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Abstract

A density-functional theory describing the superconducting state of matter is pre-
sented. The formalism leads to a set of single-particle equations which are structurally
similar to the Bogoliubov-de Gennes equations but (in contrast to the latter) incorpo-
rate both normal and superconducting exchange-correlation effects. It is demonstrated
via a rigorous decoupling scheme that these single-particle equations are equivalent
to a set of normal Kohn-Sham equations, and a BCS-type gap equation to be solved
self-consistently with the Kohn-Sham equations.
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In a recent letter [1] Oliveira, Gross and Kohn (OGK) have presented a density func-
tional theory describing the superconducting state of matter. Similar to the traditional
Hohenberg-Kohn theorem [2] , which provides a description of normal-state systems in
terms of their ground-state densities, the formalism of OGK ensures that superconductors
can be described completely and, in principle, exactly in terms of two ”densities”: the

normal density

p(r) = Y < Pi(r)do(r) > (1)
o=1l
and the anomalous density
Ar,r') =< Pp(r)hy (') > . (2)

The diagonal A(r,r) can be shown [3] to be identical, in the appropriate limits, with the
order parameter of the Ginzburg-Landau theory [4].
OGK consider superconducting systems described by a Hamiltonian of the following

form (atomic units are used throughout):
H=T+U+W+
+ / (Vext(r) — p)p(r) d’r — / / (Dl (r,v)A(r, ') + Degy(r,v') Al (r,1')) d*r dr' (3)
where p and A are the normal and anomalous density operators whose expectation values
are given by (1) and (2). Furthermore

7= 3 [ eeit (<) doto @

o=T!

is the kinetic energy of the electrons, U denotes their mutual Coulomb repulsion,

J 1 1.7 ~ 1 1 ~ N e
U= 5 OZGJ /d3r /d3r ¢i—(r)¢il (I' )Wlpal (I‘ )’()bo.(I‘)7 (5)

and W is a given phonon-induced electron-electron interaction which, in general, is com-

pletely non-local:
W=— /d3r/d3r' /d3x /d3x'zﬁ1(r)7ﬁ$(r')w(r, r' x, x")r (%) (x'). (6)
The hermiticity of (6) requires that

w(r, ', x,x') = w*(x,x,r',r) (7)



and spin isotropy implies
w(r, v, x,x') = w(', r,x, x). (8)
A simple example is the model interaction of Bardeen, Cooper and Schrieffer (BCS) [5]

which depends only on the relative coordinates (r — r’) and (x — x) :

d3k d3q : / : !
! N k(r—r X—X
wpecs(r—r,x—x) = f(27r)3 /(27r)3eZ (r—r') gia( )wk,q (9)
with
A :if|k72—u|<wpand|q72—u|<wp
= 10
Wk { 0 : otherwise (10)

and wp being a typical phonon frequency. A more elaborate form for the non-local in-
teraction w has recently been calculated by Wacker and Kimmel [6, 7] on the basis of a
one-band model proposed by Schneider, DeRaedt and Frick [8] .

The remaining terms in Eq. (3) represent external potentials : ve,:(r) is the Coulomb
potential produced, e.g., by a periodic nuclear lattice, and De¢(r,r’) can be viewed as the
proximity-induced pair field of an adjacent superconductor.

The central result of the theory of OGK is a set of self-consistent single-particle equa-
tions which determine, in principle exactly, the densities p(r) and A(r,r’) of the interact-
ing system described by the Hamiltonian (3). At any given inverse temperature 3 , these

single-particle equations have the following form :

2
(‘% T oy(r) u) un(®) + [Dy(r, ¥ on (') &'’ = Bynr) (1)

2

/D;“(r, r')uy, (v') B’ — (—% + vg(r) — u) vn(r) = Epup(r). (12)

In terms of the functions u,(r) and v,(r) , the densities (1) and (2) are given by

p(r) =23 (Jun ()P F5(En) + o () £5(~ En)) (13)
Ar,r') =) (05 () un (1) f5(=En) — vp(v)un (r') f5(En)) (14)
where fg denotes the Fermi distribution
1
f8(E) = 15 oFF - (15)



Both the normal single-particle potential v; and the effective pair potential D, in Egs.
(11), (12) consist of a given external part, a Hartree term, and an exchange-correlation

(xc) contribution:
Vs(r) = Vegt(r) + /% a3’ + 2 [p, A](r) (16)
Dy(r.t') = Dear(rx') + [ [[wer'x x)AGx,x) dPxd + D [p Al(r,x'). (1)
The xc potentials are formally defined as functional derivatives of an xc-free-energy func-

tional F5.[p, A] :

C

8
o2 Al(r) = S s (18)
B
D2lp. Allr,x') =~z 2 (19

Since the effective single-particle potentials v; and D depend on the densities p and A |
the whole set of equations (11) - (17) has to be solved self-consistently. The single- particle
equations (11), (12) are structurally similar to the Bogoliubov-de Gennes [9] equations.
In contrast to the latter, however, the single-particle equations (11) and (12) include xc
effects, i.e. the Bogoliubov-de Gennes equations compare to Eqs. (11), (12) just as the
ordinary Hartree equations compare to the Kohn-Sham [10] equations. Extensions of the
theory of OGK including external vector potentials have been derived by Kohn, Gross,
and Oliveira [11] and by Wacker and Kiimmel [6] .

In the following we shall derive some exact properties of the single- particle eigenfunc-
tions uy,(r) and v,(r) . On the basis of these properties we will then deduce a rigorous
decoupling scheme which transforms the self-consistent equations (11) - (17) into a set of
normal Kohn-Sham equations and a BCS-type gap equation.

First, as a matter of convenience, we rewrite Egs. (11), (12) in matrix form

2 .
( A ) Yo = Fun (20
D: — (-5 +vs—n)
where D, is to be interpreted as the integral operator [D(r,r’)...d%r' , and x,, represents

the two-component eigenfunction



By inspection of the complex conjugate of Eqs. (11) , (12) , one readily verifies that if

= () (22)

v (r)

is a solution of (20) with energy F,, , then
()= ( Vn(r)
W= () (23)
is a solution of (20) with energy (—E,,) . In other words, the spectrum is redundant, i.e.,

for any given set of quantum numbers denoted by ”n”, there exist two solutions, (X7(1+), E,)

and (X%_), —FE,) . For each value of n appearing in the summations in Egs. (13) and (14)

one may choose either (X$1+);En) or (ng), —FE,) . The structure of Eqs. (13) and (14) is

such that the result for p(r) and A(r,r’) does not depend on this choice. The completeness

relation, however, must include all solutions of Eq. (20) :

S L am e sty 7). (21)

Insertion of Eqs. (22) and (23) leads to

) [(u”(r)> ® (ur (r), vr(r')) + ( U;kbfl(-)

— vp(r) —uk(r

) @ ), ~un )] =8 =) (1)

This yields two independent equations,

> [un(r)us, () + v (r) o (r')] = d(r — 1) (26)

n

and

> [un(®)vn (') = un(x')v;(r)] = 0. (27)

n

The orthonormality requirement

s CIES CIES U, S’ r
X >= [ (uf (), o (1) ( . )) = B Ga (28)
yields two further equations :
[ e [ (1) + 05, (6)) = G (29)

and

/ d3E [t (£) 0t (£) — v (£) e (£)] = O, (30)
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Relations similar to (26) - (27), (29) - (30) are known [12] for the solutions of the traditional
Bogoliubov-de Gennes equations.

An immediate consequence of Eq. (27) is the symmetry relation
A(r,r') = A(r',r). (31)

To prove this equation, we use the (exact) representation (14) of A(r,r') , apply the
identity

fo(=E) =1— fs(E) (32)

and insert the completeness relation (27) .
Since the xc pair potential is a functional derivative with respect to A*(r,r’) (cf.

Eq.(19)), it must have the same symmetry property as A | i.e.,
Dgc(ra rl) = Dgc(rla I‘). (33)

As a consequence of Eqgs. (8) and (31), the second, i.e. the mean-field contribution to the
effective pair-potential (17) is invariant under exchange of r and r’ as well. The external
part, on the other hand, can be viewed as the mean-field (plus possibly xc) pair field of

an adjacent superconductor so that
Deact(ra I‘,) = De:ct(rla I'). (34)

We conclude that

Dy(r,1') = Ds(x',1). (35)

Now we proceed to the decoupling of Eqs. (11) - (17) into a set of normal Kohn-Sham
equations and a BCS-type gap equation. In order to obtain a good initial guess for the
iteration, we first perform an ordinary Kohn-Sham calculation for the material in question,

i.e. the equations

2 r
(—% +veale) + [LEL a0 vxc[p](r)> Pok(r) = Canpunl®  (30)
pr) =) faleak — w)lak(r) (37)
ak



are solved in self-consistent fashion. In a periodic crystal, the eigenfunctions ¢, k(r) are
Bloch waves; a denotes the band index and k is the crystal momentum. As a consequence
of time reversal symmetry, the energy eigenvalues satisfy the identity (Kramers’ theorem)
13]

Ea,k = 5a,—k- (38)

Following Wacker [7] , we then make an ansatz for the solutions of Eq. (20) of the following

form :

Xax(r) = ( Ua kPak(T) ) (39)

Va kP, (T)

Uqk and v,y are complex numbers to be determined in such a way that Eq. (20) is

satisfied. Furthermore, the orthonormality condition (29) requires that
|t + [vaxl* =1 (40)
be satisfied. For the densities (13) and (14) , the ansatz leads to

p(r) = 3 (takl?F5(Bas) + vose f5(—Eap)) (pasc®@? + |po @)  (41)
a,k

and

A(r,r') = %Z Uz,kua,k (f3(=Eax) — f5(Eax)) (‘Pa,k(r)<Pa,—k(r,) + <Pa,k(r')<Pa,—k(r))
- (42)
where E, i is the energy eigenvalue corresponding to xok - Eq. (42) shows that the
ansatz (39) also satisfies the symmetry condition (31) .
We now determine the amplitudes uq k, Vo k - Insertion of the ansatz (39) in Eq. (20)

leads to the 2 x 2 eigenvalue problem

(b9 — o) (o) = () <43>
where
Dy(ak) = [dr [dr'es(e)0h ix) Dy (e, ). )

As a consequence of the symmetry relation (35) we find

Ds(aa k) = Ds(av _k)' (45)



Using this result and Eq. (38), the solutions of Eq. (43) can be written as

Eox = %/(ax — 1)2 + [Da(0, ) 2 (46)
_L( ; E ) ’L'(sak 1+€Ot,k_u % (47)
Ugk = \/5 signtigx)e 7Ea,k
1
1 Eak — M
Vo = —= |1 — 2= & 48
K=" [ o ] (48)
with
; Dy(a, k)
elak = 2L 49
Dy(a ) )

Eq. (46) once again demonstrates the redundance of the eigenvalue spectrum of Eq. (20).

Inserting the amplitudes (47), (48) in Eqgs. (41) and (42), one obtains for the densities

Cak — R
o) = 3 |1 - b= (2ol [ o) (50
Rox 2
ak )
and
1 D k
Arr) = Ly |Pelek)y <5Ravk) ok (1) P ic(r') (51)
25| Rax 2
where R, \ represents the positive root
Rox = +/(€ax — 1) + | Da(a. k)2 (52)

The densities, as given by (50) - (52), depend on D4(a, k) which is yet to be determined.

By Egs. (17) and (44), Ds(a, k) can be written as

Dy(a k) =
= [ [ e @) ) Deanlr, ) +
+ / &r / & / Px / Bx (1) (T )w(r, v x, ) A(x, x) +
+ [ [ @ @)en ) Daclp, A)e, ) (5)
Obviously, D,(a, k) depends on the densities p , A . Thus, in order to determine D;(a, k),

Egs. (50) - (52) and Eq. (53) have to be solved self-consistently. Since ¢,k and €,k are

kept fixed during this iteration, D,.[p, A] becomes a functional of Ds(a, k) alone. As a



consequence of that, the self- consistency loop, i.e., insertion of Eqgs. (50) - (52) in Eq.

(53), leads to a single integral equation for D,(a, k) :

1 w(ak, a'k')DS(a’,k')tan

Ds(avk) = Demt(aak) + 5 Z h (%) + D:cc[Ds](aak) (54)

o' K/ Rat ye
with
Der(l) = [ [ @5/} (6)0%, 1) Desa(r.7) (55)
DelDi)(ak) = [dr [dr'el ()6t @) Duclp, Al ) (56)
and
w(ak, a'k’) =

= [ [ar [@x @ men, e %K) o ($ga e (€) (57)

Once D, (a, k) has been obtained from the integral equation (54), the densities p(r),A(r,r’)
are known by Eqgs. (50) - (52). Using these densities, we then determine the single-particle

potential !

00(5) = ) + [ T2 vl M) (58)

and solve with this ( fixed ) potential the single-particle equations

2
(—% + vs(r)> Pak(T) = €akPak(T)- (59)

This yields a new set of orbitals ¢, x and energies €, x which serve as input for the next
iteration. The whole cycle of Egs. (50) - (52), (54) - (59) is repeated until self-consistency is
reached. One easily verifies that the self-consistent solutions satisfy the exact completeness
and orthonormality relations (26), (27) and (29), (30).

The separation of the original single-particle equations (11) - (17) into a BCS-type
gap equation, Eq. (54), and a normal Kohn-Sham equation, Eq. (59), is of tremendous
practical importance because it achieves a separation of energy scales: the gap function
Dy(a, k) (as determined by Eq. (54)) is typically three orders of magnitude smaller than

the characteristic features, such as band gaps, of the normal band structure e, (as

n practice, the functional dependence of v, on the densities p , A is of course only approximately
known



determined by Eq. (59)). Furthermore, the effect of A in the single-particle potential (58)
is expected to be small, so that a fully converged traditional Kohn-Sham solution (as
obtained from Eqgs. (36),(37)) will be very close to the final result for ¢, k,€qk of the full
self-consistency cycle (50) - (52), (54) - (59).

In the homogeneous limit,

1 ; 2

— ikr k

Pak = 3¢ , ok = 5 (60)
2

Eq. (54) reduces rigorously to the BCS gap equation if D,. is neglected. Thus, the
traditional BCS model can be viewed as the homogeneous Hartree limit of the density
functional theory for superconductors presented here.

The fact that Eq. (54) involves a gap function D;(«, k) for each band index « is a par-
ticularly welcome feature because it accomodates in a natural way the possible occurance
of more than one gap indicated in recent experiments [14].
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