
)]

(308)

with the current density Jj(r, t) = (2i)−1
(
ϕ∗

j (r, t)∇ϕj(r, t) − ϕj(r, t)∇ϕ∗
j (r, t)

)
and

vxcj(t) =
∫

d3r nj(r, t)v
TDOPM
xc (r, t). Finally, operating with ∇2 on Eq. (306) and

using Eq. (308) we find

vTDOPM
xc (r, t) =

1

n(r, t)

N∑

j

nj(r, t)
1

2

(
u′

xcj(r, t) + u′∗
xcj(r, t)

)

+
1

n(r, t)

N∑

j

nj(r, t)

[

vxcj(t) −
1

2

(
uxcj(t) + u∗

xcj(t)
)
]

+
i

4n(r, t)

N∑

j

∇2nj(r, t)

∫ t

−∞

dt′
(
uxcj(t

′) − u∗
xcj(t

′)
)

(309)

where

u′
xcj(r, t) = uxcj(r, t)+

1

nj(r, t)

[1

2
∇·(pj(r, t)∇nj(r, t))+inj(r, t)

∂

∂t
pj(r, t)+iJj(r, t)·∇pj(r, t)

]

.

(310)
Eqs. (309) and (310) together with the differential equation (308) for pj(r, t) and
the condition (307) (which can be used to fix the constant left undetermined by
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Eq. (308)) represent an exact alternative formulation of the TDOPM scheme. The
advantage of Eq. (309) lies in the fact that it is a very convenient starting point for
constructing approximations of vxc(r, t) as explicit functionals of the {ϕj(r, t)}: it is
only necessary to approximate pj(r, t) in Eq. (310) by a suitably chosen functional
of the orbitals. We can then readily solve Eq. (309) analytically for vTDOPM

xc (r, t),
as we shall show below.

We expect an approximate potential ṽxc(r, t) defined in this way to be close to
the exact vxc(r, t). This conjecture is based on the observation that the difference
between ṽxc and vxc is entirely accounted for by the differences u′

xcj − uxcj which
are zero if averaged over the jth orbital, as will be demonstrated in the following.
From Eq. (310) we obtain

u′
xcj(t) − uxcj(t) =

1

2

∫

d3r ∇ · (pj(r, t)∇nj(r, t)) + i

∫

d3r

[

nj(r, t)
∂

∂t
pj(r, t) + Jj(r, t) · ∇pj(r, t)

]

.(311)

Using the divergence theorem, the first term on the right-hand side can be trans-
formed into a surface integral which vanishes if the time-dependent orbitals decrease
exponentially for r → ∞. The contribution to the second integral containing Jj ·∇pj

is then integrated by parts. The surface term vanishes due to the same argument
as before, and the remaining term is transformed using the continuity equation for
the jth orbital to replace −∇ · Jj(r, t) by ∂nj(r, t)/∂t. Hence we find

u′
xcj(t) − uxcj(t) = i

∂

∂t

∫

d3r nj(r, t)pj(r, t) = 0 , (312)

where the last equality follows from Eq. (307).
The simplest approximation is obtained by replacing pj by its average value,

i. e. by setting pj(r, t) ≡ 0. The resulting approximate potential will be termed the
time-dependent KLI (TDKLI) potential. It is given by the equation

vTDKLI
xc (r, t) =

1

n(r, t)

N∑

j

nj(r, t)
1

2

(
uxcj(r, t) + u∗

xcj(r, t)
)

+
1

n(r, t)

N∑

j

nj(r, t)

[

vTDKLI
xcj (t) − 1

2

(
uxcj(t) + u∗

xcj(t)
)
]

+
i

4n(r, t)

N∑

j

∇2nj(r, t)

∫ t

−∞

dt′
(
uxcj(t

′) − u∗
xcj(t

′)
)

. (313)

This equation is still an integral equation for vTDKLI
xc . It can, however, be solved

semi-analytically [145]: Multiplying Eq. (313) by nk(r, t) and integrating over all
space yields

vTDKLI
xck (t) = wxck(t) +

N∑

j

Mkj(t)v
TDKLI
xcj (t) , (314)

where we have defined

wxc(r, t) =
1

n(r, t)

N∑

j

nj(r, t)
1

2

(
uxcj(r, t) + u∗

xcj(r, t)
)

− 1

n(r, t)

N∑

j

nj(r, t)
1

2

(
uxcj(t) + u∗

xcj(t)
)

+
i

4n(r, t)

N∑

j

∇2nj(r, t)

∫ t

−∞

dt′
(
uxcj(t

′) − u∗
xcj(t

′)
)

(315)
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and

Mkj(t) =

∫

d3r
nk(r, t)nj(r, t)

n(r, t)
. (316)

Solving Eq. (314) for vTDKLI
xcj (t) requires inversion of the N × N matrix

Akj(t) = δkj − Mkj(t) (317)

and leads to

vTDKLI
xcj (t) =

N∑

k

(
A−1(t)

)

jk
wxck(t) . (318)

When Eq. (318) is substituted into Eq. (313), one obtains vTDKLI
xc (r, t) as an ex-

plicit functional of the orbitals {ϕj(r, t)}. As the exact vxc(r, t) which follows from
Eq. (295), vTDKLI

xc (r, t) is determined by Eq. (313) only up to within a purely time-
dependent function c(t).

The last term of Eqs. (313) and (315) vanishes identically for a large class of
exchange-correlation functionals Axc. This class includes all functionals depending
on {ϕj} only through the combinations ϕj(r, t)ϕ

∗
j (r

′, t) (such as the time-dependent
Fock functional, Eq. (279)).

One readily verifies that both the full TDOPM potential and the TDKLI ap-
proximation of it satisfy the generalized translational invariance condition (242)
(and hence the harmonic potential theorem) provided that

Axc[ϕ
′
1 . . . ϕ′

N ] = Axc[ϕ1 . . . ϕN ] (319)

is satisfied with ϕ′
j being the orbitals in the accelerated frame:

ϕ′
j(r, t) = exp(−iS(t) + iẊ · r)φj(r − X(t)) . (320)

The TDHF functional (279) is easily seen to satisfy the constraint (319). Equation
(319) will be a strong guideline in the proper construction of approximate correlation
functionals Ac[ϕ1 . . . ϕN ]. Equation (313) combined with the Schrödinger equation
(280) represents a time-dependent scheme which is numerically much less involved
than, e.g., the time-dependent Hartree-Fock method. Numerical results obtained
with this scheme for atoms in strong laser pulses will be described in section 8.

To conclude this section we construct in the following an approximation of the
xc kernel fxc on the basis of the TDOPM. A calculation analogous to Eqs. (138)
- (152) shows [151, 152] that within TDOPM the central equation (152) holds for
the quantity fTDOPM

xc defined by the integral equation
∫ ∞

t

dt′
∫

d3r′
∑

jk

[

φj(r)φ
∗
j (r

′)φk(r′)φ∗
k(r)e−i(εj−εk)(t−t′)

×
(

fjf
TDOPM
xc (y, τ, r′, t′) − g(j)

xc (y, τ, r′, t′)
)

− c.c.

]

= 0 (321)

where

g(j)
xc (y, τ, r′, t′) =

[
1

2ϕ∗
j (r

′, t′)

δvTDOPM
xc (y, τ)

δϕj(r′, t′)

]

ϕj(t)=φje−iεjt

. (322)

Equation (321) has the same algebraic structure as the TDOPM integral equa-
tion (295) with the time-dependent orbitals ϕj(r, t) replaced by e−iεjtφj and with

vTDOPM
xc (r′, t′) and uxcj(r

′, t′) replaced by fTDOPM
xc (y, τ, r′, t′) and g

(j)
xc (y, τ, r′, t′),

respectively. A simple analytical approximation to vTDOPM
xc (r, t) is given by

vapprox
xc (r, t) =

∑

j

|ϕj(r, t)|2
2n(r, t)

(
uxcj(r, t) + u∗

xcj(r, t)
)

. (323)
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Applying this approximation to (321), i.e., setting

fapprox
xc (y, τ, r′, t′) =

∑

j

|φj(r)|2
2n(r)

(

g(j)
xc (y, τ, r′, t′) + c.c.

)

(324)

and using the explicit analytical form (323) to evaluate (322) one arrives in the
time-dependent x-only limit (279) at the compact expression

fapprox
xc [n0](r, r

′;ω) = − 2 |∑k fkφk(r)φ∗
k(r′)|2

|r − r′|n0(r)n0(r′)
. (325)

In general, the Fourier transform of the xc kernel defined by Eq. (321) is frequency
dependent (even in the TD x-only case), a feature which is not accounted for by the
present approximation (325). However, for the special case of a two-electron system
treated within TD x-only theory, Eqs. (323) and (325) are the exact solutions of the
respective integral equations.

7 Applications within the perturbative regime

7.1 Photoresponse of finite and infinite Systems

To date, most applications of TDDFT have been in the linear response regime.
Calculations of the photoresponse from Eqs. (154) and (155) are, by now, a mature
subject. The literature on such calculations is enormous and a whole volume [153]
has been devoted to the subject. In this section we shall restrict ourselves to the
basic ideas rather than describing the applicational details.

The TDKS formalism has been employed to calculate the photoresponse of atoms
[10, 12, 13, 14, 154, 155], molecules [156, 157] and clusters [158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168] metallic surfaces [169, 170, 171, 172, 173, 173, 174, 175]
and semiconductor heterostructures [72, 176, 177, 178, 179] bulk semiconductors
[180] and bulk metals [181, 182, 183, 184]

For simplicity, we consider sufficiently low radiation frequencies, such that the
electric field can be assumed to be constant across the atom or molecule. For atoms
this is the case for photon energies below 3 keV. The external potential associated
with a monochromatic electric field is then given by

v1(r, t) = Ez cos ωt . (326)

The induced density change n(r, t)−n0(r) (143) can be characterized by a series of
multipole moments. The induced dipole moment

p(t) = −
∫

d3rz(n(r, t) − n0(r)) , (327)

can be expanded as [185]

p(t) = α(ω) · E cos ωt +
1

2
β(0):EE +

1

2
β(2ω):EE cos 2ωt (328)

+
1

4
γ(ω)

...EEE cos ωt +
1

4
γ(3ω)

...EEE cos 3ωt , (329)

where the notation is meant to indicate the tensorial character of the quantities α, β
and γ. The first coefficient, α, is termed the dipole polarizability; β and γ denote
the second-and third-order dipole hyperpolarizabilities. For spherically symmetric
ground states β is zero.
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Figure 3: Total photoabsorption cross section of the Xe atom versus photon energy
in the vicinity of the 4d threshold. Solid line: self-consistent time-dependent KS
calculation from [10]; crosses: experimental data from [186].

The dipole polarizability is related to the frequency-dependent linear density
response n1(r, ω) via

α(ω) = − 2

E

∫

d3rzn1(r, ω) (330)

and the photoabsorption cross section is given by

σ(ω) =
4πω

c
=α(ω) . (331)

Zangwill and Soven [10] have calculated the photoabsorption spectrum of rare-gas
atoms from the frequency-dependent KS equations (156) – (157) within the ALDA.
As an example for the quality of the results we show, in Fig. 3, the photoabsorption
cross section of Xenon just above the 4d threshold. The agreement with exper-
iment is remarkably good. Results of similar quality have been achieved for the
photoresponse of small molecules [156, 157].

It should be mentioned that the thresholds characterizing the onset of continuous
absorption from the various occupied atomic shells are not well reproduced in the
calculations of Zangwill and Soven. The calculated absorption edges are typically
several eV below the observed thresholds. While, in principle, TDDFT should yield
the correct thresholds, it appears that simple approximations such as the ALDA
are not sufficient in this respect.

As a point of practical interest we mention that the KS response function is
usually not calculated directly from the KS orbitals as in Eq. (157). Instead, one
rewrites the response function in terms of the KS Green’s function. The latter is
then calculated numerically from the corresponding equation of motion, usually by
multipole expansion [10, 187].

The linear photoresponse of metal clusters was successfully calculated for spher-
ical [158, 160, 159, 163] as well as for spheroidal clusters [164] within the jellium
model [188] using the LDA. The results are improved considerably by the use of
self-interaction corrected functionals. In the context of response calculations, self-
interaction effects occur at three different levels: First of all, the static KS or-
bitals, which enter the response function, have a self-interaction error if calculated
within LDA. This is because the LDA xc potential of finite systems shows an ex-
ponential rather than the correct −1/r behaviour in the asymptotic region. As a
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consequence, the valence electrons of finite systems are too weakly bound and the
effective (ground-state) potential does not support high-lying unoccupied states.
Apart from the response function χs, the xc kernel fxc[n0] no matter which approx-
imation is used for it, also has a self-interaction error. This is because fxc[n0] is
evaluated at the unperturbed ground-state density n0(r), and this density exhibits
self-interaction errors if the KS orbitals were calculated in LDA. Finally the ALDA
form of fxc itself carries another self-interaction error.

To improve upon these defects, one has to go beyond the LDA: The (modified)
weighted density approximation [189] retains the correct asymptotic behaviour of vxc

and improves the response properties of metal clusters [162, 165]. A different route
to improvement provides the self-interaction correction (SIC) of Perdew Zunger [37],
where the spurious self-interaction of the LDA is compensated by additional terms
in the ground-state potential [166] and in the effective perturbing potential as well
[167] (Full-SIC).

In most theoretical work on the response of metallic surfaces the ionic potential
is replaced by the potential due to a uniform positive charge background in a half
space, say z > 0. This is the so-called jellium model for metallic surfaces. In this
model are two intrinsic microscopic length scales, the inverse Fermi wave-number,
k−1

F , and the Thomas-Fermi screening length (≈ surface thickness), k−1
TF . Both

lengths are typically of the order a ≈ 10−8 cm. In most applications the perturbing
electric potential v1 and the perturbing vector potential A1 vary on a length scale
` which satisfies ` À a. Examples are the scalar potential v1(r) due to an external
charge at a distance z À a, or the vector potential A1(r, t), associated with a
light wave of wavelength λ À a. The corresponding linear responses n1 and j1
vary on the scale of ` in the x − y plane but, because of the abrupt drop of the
unperturbed density at the surface (on the scale of a), they vary on the short scale
a in the z-direction. Formal arguments due to Feibelman [190] have shown that, to
leading order in a/`, the effect of the surface on the electromagnetic fields far from
the surface (|z| À a) is entirely characterized by two complex frequency-dependent
lengths, d‖(ω) and d⊥(ω).

Actually, for the jellium model d‖(ω) ≡ 0. This result has been obtained in
the random phase approximation (RPA) in Ref. [190]. It is easily established as a
rigorous many-body result for the jellium model [191]. To define d⊥(ω) we Fourier
analyze all physical quantities parallel to the surface, in the x−y plane. For example,
a Fourier component of the induced charge density becomes

n1(r, ω) ≡ n1(z, ω)eiq‖·r , (332)

where q‖ = (qx, qy, 0) (and |q‖| a ¿ 1). Then d⊥(ω) is given by

d⊥(ω) ≡
∫

dz z n1(z, ω)
∫

dz n1(z, ω)
, (333)

i.e., it is the (complex) center of mass of the induced surface charge. d⊥(ω) is the
generalization of the static image plane introduced by Lang and Kohn [192].

This d⊥(ω) is then the subject of quantitative calculations. They require the den-
sity response n1(z, ω), to a uniform external electric field perpendicular to the sur-
face. The calculation was first carried out in the RPA equivalent to time-dependent
Hartree theory, in which the xc kernel fxc is neglected. These calculations led to very
interesting results not present in classical Maxwell theory, such as the surface photo
effect and surface plasmons. Plasmons are high-frequency charge-density oscilla-
tions of the electron gas. In a bulk material the long-wavelength plasma frequency
is ωP = (4πne2/m)1/2 in gaussian cgs units. Plasmons occur in the ultraviolet
frequency region for metals, but the artificial electron gas in semiconductor quan-
tum wells often has a plasma frequency in the infrared. The confinement of the
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electron gas at metal edges introduces a range of new plasmon modes at frequen-
cies other than ωP , and these could potentially yield information about inhomoge-
neous xc effects. Information about plasmons on films, surfaces and semiconductor
wells is most easily available experimentally for small values of the surface-directed
wavenumber q‖, and unfortunately in this region there are theorems prescribing
the plasmon frequencies, regardless of the effects of exchange and correlation. A
summary of these ”no-go” theorems is given in [113] and further review is given in
[119] for the case of semiconductor quantum wells.

Early theoretical studies of plasmas used hydrodynamics [193]. These treatments
were able to predict the main new feature of the plasmon spectrum at a metal surface
due to the strong surface inhomogeneity of the electron gas, namely the surface
plasmon. Its frequency approaches ωP /

√
2 as the surface directed wavenumber q‖

approaches zero, and this is correctly predicted in hydrodynamic and microscopic
theories. This result is independent both of the precise electron density edge profile
and of the type of xc kernel used, if any [194, 195]. Thus, although the surface
plasmon is often the strongest feature in electron energy loss measurements on
thin metal films, [196] it is hard to obtain any information from it about dynamic
exchange and correlation. To see such effects one needs to measure with great
accuracy the dispersion of surface plasmons. Only in the last few years has it
been possible even to confirm experimentally a result first predicted by Feibelman
[190] on the basis of selfconsistent RPA calculations, namely that the dispersion
of the surface plasmon on a charge-neutral metal surface is initially negative. This
result follows basically from the very ”soft” or weakly bound nature of the electron
gas at a neutral jellium surface, allowing electrons to spill out substantially into the
vacuum. For a review of some experimental and theoretical aspects see [197]. While
the value of this negative dispersion coefficient does depend to a degree on the xc
kernel fxc introduced earlier, it remains to be seen whether experiments on metal
films and surfaces can measure this quantity to a useful accuracy. On the theory
side, an important observation by Liebsch [198] is that the KS orbitals used to
construct the dynamic response must come from a static calculation using a model
of exchange and correlation that is consistent with the dynamic xc kernel used in
the plasmon calculation. For example, LDA calculation followed by RPA screening
(with fxc = 0) is not consistent and causes false shifts in predicted surface plasmon
frequencies.

The weak binding and wide inhomogeneous density layer at the edge of a neutral
metal surface leads to a ”multipole” surface plasmon mode in addition to the usual
”monopole” surface plasmon [173, 172, 197]. This mode is in principle sensitive to
fxc even at q‖ = 0. Gies and Gerhardts [173] and Dobson and Harris [199] investi-
gated this mode both in the ALDA and the frequency dependent parametrization
(206) – (210). It was found that, for an aluminium surface, the inclusion of the fre-
quency dependence of fxc. has only a 3% effect on the multipole plasmon frequency,
but a 20% effect on the damping of the mode. It seems likely that the frequency
dependence of fxc will have a much larger effect on this mode for a low-electron
density metal such as Rb, and this may be worth pursuing.

In general, low-dimensional, low-density systems offer the best prospects for
strong effects of xc phenomena on plasmon frequencies. A case in point is a pair of
parallel quasi-two-dimensional electron layers in a semiconductor double-quantum
well experiment. Interesting effects are predicted for this case [200].

Another way of probing dynamic xc effects experimentally is by inelastic X-ray
scattering from bulk metals [201, 202, 203]. In this way, the so-called dynamical
structure factor S(q, ω) can be measured which is proportional to the imaginary
part of the full response function in reciprocal space. With this information at hand
and with a first-principles calculation of the non-interacting response function, the
connection (159) between fxc and the response functions can be used to deduce
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information about fxc [204].
All applications quoted so far were for the linear response. Very few investi-

gations have dealt with the higher-order response described in section 5.2. The
frequency-dependent third-order hyperpolarizabilities of rare-gas atoms were calcu-
lated by Senatore and Subbaswamy [86] within the ALDA; the calculated values
turned out to bee too large by a factor of two, further indicating the need for self-
interaction corrected functionals in the calculation of response properties. The effect
of adsorbates on second-harmonic generation at simple metal surfaces was invested
by Kuchler and Rebentrost [205, 206]. Most recently, the second-order harmonic
generation in bulk insulators was calculated within the ALDA [207].

7.2 Calculation of excitation energies

The traditional density-functional formalism of Hohenberg, Kohn and Sham [1, 2]
is a powerful tool in predicting ground-state properties of many-electron systems
[3, 4, 5]. The description of excited-state properties within density-functional the-
ory, however, is notoriously difficult. One might be tempted to interpret the Kohn-
Sham single-particle energy differences ωjk := εj − εk as excitation energies. This
interpretation, however, has no rigorous basis and in practice the Kohn-Sham or-
bital energy differences ωjk deviate by 10–50% from the true excitation energies
Ωm := Em − E0. Several extensions of ground-state DFT have been devised to
tackle excited states. They are based either on the Rayleigh-Ritz principle for the
lowest eigenstate of each symmetry class [208, 209, 210] or on a variational principle
for ensembles [211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222]. A fun-
damental difficulty is that the xc energy functionals appearing in these approaches
depend on the symmetry labels of the state considered or on the particular ensem-
ble, respectively. Until today very little is known on how these excited-state xc
functionals differ from the ordinary ground-state xc energy.

In this section we are going to develop a different approach to the calculation
of excitation energies which is based on TDDFT [69, 84, 152]. Similar ideas were
recently proposed by Casida [223] on the basis of the one-particle density matrix.
To extract excitation energies from TDDFT we exploit the fact that the frequency-
dependent linear density response of a finite system has discrete poles at the exci-
tation energies of the unperturbed system. The idea is to use the formally exact
representation (156) of the linear density response n1(r, ω), to calculate the shift
of the Kohn-Sham orbital energy differences ωjk (which are the poles of the Kohn-
Sham response function) towards the true excitation energies Ωm in a systematic
fashion.

The spin-dependent generalization [59] of TDDFT described in section 4.1 leads
to the following analogue of Eq. (156) for the linear density response of electrons
with spin σ:

n1σ(r, ω) =
∑

ν

∫

d3y χs σν(r,y;ω)v1ν(y, ω) (334)

+
∑

ν,ν′

∫

d3y

∫

d3y′χs σν(r,y;ω)

(
1

|y − y′| + fxc νν′(y,y′;ω)

)

n1ν′(y′, ω) .

Here the spin-dependent exchange-correlation kernel is given by the Fourier trans-
form of

fxc σσ′(r, t, r′, t′) :=
δvxcσ[n↑, n↓](r, t)

δnσ′(r′, t′)

∣
∣
∣
∣
n0↑,n0↓

(335)

with respect to (t − t′). Note that the spin-dependent response-function of nonin-
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teracting particles

χs σσ′(r, r′;ω) = δσσ′

∑

j,k

(fkσ − fjσ)
φjσ(r)φ∗

kσ(r)φ∗
jσ(r′)φkσ(r′)

ω − (εjσ − εkσ) + iη
(336)

is diagonal in the spin variable and exhibits poles at frequencies ωjkσ ≡ εjσ − εkσ

corresponding to single-particle excitations within the same spin space. In order to
calculate the shifts towards the true excitation energies Ω of the interacting system,
we rewrite Eq. (334) as

∑

ν′

∫

d3y′

(

δσν′δ(r − y′) −
∑

ν

∫

d3y χs σν(r,y;ω)

(
1

|y − y′|

+fxc νν′(y,y′;ω)
)
)

n1ν′(y′, ω) =
∑

ν

∫

d3y χs σν(r,y;ω)v1ν(y, ω) . (337)

Since, in general, the true excitation energies Ω are not identical with the Kohn-
Sham excitation energies ωjkσ, the right-hand side of Eq. (337) remains finite for
ω → Ω. In contrast, the exact spin-density response n1σ, has poles at the true
excitation energies ω = Ω. Hence the integral operator acting on n1σ on the left-
hand side of Eq. (337) cannot be invertible for ω → Ω. If it were invertible one
could act with the inverse operator on both sides of Eq. (337) leading to a finite
result for ω → Ω on the right-hand side in contradiction to the fact that n1σ, on
the left-hand side, has a pole at ω = Ω.

The true excitation energies Ω can therefore be characterized as those frequencies
where the eigenvalues of the integral operator acting on the spin-density vector in
Eq. (337) vanish or, if the integration over the delta-function is performed, where
the eigenvalues λ(ω) of

∑

ν′

∫

d3y′
∑

ν

∫

d3y χs σν(r,y;ω)

(
1

|y − y′| + fxc νν′(y,y′;ω)

)

ζν′(y′, ω) = λ(ω)ζσ(r, ω)(338)

satisfy
λ(Ω) = 1 . (339)

This condition rigorously determines the true excitation spectrum of the interacting
system considered.

To simplify the notation, we now introduce double indices q ≡ (j, k) so that
ωqσ ≡ εjσ−εkσ denotes the excitation energy of the single-particle transition (kσ →
jσ). Moreover, we define

Φqσ(r) := φkσ(r)∗φjσ(r) , (340)

αqσ := fkσ − fjσ (341)

and set

ξqσ(ω) :=
∑

ν′

∫

d3y′
∑

ν

∫

d3y δσνΦqν(y)∗
(

1

|y − y′| + fxc νν′(y,y′;ω)

)

ζν′(y′, ω) .

(342)
With these definitions, Eq. (338) takes the form

∑

q

αqσΦqσ(r)

ω − ωqσ + iη
ξqσ(ω) = λ(ω)ζσ(r, ω) . (343)
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Solving this equation for ζσ(r, ω) and reinserting the result on the right-hand side
of Eq. (342) leads to

∑

σ′

∑

q′

Mqσ q′σ′(ω)

ω − ωq′σ′ + iη
ξq′σ′(ω) = λ(ω)ξqσ(ω) (344)

with the matrix elements

Mqσ q′σ′(ω) = αq′σ′

∫

d3r

∫

d3r′ Φ∗
qσ(r)

(
1

|r − r′| + fxcσσ′(r, r′;ω)

)

Φq′σ′(r′) .

(345)
Note that the summation in Eq. (344) extends over all single-particle transitions q′σ′

between occupied and unoccupied Kohn-Sham orbitals, including the continuum
states. Up to this point, no approximations have been made. In order to actually
calculate λ(ω), the eigenvalue problem (344) has to be truncated in one way or
another. One possibility is to expand all quantities in Eq. (344) about one particular
KS-orbital energy difference ωpτ :

ξqσ(ω) = ξqσ(ωpτ ) +
dξqσ(ω)

dω

∣
∣
∣
∣
ωpτ

(ω − ωpτ ) + . . . (346)

λ(ω) =
A(ωpτ )

ω − ωpτ
+ B(ωpτ ) + . . . (347)

The matrix elements with (ωpτ 6= ωq′σ′) can be written as

Mqσ q′σ′(ω)

ω − ωq′σ′ + iη
=

Mqσ q′σ′(ωpτ )

ωpσ − ωq′σ′ + iη
+

d

dω

[
Mqσ q′σ′(ω)

ω − ωq′σ′ + iη

]

ωpτ

(ω−ωpτ ) + . . . (348)

whereas if (ωpτ = ωq′σ′),

Mqσ q′σ′(ω)

ω − ωq′σ′ + iη
=

Mqσ q′σ′(ωpτ )

ω − ωpτ + iη
+

dMqσ q′σ′(ω)

dω

∣
∣
∣
∣
ωpτ

+ . . . (349)

Inserting Eqs. (346) - (349) in Eq. (344) the coefficients A and B are readily iden-
tified. If the pole ωpτ is non-degenerate, one finds:

A(ωpτ ) = Mpτ pτ (ωpτ ) (350)

and

B(ωpτ ) =
dMpτpτ

dω

∣
∣
∣
∣
ωpτ

+
1

Mpτpτ (ωpτ )

∑

q′σ′ 6=pτ

Mpτ q′σ′(ωpτ )Mq′σ′ pτ (ωpτ )

ωpτ − ωq′σ′ + iη
. (351)

The corresponding eigenvector (in lowest order) is given by

ξqσ =
1

A(ωpτ )
Mqσ pτ (ωpτ )ξpτ (352)

with (pτ) fixed. The number ξpτ is free and can be chosen to properly normalize
the vector ξ.

If the pole ωpτ is ℘-fold degenerate,

ωp1τ1
= ωp2τ2

= . . . = ωp℘τ℘
≡ ω0 , (353)

the lowest-order coefficient A in Eq. (347) is determined by the following matrix
equation

℘
∑

k=1

Mpiτi pkτk
(ω0)ξ

(n)
pkτk

= An(ω0)ξ
(n)
piτi

, i = 1 . . . ℘ . (354)
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In general, one obtains ℘ different eigenvalues A1 . . . A℘. Then the remaining com-
ponents of the corresponding eigenvectors ξ(n) can be calculated from

ξ(n)
qσ =

1

An(ω0)

℘
∑

k=1

Mqσ pkτk
(ω0) ξ(n)

pkτk
, (355)

once the eigenvalue problem (354) has been solved. Assuming that the true excita-
tion energy Ω is not too far away from ω0 it will be sufficient to consider only the
lowest-order terms of the above Laurent expansions. In particular, we set

λn(ω) ≈ An(ω0)

ω − ω0
. (356)

The condition (339) and its complex conjugate, λ∗(Ω) = 1, then lead to

Ωn = ω0 + <An(ω0) (357)

This is the central result of our analysis. Eq. (357) shows that a single KS pole
can lead to several many-body excitation energies. The corresponding oscillator
strengths can be obtained [152] from the eigenvectors ξ(n) and the KS oscillator
strengths.

In the following, we exclusively consider closed-shell systems. For these systems,
the Kohn-Sham orbital eigenvalues are degenerate with respect to the spin variable,
which implies a lack of spin-multiplet structure. In what follows, we demonstrate
how this is restored by the lowest-order corrections (357). Assuming that there
are no further degeneracies besides the spin degeneracy, Eq. (354) reduces to the
following (2 × 2) eigenvalue problem:

∑

σ′=↑,↓

Mpσpσ′(ω0)ξpσ′(ω0) = Aξpσ(ω0) . (358)

For spin-saturated systems, Mp↑p↑ = Mp↓p↓ and Mp↑p↓ = Mp↓p↑, so that the eigen-
values of Eq.(358) are given by

A1,2 = Mp↑p↑ ± Mp↑p↓ . (359)

By Eq. (357), the resulting excitation energies are:

Ω1 = ω0 + <{Mp↑p↑ + Mp↑p↓} (360)

Ω2 = ω0 + <{Mp↑p↑ − Mp↑p↓} . (361)

Inserting the explicit form of the matrix elements (345) one finds

Ω1 = ω0 + 2<
∫

d3r

∫

d3r′ Φ∗
p(r)

(
1

|r − r′| + fxc(r, r
′;ω0)

)

Φp(r
′) (362)

Ω2 = ω0 + 2<
∫

d3r

∫

d3r′ Φ∗
p(r)µ

2
0Gxc(r, r

′;ω0)Φp(r
′) (363)

where, for simplicity, we have dropped the spin-index of Φpσ.4 Obviously, the xc
kernel appearing in Eq. (362),

fxc(r, r
′;ω) =

1

4

∑

σ,σ′=±1

fxcσσ′(r, r′;ω) (364)

4This is possible only if the unperturbed KS ground-state determinant is spin-saturated since,
in this case, φj↑(r) = φj↓(r) for all j.
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is identical with the one already defined in section 5.1. On the other hand, Eq. (363)
exhibits the kernel

Gxc(r, r
′;ω) =

1

4µ2
0

∑

σ,σ′=±1

(σ · σ′)fxcσσ′(r, r′;ω) . (365)

This quantity gives rise to exchange and correlation effects in the Kohn-Sham
equation for the linear response of the frequency-dependent magnetization density
m(r, ω) [59]. The fact that the magnetization density response naturally involves
spin-flip processes, suggests that Ω2 represents the spin triplet excitation energies of
many-electron systems with spin-saturated ground states. The corresponding spin
singlet excitation energies, on the other hand, are given by Ω1. This assignment
will be given further evidence by the numerical results presented at the end of this
section.

Apart from the truncation of the Laurent series, two further approximations are
necessary:

(i) The frequency-dependent xc kernels fxc and Gxc have to be approximated.

(ii) The static Kohn-Sham orbitals entering Eqs. (362) and (363) (cf. Eq. (340))
have to be calculated with an approximate (static) potential vstat

xc .

As an application of the method, we consider the lowest excitation energies of the
alkaline earth elements and the zinc series. Here, in addition to the degeneracy with
respect to the spin index, the s → p transitions under consideration are threefold
degenerate in the magnetic quantum number m of the “final” state. Hence, we
have six degenerate poles and Eq. (354) is a (6 × 6) eigenvalue problem. In our
case, however, the matrix Mpiτi pkτk

in Eq. (354) consists of (three) identical (2×2)
blocks, leading only to two distinct corrections, independent of m, as it should be.

Tables 1 - 3 show the results of calculations based on Eqs. (362) and (363). The
calculation of Table 1 employs the ordinary local density approximation (LDA) for
vstat
xc and the adiabatic LDA (188) for fxc (both using the parametrization of Vosko,

Wilk and Nusair [90]). In this limit, the kernel Gxc is approximated by [103]

GALDA
xc [n](r, r′;ω) = δ(r − r′)

1

µ2
0n(r)

αxc(n(r)) . (366)

The exchange-correlation contribution to the so called “spin-stiffness coefficient”
αxc is also approximated within the LDA of [90] .

The calculation of Table 2 uses the x-only optimized effective potential (OPM)
for vstat

xc in the approximation of Krieger, Li and Iafrate (KLI) [224] and for fxc the
TDOPM kernel (325) derived in section 6.2. Concerning the singlet spectrum, the
OPM values are clearly superior to the LDA results and are also better than the
usual ∆SCF values. The unoccupied orbitals and their energy eigenvalues are very
sensitive to the behavior of the potential far from the nucleus. Thus one major
reason for the superiority of the optimized effective potential is the fact that it is
self-interaction free and therefore has the correct −1/r tail (while the LDA potential
falls off exponentially). An important point to note is that the optimized effective
potential decreases correctly for all orbitals. For this reason, the x-only optimized
effective potential is also superior to the Hartree-Fock (HF) potential which is self-
interaction free only for the occupied orbitals but not for the unoccupied ones. As
a consequence, HF orbital-energy differences are typically too large. However, in
spite of the fact that the OPM provides self-interaction free orbitals, it reproduces
the triplet spectrum less accurately. This hinges on the approximation the xc kernel
is based on. Substituting the TD-Fock expression (279) for the xc action functional
defined in (278) leads to a xc kernel diagonal in spin space, because the correlation
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between antiparallel spins is neglected. Accordingly, from Eqs. (364) and (365) we
have, within the x-only TDOPM

GTDOPM
xc [n](r, r′;ω) =

1

µ2
0

fTDOPM
xc [n](r, r′;ω) . (367)

This should be cured by adding appropriate correlation terms to the xc part
of the action functional, which is further backed by the observation that when
combining the advantage of approximating vstat

xc by the optimized effective potential,
together with a local density prescription of exchange and correlation in the xc
kernels fxc and Gxc, both singlet and the triplet spectrum are reproduced well by
Eqs. (362) and (363), as can be seen from Table 3.

In spite of the fact that we focused our attention to the situation of closed shells,
and spin-multiplets, the method is also capable of dealing with open-shell systems
and spatial multiplets. More details can be found in [152].

We emphasize that the calculation of excitation energies from Eqs. (362) and
(363) involves only known ground-state quantities, i.e., the ordinary static Kohn-
Sham orbitals and the corresponding Kohn-Sham eigenvalues. Thus the scheme
described here requires only one selfconsistent Kohn-Sham calculation, whereas the
so-called ∆SCF procedure involves linear combinations of two or more selfconsistent
total energies [209]. So far, the best results are obtained with the optimized effec-
tive potential for vstat

xc in the KLI x-only approximation. Further improvement is
expected from the inclusion of correlation terms [6, 225] in the OPM.

7.3 Van der Waals interactions

While TDDFT has its main applications in time-dependent phenomena, and in the
calculation of excitation or promotion energies, certain aspects of groundstate energy
calculations are also assisted by TDDFT. This development principally concerns
the van der Waals (vdW) or dispersion-force component of the groundstate energy.
The usual groundstate LDA and its various gradient extensions [227] do not give
an adequate description of vdW forces [228], presumably because these forces arise
(in one picture at least: see below) from the correlations between dynamic electron
density fluctuations in widely separated positions. This makes the usual local or
near-local approximations invalid. The approach to be introduced here facilitates
the derivation of van der Waals functionals via a frequency integration over dynamic
susceptibilities.

(i)vdW interactions for widely-separated fragments: Perhaps the most familiar
example of a dispersion interaction is the attractive mutual energy of a pair of neu-
tral spherical atoms separated by a large distance R, an interaction which forms the
tail of the well-known Lennard-Jones potential. To lowest order this interaction en-
ergy falls off [229] as R−6. This form of dispersion interaction is readily derived for a
general pair of non-overlapping electronic systems by regarding the electrons on the
first system as distinguishable from those on the second system. One then obtains
the R−6 dispersion energy (in addition to some ”polarization ” terms relating to
any static electric moments [230]) by performing second-order Rayleigh-Schrodinger
perturbation theory, treating the Coulomb interaction between the two groups of
electrons as the perturbation Hamiltonian . (For very large separations R the retar-
dation of the electromagnetic interactions between the systems cannot be ignored.
In this regime the R−6 law just quoted is replaced [229] by R−7. This retarded form
takes over whenever R >> c/ω, where ω is a characteristic response or fluctuation
frequency of the electronic systems. We will consider only the non-retarded case
here).

From the work of Casimir, Lifshitz, London and many others [229] we know
that the perturbation expression for the dispersion interaction between separated
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Atom State Ωexp ΩLDA Ω(∆SCF) ωLDA
0

Be 1P1 0.388 0.399 0.331 0.257
3P0 0.200
3P1 0.200 0.192 0.181 0.257
3P2 0.200

Mg 1P1 0.319 0.351 0.299 0.249
3P0 0.199
3P1 0.199 0.209 0.206 0.249
3P2 0.200

Ca 1P1 0.216 0.263 0.211 0.176
3P0 0.138
3P1 0.139 0.145 0.144 0.176
3P2 0.140

Zn 1P1 0.426 0.477 0.403 0.352
3P0 0.294
3P1 0.296 0.314 0.316 0.352
3P2 0.300

Sr 1P1 0.198 0.241 0.193 0.163
3P0 0.130
3P1 0.132 0.136 0.135 0.163
3P2 0.136

Cd 1P1 0.398 0.427 0.346 0.303
3P0 0.274
3P1 0.279 0.269 0.272 0.303
3P2 0.290

Table 1: The lowest S→P excitation energies of various atoms. The experimental
values (first column) [226] are compared with results calculated from Eq. (362) for
the singlet and from Eq. (363) for the triplet (second column) and with ordinary
∆SCF values (third column). The LDA was employed for vxc and the ALDA for the
xc kernels. The corresponding Kohn-Sham orbital-energy differences ω0 are shown
in the last column (All values in rydbergs).
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Atom State Ωexp ΩOPM Ω(∆SCF) ωOPM
0

Be 1P1 0.388 0.392 0.331 0.259
3P0 0.200
3P1 0.200 0.138 0.181 0.259
3P2 0.200

Mg 1P1 0.319 0.327 0.299 0.234
3P0 0.199
3P1 0.199 0.151 0.206 0.234
3P2 0.200

Ca 1P1 0.216 0.234 0.211 0.157
3P0 0.138
3P1 0.139 0.090 0.144 0.157
3P2 0.140

Zn 1P1 0.426 0.422 0.403 0.314
3P0 0.294
3P1 0.296 0.250 0.316 0.314
3P2 0.300

Sr 1P1 0.198 0.210 0.193 0.141
3P0 0.130
3P1 0.132 0.081 0.135 0.141
3P2 0.136

Cd 1P1 0.398 0.376 0.346 0.269
3P0 0.274
3P1 0.279 0.211 0.272 0.269
3P2 0.290

Table 2: The lowest S→P excitation energies of various atoms. The experimental
values (first column) [226] are compared with results calculated from Eq. (362) for
the singlet and from Eq. (363) for the triplet (second column) and with ordinary
∆SCF values (third column). The optimized effective potential was used for vxc and
the approximate OPM kernel (325) for fxc and Gxc. The corresponding Kohn-Sham
orbital-energy differences ω0 are shown in the last column (All values in rydbergs).
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Atom State Ωexp ΩOPM+ALDA Ω(∆SCF) ωOPM
0

Be 1P1 0.388 0.398 0.331 0.259
3P0 0.200
3P1 0.200 0.196 0.181 0.259
3P2 0.200

Mg 1P1 0.319 0.329 0.299 0.234
3P0 0.199
3P1 0.199 0.196 0.206 0.234
3P2 0.200

Ca 1P1 0.216 0.236 0.211 0.157
3P0 0.138
3P1 0.139 0.129 0.144 0.157
3P2 0.140

Zn 1P1 0.426 0.417 0.403 0.314
3P0 0.294
3P1 0.296 0.280 0.316 0.314
3P2 0.300

Sr 1P1 0.198 0.211 0.193 0.141
3P0 0.130
3P1 0.132 0.117 0.135 0.141
3P2 0.136

Cd 1P1 0.398 0.370 0.346 0.269
3P0 0.274
3P1 0.279 0.239 0.272 0.269
3P2 0.290

Table 3: The lowest S→P excitation energies of various atoms. The experimental
values (first column) [226] are compared with results calculated from Eq. (362) for
the singlet and from Eq. (363) for the triplet (second column) and with ordinary
∆SCF values (third column). The optimized effective potential was used for vxc

and the ALDA for the xc kernels. The corresponding Kohn-Sham orbital-energy
differences ω0 are shown in the last column (All values in rydbergs).
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systems can be related to the electric polarizabilities of the interacting species,
and also to the correlation of fluctuating electric multipoles on the two systems.
In the Present TDDFT context, a useful polarizability form for the second-order
dispersion interaction was given by Zaremba and Kohn [231] who derived it directly
from second-order perturbation theory:

E(2) = − 1

2π

∫

d3r1

∫

d3r2

∫

d3r′1

∫

d3r′2
1

| r1 − r2 |
1

| r′1 − r′2 |

×
∫ ∞

0

duχa(r1, r
′
1, iu)χb(r2, r

′
2, iu). (368)

Here χa(r, r′, ω) and χb(r, r
′, ω) are the exact density-density response functions

(157) of each separate system in the absence of the other. χa is defined by the
linear density response n1a(r) exp(ut) of the electrons in system a to an externally
applied electron potential energy perturbation V ext

1 (r)eut :

n1a(r) =

∫

d3r′ χa(r, r′, iu)V ext
1 (r′) (369)

and similarly for χb. It is important to note that χa includes the electron-electron
interaction amongst the electrons of system a to all orders, and similarly for χb.
(Note also that, unlike Ref. [231], we have referred the space arguments of χa and
χb in (368) to a common origin.)

The expression (368) is more general than the familiar asymptotic R−6 form. It
applies to neutral quantal systems of any shape (not necessarily spherical) provided
that R is still large enough that the electron densities do not overlap and that the
inter-system Coulomb interaction can be treated in second order. We can recover the
R−6 form by assuming that R >> A,B where A and B are the spatial dimensions
of the two systems. Then one can expand the Coulomb interactions in (368) in
multipoles. The lowest nonvanishing term gives, with the ”3” axis chosen along R,

E(2)(R) ∼ −1

2π

3∑

i,j=1

(1 − 3δ3i)(1 − 3δ3j)

R6

∫ ∞

0

duα
(a)
ij (iu)α

(b)
ij (iu), R >> A,B

(370)
where, for each system

αij(ω) =

∫

d3r

∫

d3r′ (ri − Xi)(r
′
j − Xj)χ(r, r′, ω) (371)

is the dipole polarizability tensor and X is the centre of electronic charge of the
system. When the polarizabilities are isotropic so that αij = αδij , (370) reduces to
the more familiar London form [229]

E(2)(R) ∼ −3

πR6

∫ ∞

0

duα(a)(iu)α(b)(iu). (372)

Van Gisbergen, Snijders and Baerends [232] have evaluated a formula equivalent
to (370) for diatomic and polyatomic molecules, using the ALDA to obtain the {αij}.
They find that, for the isotropic part of the vdW interaction, ALDA gives errors
of similar size (but mostly opposite sign) to time-dependent Hartree Fock theory
(except for the smallest atoms). This was achieved with much less computational
effort than in the time-dependent Hartree Fock approach. The isotropic vdW coef-
ficients, like the static and dynamic polarizabilities, were found to be somewhat too
large. For the anisotropic part of the interaction, they found that ALDA compares
favourably with both Hartree-Fock and Many-Body Perturbation Theory. Scince
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the ALDA contains unphysical orbital self-interaction, one can speculate that the
use of self-interaction corrected (SIC) functionals might further improve the accu-
racy of the method employed in Ref. [232]. These unphysical self-interactions cause
orbitals to “see” an incorrectly large charge from the other electrons, causing or-
bitals to be too spatially extended and hence too polarizable. This presumably has
effects mainly at the isotropic level. Furthermore, SIC phenomena are known to be
strongest for small systems with highly localized orbitals. Both of these consider-
ations can be expected to cause difficulties in the very cases where van Gisbergen,
Snijders and Baerends observed the least favourable ALDA results in comparison
with other methods. This SIC explanation gains further support from the work of
Pacheco and Ekardt [166] on alkali metal microclusters. Their static and dynamic
SIC terms [233] were found to have significant effects on the polarizability and vdW
interaction for small clusters and even, to a lesser degree, for quite large ones.

Van Gisbergen et al. [232] commented that their numerical method could ac-
commodate more sophisticated forms of TDDFT than simply the ALDA, and in
particular, considering temporal and spatial nonlocality in the xc kernel, they felt
that the latter might be the more important.

Before leaving the discussion of vdW interactions in non-overlapping systems,
we mention that the exact second-order dispersion formula (368) can be used [234]
to derive a class of approximate vdW expressions for the groundstate energy as an
explicit but highly nonlocal functional of the groundstate density. The idea is to
make a direct local density approximation for the interacting susceptibilities χa and
χb in (368). Extreme care is needed, however, to ensure one does not violate the
charge conservation condition

∫

d3r χ(r, r′, ω) = 0 (373)

or the reciprocity condition

χ(r, r′, iu) = χ(r′, r,−iu) for real u. (374)

An Ansatz satisfying these conditions and based on the simplest, pressure-free hy-
drodynamic analysis of the uniform electron gas was given in [234]:

χinhom
local (r, r′, ω) = ∇r · ∇r′

[
n(r)δ(r − r′)

ω2 − ω2
P (n(r))

]

(375)

When this is substituted into (368) for each of χa and χb one obtains

E(2) = − 3

32π2

∫

d3r1

∫

d3r2
1

r6
12

ω1ω2

(ω1 + ω2)
(376)

where ω1 = ωP1 = (4πna(r1)/m)1/2 is the local plasma frequency at an arbitrary
point r1 inside system a, and similarly for ω2. Equation (376) constitutes a very
nonlocal groundstate density functional, and it clearly provides a systematic basis
for the much-used [229] simple notion of pairwise addition of R−6 vdW contribu-
tions. It is interesting that the integrand in (376) is proportional to the harmonic
mean, ω1ω2/(ω1 +ω2), of the two local plasma frequencies. The same formula (376)
was very recently postulated [235] by Andersson, Langreth and Lundqvist on dif-
ferent grounds. They obtained (376) by examining limiting cases and so modifying
a somewhat similar formula previously postulated by Rapcewicz and Ashcroft [236]
on the basis of diagrammatic arguments. The Rapcewicz-Ashcroft formula differs
from (376) only in the replacement of ω1 + ω2 by 2

√
ω1ω2 on the denominator of

(376). It was shown in [236] and [235] that these simple formulae give quite good
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answers for the isotropic R−6 dispersion coefficient for various atomic pairs, pro-
vided that one uses an appropriate cutoff in the low-density tails of the electron
distributions.

The derivation of (376) given in [234] promises to be extendable to more sophisti-
cated local approximations for χa and χb in (368), based perhaps on hydrodynamics
with the inclusion of pressure (Thomas-Fermi hydrodynamics [112]) or of pressure
plus density gradient (Thomas-Fermi-Weizsäcker hydrodynamics [237]). With suit-
able care to satisfy the constraints (373) and (374), one may thereby hope to obtain
a more accurate extension of (376) involving gradients of the groundstate density
and, possibly, having less dependence on spatial cutoffs.

(ii) vdW interactions in closely juxtaposed or overlapping systems: The work of
van Gisbergen et al. [232] and Pacheco and Ekardt [166], discussed in the previous
section, shows that TDDFT, at least in the form of the ALDA, can represent the
state of the art in evaluating van der Waals interactions in well-separated systems
that are too large for methods such as the Configuration Interaction approach.
What of more general cases where the electron clouds overlap or where no large
separation exists? To study this for large systems, we seek a density functional
approach, but first we need to appreciate the origin of the vdW force in terms of
correlation physics.

In essence, dispersion forces arise from the correlation between dynamic charge
density fluctuations in two different systems or in distant parts of one system. The
difficulty [228] in describing vdW forces in the static LDA or gradient approaches
is therefore not surprising since in a highly inhomogeneous system (exemplified by,
but not limited to, a pair of separated subsystems) these correlations may be quite
different from those in the uniform or near-uniform electron gas upon which the
LDA and the various gradient approximations are based.

The previous section applied only to well-separated subsystems. The neces-
sary correlations between distant fluctuations were generated by the application of
second-order perturbation theory, and the TDLDA aspect of the calculation was
not called upon to produce the vdW correlations directly. For overlapping systems
(and for some closely juxtaposed systems), low-order perturbation theory in the
Coulomb potential is not appropriate. The present section will outline an approach,
currently under development, which does generate such long-ranged correlations in
a natural fashion by the solution of a highly nonlocal real-space screening integral
equation. Nevertheless, local density approximations are made wherever possible for
the independent-electron susceptibility χs and the exchange-correlation kernel fxc,
neither of which needs to be long-ranged in order to generate the basic long-ranged
vdW correlations.

The starting point for the proposed new approach is an exact formula [238], [239],
based on the adiabatic connection formula and the zero-temperature fluctuation-
dissipation theorem, relating the groundstate xc energy to the interacting suscepti-
bility χ :

Exc = −1

2

∫ 1

0

dλ

∫

d3r

∫

d3r′
1

|r − r′|

[(
1

π

∫ ∞

0

duχ (λ, r, r′, iu)

)

+ n(r)δ(r − r′)

]

(377)
Here χ(λ, r, r′, ω) is the interacting susceptibility defined as before but with a re-
duced Coulomb interaction λ/r acting between electrons. It was shown in Ref. [234]
that the charge conservation condition (373) for χ implies xc hole normalization.
Use of the independent-electron Kohn-Sham susceptibility χs = χ(λ = 0, r, r′, iu)
rather than χ(λ, r, r′, iu) in (377) yields the exact exchange energy. Subtraction
of this exchange energy expression from the above xc energy yields the correlation
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energy

Ec = − 1

2π

∫ 1

0

dλ

∫

d3r

∫

d3r′
1

|r − r′|

∫ ∞

0

du
(

χ(λ, r, r′, iu)−χs(r, r
′, iu)

)

. (378)

Equation (378) is required to produce the dispersion interactions under study. Pe-
tersilka, Gossmann and Gross [69] have shown that χ and χs are related exactly by
a Dyson-type equation involving the dynamic nonlocal xc kernel fxc as well as the
Coulomb kernel (cf. Equation (152)):

χ(r, r′, ω) = χs(r, r
′, ω)+

∫

d3x

∫

d3x′ χs(r,x, ω)

(
1

|x − x′| + fxc(x,x′, ω)

)

χ(x′, r′, ω)

(379)
Equations (377) and (379) are of course exact provided that fxc is exact, and

so they contain inter alia the exact vdW interaction. Consider first a homogeneous
electron gas. If fxc is arbitrarily set to zero, and (379) is Fourier-transformed with
use of the convolution theorem, (379) is then seen to be the equation for the RPA
response function χ in terms of the bare (dynamic Kohn-Sham-Lindhard) response
χs. Again with the assumption fxc = 0, but with the homogeneous assumption
removed, (377) and (379) merely represent the inhomogeneous generalization of
the well-known RPA groundstate correlation energy of the homogeneous electron
gas. This case of zero fxcalready has some rather useful properties with respect to
the vdW interaction. It has been shown in detail [239] that, when the correlation
energy recipe (377), (379) with fxc = 0 is applied to an arbitrary pair of widely-
separated systems, the Zaremba-Kohn second-order vdW energy expression (368) is
reproduced, with the following exception: the susceptibilities χa and χb are the ap-
proximate RPA-interacting susceptibilities of each system, rather than including the
exact interactions within each subsystem. Thus the full inhomogeneous RPA corre-
lation energy already contains the essence of the vdW interaction, and will produce
an R−6 dependence in the appropriate limit. An examination of the detailed proof
in [239] further shows that the long-ranged vdW interaction achieved in the RPA
does NOT arise because of any long-ranged behaviour of the independent-electron
susceptibility χs ( indeed χs is not normally long-ranged). Rather, the long range
of the vdW interaction comes from the long range of the Coulomb interaction in the
screening equation (379). Thus a local density approximation for χs will not spoil
the vdW properties, but may slightly alter the interacting susceptibilities χa and χb

in the asymptotic form (368). Furthermore the reintroduction of fxc within a local
approximation can also be seen, from the working of Ref. [239], to maintain the
form (368) in the separated limit, but the individual susceptibilities χa and χb will
now involve fxc and hence will be closer to the required interacting susceptibilities.

To summarize the previous paragraph: If we make short-ranged local-density
or gradient approximations for χs and fxc in the exact groundstate energy scheme
(377), (379), we obtain an approximate and highly nonlocal prescription for the
groundstate correlation energy, with the groundstate density n(r) as the only in-
put. This scheme is expected to produce a rather good approximation to the long-
ranged vdW dispersion interaction between widely separated subsystems, a result
due principally to the retention, in full, of the nonlocal coulomb kernel in the real-
space screening integral equation (379).

What is now required is a sufficient set of constraints on the kernel fxc so that the
short-ranged aspects of the groundstate correlation energy are also reproduced by
(377), (379) at a level of approximation comparable, say, to the groundstate LDA or
GGA. If this can be achieved, we will have a ”seamless” scheme, equally reasonable
for chemically bonded systems, metals etc., and also for fully or partly subdivided
systems at all separations. This should allow investigation of the intermediate region
of interaction where both short-ranged and long-ranged correlations are significant,
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even for systems too large for traditionally accurate methods such as CI or Møller-
Plesset perturbation theory. (Recall that wavefunctions are not needed for the
present scheme, only groundstate densities, so that one may perform ”real-space
quantum chemistry” without basis-set problems).

The details of this scheme are currently being worked out. Although it aims
for a groundstate energy functional, it depends heavily on time-dependent density
functional theory in the sense that the properties of the dynamic TDDFT xc ker-
nel fxc(r, r

′, iu) for inhomogeneous systems are of the essence. Further details of
some constraints to be obeyed by fxc are discussed in Ref. [239]. Some supporting
evidence for the utility of a local approximation for χs in a highly inhomogeneous
system are given in [113]. Current indications are that, for jellium slab situations
where the inhomogeneity is only one-dimensional, the complete scheme (377), (379)
(even with the exact Kohn-Sham χs but with a local approximation for fxc) can be
computed on a single-processor 1- MFlop workstation in 102 hours or less. With
Monte Carlo methods for the integrations in (377), and/or faster or parallel ma-
chines, more involved geometries should be tractable.

8 Applications beyond the perturbative regime:

Atoms in strong femto-second laser pulses

Owing to rapid experimental progress in the field of laser physics, ultra-short laser
pulses of very high intensity have become available in recent years. The electric
field produced in such pulses can reach or even exceed the strength of the static
nuclear Coulomb field. If an atomic system is placed in the focus of such a laser
pulse one observes a wealth of new phenomena [240] which cannot be explained by
perturbation theory. In this case a non-perturbative treatment, i.e., the solution
of the full TDKS equations (39) – (41) is mandatory. The total external potential
seen by the electrons is given by

v(r, t) = −Z

r
+ E0f(t)z sin(ω0t) (380)

where Z is the nuclear charge. The second term on the right-hand side of Eq. (380)
is the potential due to the laser field in dipole approximation, written in the length
form. Since the wavelength of currently used lasers is almost always very large
compared to any characteristic length associated with an atomic system, the dipole
approximation turns out to be very good in practice [241]. E0 denotes the peak
electric field strength and f(t) characterizes the envelope function of the pulse which,
in the calculations described below, is linearly ramped to its peak value over the
first 10 cycles and then held constant. The field is assumed to be polarized along
the z-direction.

In the following, we compare the results of a TDKLI calculation using the ap-
proximate potential (313) with an ALDA calculation using the potential (186), both
for the exchange-only case [242, 243]. The numerical procedure [244] to solve the
TDKS equations is similar to the one developed by Kulander [245, 246], who solved
the time-dependent Schrödinger equation for hydrogen and the time-dependent
Hartree equation for helium in a laser pulse. The spin orbitals are expressed in
cylindrical coordinates and, due to the linear polarization of the field, the spin
as well as the angular part of the orbitals are preserved. Consequently, a fully
three-dimensional treatment only requires a two-dimensional grid for the numerical
integration. In the following, the time-dependent orbitals will always be character-
ized by the indices indicating the initial state of the respective orbital; e.g., ϕ2s(r, t)
describes an electron which initially was in a 2s spin orbital: ϕ2s(r, t = 0) = φ2s(r).
The integration of the single-particle equations is performed using a finite-difference

65



1e-15

1e-10

1e-5

0 10 20 30 40 50 60

 
 |d(ω)|2

Harmonic order

Figure 4: Harmonic spectrum for He at λ = 616nm and I = 3.5×1014 W/cm2. The
squares represent experimental data taken from Ref. [248] normalized to the value
of the 33rd harmonic of the calculated spectrum. The experiment was performed
with a peak intensity of 1.4 × 1014W/cm2.

representation of the kinetic energy operator. A Crank-Nicholson technique is em-
ployed for the (unitary) time propagation of the orbitals.

Once a numerical solution of the TDKS equations has been obtained, the result-
ing time-dependent density is sufficient to calculate any desired observable of the
system. Some quantities are easily calculated while others (such as ATI spectra)
are harder to extract from the density. But, as demonstrated in section 2, all phys-
ical observables can be calculated from the density, in principle. In the following
we shall describe the calculation of two different quantities, namely the harmonic
spectrum and the ionization yields.

To obtain the harmonic spectrum, we calculate the induced dipole moment

d(t) =

∫

d3r z n(r, t) (381)

which is then Fourier transformed over the last 5 cycles of the constant-intensity
interval. The square of the resulting Fourier transform, |d(ω)|2, has been shown
[247] to be proportional to the experimentally observed harmonic distribution to
within a very good approximation. Figure 4 shows the result of a simulation
for the helium atom at a laser wavelength of λ = 616 nm and peak intensity of
I = 3.5 × 1014W/cm2. The calculation was made with the TDKLI scheme which,
for two electrons in the x-only limit, reduces to the ordinary time-dependent Hartree
method. One observes peaks in the energy-resolved photon spectrum at odd mul-
tiples of the external laser frequency. From perturbation theory one would expect
an exponential decrease of the peak intensities. Figure 4, however, shows a plateau
of peak intensities up until roughly the 47th harmonic. This plateau is a typical
nonlinear phenomenon. The squares in Fig. 4 indicate experimental results [248]
obtained with the same laser frequency at an intensity of 1.4×1014W/cm2. Various
calculations were performed with different peak intensities, but the best agreement
with the experiment was achieved in the calculation for I = 3.5×1014W/cm2 shown
in Fig. 4. The discrepancy between this intensity and the experimental intensity of
1.4×1014 W/cm2 might be due to the uncertainty of the experimentally determined
peak intensity which can be as high as a factor of two.
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Figure 5: Harmonic distribution for He in a two-colour laser field. The two wave-
lengths are 616 nm and 308 nm, and the intensity is 3.5 × 1014 W/cm2 for both of
them. Crosses are the results for ϕ = 0 and diamonds denote the values obtained
with phase shift ϕ = 0.7π. For comparison, the squares indicate the harmonic
distribution for He in a one-colour field with λ = 616 nm and I = 7× 1014 W/cm2.

The harmonic generation of helium in a strong two-color laser field has also been
studied [243, 108]. The two lasers with frequencies ω0 and 2ω0, respectively, are
operated with the same peak intensity and a constant relative phase difference ϕ.
This results in a total external potential of the form

v(r, t) = −Z

r
+ E0f(t)z[sin(ω0t) + sin(2ω0t + ϕ)] (382)

where both fields are linearly polarized along the z-axis.
Calculated harmonic distributions induced by a two-colour field with different

relative phases are shown in Fig. 5. To avoid overcrowding, only the calculated peak
intensities are plotted and connected with straight lines. The fundamental wave
length is again 616 nm and the intensity is 3.5 × 1014 W/cm2 for both frequency
components. We also show the one-colour spectrum for λ = 616nm calculated with
the same total intensity as the two-colour field, i. e. I = 7 × 1014 W/cm2. In the
two-colour spectrum, harmonics at all higher multiples (including even multiples)
of the fundamental frequency ω0 occur due to nonlinear mixing processes of the two
fields [249]. Most of the harmonics produced by the two-colour field in the plateau
region are one to two orders of magnitude more intense than those obtained in
the one-colour calculation although the total intensity of the external laser field is
the same in all cases. Similar results have recently been found for hydrogen in a
two-colour field [250]. One possible reason for this remarkable enhancement is that
in a two-colour field one specific high-order harmonic can be generated by a large
number of different mixing processes [249].

In order to simulate ionization, the grid contains an absorbing boundary to
remove the flux of electrons leaving the nucleus. When some portion of the wave
function propagates to the outer edges of the grid it is absorbed. We assume this
flux corresponds to the ionized part of the wave function. Strictly speaking, such a
criterion is meaningful only after long times when the respective contributions have
propagated very far away from the nucleus. For the wave lengths considered here, a
cylindrical grid of 20 × 60 a.u. was found to be sufficient. As time proceeds, more
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and more electrons will be removed from the atom and, accordingly, the norm of
the TDKS orbitals taken over the finite volume of the grid,

Njσ(t) =

∫

finite
volume

d3r|ϕjσ(r, t)|2 , (383)

decreases with time.
Figure 6 compares the results of a TDKLI and an ALDA calculation [243] for

Ne exposed to a laser field with wavelength λ = 248 nm and intensity I = 3 ×
1015 W/cm2. Figure 6 shows the norm (383) of those orbitals which were initially
in the Ne 2s, 2p0 and 2p1 states. The 1s electrons have been frozen, i.e., only the 2s
and 2p electrons are propagated by solving the TDKS equations, whereas the time
evolution of the 1s electrons is given by

ϕ1s(r, t) = φ1s(r) e−iε1s(t−t0) . (384)

As expected, among the Ne 2s, 2p0 and 2p1 orbitals, the 2s orbital is the least
ionized one because it is initially more strongly bound (by roughly a factor of 2)
than the 2p orbitals. A little surprising at first sight, the 2p0 and 2p1 orbitals differ
by about an order of magnitude in their degree of ionization (60% for the 2p0 orbital
compared to only 4.75% for the 2p1 orbital within TDKLI, and 56% for the 2p0

compared to 7.7% for the 2p1 orbital within the ALDA). This difference has been
observed before by Kulander [251, 252] for the case of xenon (in a single-active-
electron calculation). It is due to the fact that the 2p0 orbital is oriented along the
polarization direction of the laser field, which makes it easier for the electrons to
escape the nuclear attraction than for the case of the 2p1 orbital, which is oriented
perpendicularly to the field polarization.

To explain the difference between the results obtained within the TDKLI and
ALDA schemes shown in Fig. 6, we observe that the initial 2s and 2p0, 2p1 orbital
energies in LDA differ quite considerably from those obtained with the KLI method:
It takes 5 photons to ionize the 2p orbitals in KLI compared to only 3 photons in
LDA. Similarly, it takes 11 photons to ionize the 2s orbital in KLI and only 9 in
LDA. The difference between the curves in Fig. 6A and C is thus hardly surprising.
On the other hand, it seems quite unexpected that the ALDA and TDKLI curves
cross in Fig. 6B so that the ALDA curve comes to lie above the TDKLI curve.
This behaviour can be attributed to the fact that the other orbitals are ionized
much more strongly in ALDA than in TDKLI, so that their electron density near
the nucleus (and therefore their screening of the nuclear charge) is decreased. This
makes it more difficult for the 2p0 electrons to escape within the ALDA scheme.

Figure 6 clearly shows the superiority of the TDKLI approach over the ALDA.
The spurious self-interaction present in the ALDA causes the orbitals to be too
weakly bound and hence the ALDA is not reliable in the calculation of ionization.

The probabilities of finding neutral, singly, doubly, etc. ionized atoms at time
t are readily expressed in terms of the norms (383). For instance, in the case of
helium, one has

N1s↑(t) = N1s↓(t) =

∫

finite
volume

d3r
n(r, t)

2
≡ N1s(t) , (385)

and the probabilities for neutral, singly and doubly charged helium are

P 0(t) = N1s(t)
2 (386)

P+1(t) = 2N1s(t)(1 − N1s(t)) (387)

P+2(t) = (1 − N1s(t))
2 . (388)
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Figure 6: Time evolution of the norm of the Ne 2s orbital (A), the Ne 2p0 orbital
(B) and the Ne 2p1 orbital (C), calculated in the x-only TDKLI and ALDA schemes.
Laser parameters: λ = 248 nm, I = 3 × 1015 W/cm2, linear ramp over the first 10
cycles. One optical cycle corresponds to 0.82 femtoseconds.
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Figure 7: Population of the differently charged states of Ne. Laser parameters as
in Fig. 6 (λ = 248 nm, I = 3 × 1015 W/cm2, linear ramp over the first 10 cycles).

For many-electron atoms similar combinatorical considerations [244] are performed
to determine the probabilities for the various charged ions. Figure 7 shows the
probabilities of finding neutral, singly, doubly and triply charged Ne as calculated
from the norms of Fig. 6.

These probabilities as a function of time cannot be compared directly with
experiment. This is because the laser focus, in addition to the temporal pulse
shape, has a spatial intensity profile due to which not all atoms in the laser focus
experience the same intensity. Hence a realistic calculation of ion yields requires
many runs at various peak intensities. Work along these lines remains an important
field for the future. In this way one might be able to understand the structures in
the strong field ionization spectra of He [253] which have been the subject of heated
discussions in recent years.
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