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1 INTRODUCTION

The basic idea of density functional theory is to describe a many-electron system
exclusively and completely in terms of its ground-state density, i.e., in terms of the
ordinary one-particle density (not the density matrix). This means two things:

1. Every observable quantity of a stationary quantum mechanical system can be
calculated, in principle exactly, from the ground-state density alone, i.e. every
observable quantity can be written as a functional of the ground-state density.

2. The ground-state density can be calculated, in principle exactly, from a varia-
tional principle involving only the density.

In section 2 of this review we will briefly indicate a proof of these two important
statements first given by Hohenberg and Kohn [1]. The variational principle, i.e.
statement (2) above, can be cast into the form of a one-particle Schrédinger equation
with a local, density-dependent single-particle potential. The resulting self-consistent
scheme, known as the Kohn-Sham scheme [2], is the heart of modern density functional
theory. The derivation and implications of this scheme will be discussed in detail in
section 2 of this review.

The original theorems of Hohenberg and Kohn and Kohn and Sham refer to time-
independent systems in a normal (i.e. non-superconducting) ground state. In the
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remaining sections of this paper we shall describe three recent extensions of density
functional theory, referring to excited states (section 3), to time-dependent external
potentials (section 4), and to superconducting systems (section 5). With these exten-
sions, density functional theory covers practically all situations of physical interest.

In this review, we will concentrate on the formalism of density functional theory
and its implications. We shall not describe applications in great detail. For a compre-
hensive survey of applications to atoms, molecules and solids (until 1989) the reader is
referred to the review article by Jones and Gunnarsson [3]. More recent applications to
molecules are presented in the article by Salahub in this volume. For a critical review
of the performance of density functional theory on 32 neutral molecules, the reader is
referred to the recent work of Johnson, Gill, and Pople [4]. A survey of applications of
time-dependent density functional theory can be found in the review article by Gross
and Kohn [5] and in the book by Mahan and Subbaswamy [6].

2 DENSITY FUNCTIONAL THEORY OF THE
GROUND STATE

2.1 The Theorems of Hohenberg and Kohn, and Kohn and
Sham

We begin with a short summary of the original Hohenberg-Kohn (HK) theorem
[1].
Consider a system of N electrons characterized by the time-independent Hamilto-

nian
Hy=T+V+U (1)

which, in second quantised notation, is given by

r= % [arite (- ) b @)

o=}
V= _Zu / o)) (r)d, (r) (3)
0= 3 5 s [ (e e)ie) (@

(Atomic units are used throughout.) For simplicity we consider only potentials v(r)
leading to a non-degenerate ground state ¥ (extension of the HK theorem to degenerate
ground states is straightforward [7, 8]):

HyU = E,0 . (5)
The restriction to non-degenerate ground states allows us to define a formal map
A:v(r) — U (6)

that maps each potential v(r) onto the ground-state solution ¥ of (5). For each ¥ we
then calculate the ground-state density

n(r) = (U|a(r)|¥) = (¥] 3P} (r)de(r)|P) (7)
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which establishes a second map
B:¥ — n(r). (8)
Combining A and B we can map each potential v(r) onto a density n(r)
G:v(r) — n(r). (9)

The central statement of the HK theorem is that the map G is invertible up to within
a trivial additive constant in the potential. In order to prove this statement we have
to show that the maps A and B are invertible.

For the map A, the invertibility proof is trivial: Solving the Schrédinger equation
(5) for V defines the inverse map A~ explicitly

T+0)

_ -1
IS AT, (10)

v(ry) +o(ry) + ... +v(ry) + const = (

U(ry...ry)
Ce I'N)
In the case of map B one has to show that two different ground states U # U’ (arising

from two different potentials v # v’ + const ) always lead to different ground-state
densities n(r) # n/(r). The argument is based on the Rayleigh-Ritz principle:

Egy = (V|Hy|¥)
< (V|Hy|V) = (V|Hy +V - V'|¥) = E, + /d3r n'(r) (v(r) —'(r)) . (11)

Due to the restriction to non-degenerate ground states, (11) is a strict inequality. An
analogous argument starting with £y, leads to

El, < By + / &rn(r) (v'(r) — o(r)) . (12)

The proof is by reductio ad absurdum: assuming n(r) = n'(r), the addition of (11)
and (12) leads to the contradiction

Egs + E;s < Egs + Eg,]s (13)

and one concludes that B is invertible. This means that, given a non-degenerate
ground-state density n(r), there exists one and only one ground-state wave function
U[n| that reproduces the density

B1l:in(r) — ¥n]. (14)

In view of the fact that there exist infinitely many N-particle functions x(r;...ry)
which reproduce a given density n(r) [9, 10], the 1-1 correspondence between ground-
state wave functions and ground-state densities is a rather surprising fact.

Moreover, due to the invertibility of the two maps A and B, single-particle poten-
tials v(r) and ground-state densities n(r) are in 1-1 correspondence

G ' :n(r) — v[n](r), (15)

i.e., given a non-degenerate ground-state density n(r) there exists one and only one
single-particle potential v[n| that leads to this density.



Since every wave function ® (not only the ground-state wave function !) is trivially
a functional of the external potential v(r)

& = O] (16)
and since v (by the above argument) is a functional of n
v=u[n], (17)

every quantum mechanical observable, i.e. every expectation value <<D|O\@) is a func-
tional of the ground-state density

Oln] = (®[v[n]]|O®[v[n]]) - (18)

This proves the first statement made in the introduction.

Consider now a specific system whose ground-state density ng(r) and ground-
state energy F, are to be calculated. The specific system is characterized by a given
external potential vy(r). For example, for an Hy molecule, vy is the Coulomb potential
of the two protons; for a graphite crystal, vy is the Coulomb potential of the periodic
lattice of carbon nuclei. As an important second statement, the HK theorem then
establishes the variational character of the energy functional

B, [n] = (U[n]|T + U + Vy|¥[n]) . (19)

Given a density n(r), the ground-state wave function ¥[n| and thus the value of the
functional F,,[n] are formally generated via the map B~!. By virtue of the Rayleigh-
Ritz principle E,,[n] has the property

E,ln] > E for n(r) #
E,ln] = E for n(r) =

no(r)
As a consequence, the Euler equation

M‘ir) [Buln] = s [ )] = 0 (21)

can be used to calculate the exact ground-state density ng(r). This proves the second
statement made in the introduction.
Writing
Buln] = Flnl + [dx n(x)un(x) (22)

one observes that the dependence of E, [n] on the potential vy(r) of the particular
system in question is rather simple. The non-trivial part of the functional F, [n], i.e.
the functional

Fln] = (¥[n]|T + U|¥[n]) = T[n] + Uln] (23)

is independent of vg. In other words, the functional F[n] is universal in the sense
that F[n] is the same functional for all Coulombic systems.
The three statements
(i) 1-1 correspondence between potentials and ground-state densities
(ii) the variational principle (21) and
(iii) the universality of the functional F[n]
comprise the HK theorem in its original form.
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One problem in the original formulation of HK is the fact that the functional E,,[n]
is defined (by construction) only for those functions n(r) that are ground-state densities
of some potential (such functions n(r) are called v-representable ). An extension of the
functional E,[n] to arbitrary functions n(r) is provided by the constrained-search
formulation of Levy and Lieb [11, 12].

The variational principle of HK allows us to determine the ground-state density of
a given many-electron system. Kohn and Sham [2] established a scheme which yields
the exact ground-state density via an intermediary orbital picture. The equations read
as follows

(-5 + 0l o) = st 29
nr) = 3 ;) (25)

where v,[n](r) is a local, density-dependent single-particle potential. It is local in the
sense of being a multiplicative operator in configuration space. The density dependence
is non-local in general. In terms of the universal exchange-correlation (xc) energy
E..[n] (to be defined below), vs[n] can be written as

(5Eu[n]
= 1)0 + 3 ,
|r - r’l on(r)
Equations (24) to (26) have to be solved in a self-consistent fashion.

To prove the Kohn-Sham (KS) theorem (24) - (26) we first consider a system of
non-interacting electrons with density ns(r), characterized by the Hamiltonian

= 5 ferit (-5 o) o) @7

o=1l

(26)

The HK theorem (applied to the case U = 0) guarantees the 1-1 correspondence
between the densities ns(r) and the potentials vs(r). While the functional F[n] (eq.
(23)) is universal with respect to the external potential vy, it evidently depends on
the particle-particle interaction U. For the particular case U = 0, F[n| reduces to
the kinetic-energy functional Ts[n] of non-interacting particles and the total-energy
functional can be written as

Exe o] = Tyfn] + [ dn' n(x')o,(x') (28)
The HK variational principle (21) then reads
0
0 = [ [rmon— 1nt /d3 ! ]
on(r) | — [T

0Ts[n]

= Ga(n) T )

Eq. (29) provides an exact way of calculating the ground-state density n,. Alter-
natively, we can of course calculate the exact ground-state density by solving the
Schrodinger equation

(=5 #0300 = 0500 (30)

ns(r) = D o). (31)

lowestN

5



The two ways of calculating ng, either from (29) or from (30), (31), are completely
equivalent.

Now we return to the problem of N interacting electrons moving in the potential
v(r). The HK energy functional then reads

Ey[n] = T[n] + Uln] + / d®r n(r)o(r) . (32)

By addition and subtraction we can write

E,[n| = Ti[n]
+ /d3rn /d3 /d3 '%JFE [n] (33)
where the xc-energy functional is defined as
Ey[n] = T[n] — Tyn] + Uln] — / d®r / d*r % (34)

As before, Ti[n] is the kinetic-energy functional of non-interacting particles. Applica-
tion of the HK variational principle (21) now yields

N IR

Eq. (35) is formally identical with the Euler equation (29) of non-interacting particles
moving in the effective single-particle potential

vs(r) = vo(r | r’ + vge[n](r) (36)
with SE
vaeln](x) = 5;{},’)’” | (37)

As (29) and (30), (31) were completely equivalent methods of calculating the density,
we can, instead of using eq. (35), calculate the exact ground-state density via the
Schrodinger equation

(—%2 + v, [n] (r)) 0;j(r) = €;p;(r) (38)
n(r)= > [e;r)?. (39)

lowestN
These are the Kohn-Sham equations. The proof shows that the KS scheme is merely
a tricky way of rewriting the HK variational principle.
Having found a self-consistent solution of the KS equations, the kinetic energy
Ti[n] can be calculated from

i = X [erso) (-5 ) e
= 3 [d'rgi) (e — v ln)(x)) ()
= Y- [drnufnlr) (40)



Insertion in eq. (33) leads to the following exact representation of the ground-state
energy:

N 1 !
Egs — 25] o 5 /d3r /d3rln(r)n(r)
j=1

r— 1|
- / e (r)vgen](r) + Eyeln] . (41)

By virtue of eq. (40) the non-interacting kinetic energy functional Ti[n| is treated
exactly within the KS scheme; only the xc part E,.[n] of the total functional

!
Fln] = Ty[n] + Eyeln] + ~ / d®r / g ) (42)

2 lr — 1|
needs to be approximated. Direct use of the HK variational principle (21), on the other
hand, requires approximations for the complete functional F'[n] which, in practice, are
much harder to find than approximations for the xc part alone. Therefore it is always
preferable to use the KS scheme for practical calculations although, on the exact level,

the HK variational principle and the KS scheme are rigorously equivalent.

One has to emphasize that the ground-state Slater determinant constructed from
the KS orbitals ¢; must not be interpreted as an approximation for the true many-
particle ground state. Only the densities calculated via the KS scheme and the total
energies obtained from (41) are identical with the exact ground-state densities and
energies.

At first sight, it appears rather surprising, that exchange, being an intrinsically
non-local phenomenon, can be treated exactly with a local potential. As a matter of
fact, one can prove HK- and KS-type theorems for the Hartree-Fock (HF) limit itself
[13] . As a consequence of these theorems, the HF density and the total HF ground-
state energy can be reproduced exactly with an “x-only KS” scheme
2 !

(-5 o+ [T s fl0) o) = e @)

n(r) = 3 le;()*. (44)

lowestN

Like in ordinary density functional theory, the exact potential v;_ g, (r) is not known.
However, a very good approximation to it can be constructed, using the so-called op-
timized potential method (OPM) first introduced by Talman and Shadwick [14]. This
method determines the “variationally best” local exchange-only potential, denoted by

vf_’i%y(r); “best” in the sense that the orbitals resulting from (43) minimize the usual
HF energy functional Egp[py, ..., @y]. This leads to an integral equation for v%) (r)

which has to be solved self-consistently with eq.(43). The single-particle orbitals ob-
tained in this way are practically identical with the corresponding HF orbitals. Total
atomic OPM ground-state energies are within 0.004 % of HF ground-state energies and
the agreement of total exchange energies is better than 0.04 %. For a detailed analysis
the reader is referred to [15]. This shows that the HF exchange energy is well repro-
duced with a local exchange potential. One has to emphasize, however, that the OPM
is mainly of academic, not of practical interest because the numerical solution of the
OPM equations is more involved than the solution of the HF equations. A simplified
OPM scheme, however, has been proposed by Krieger and co-workers [16, 17].
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We finally mention, that the traditional HK and KS theorems are easily extended
to a wide variety of cases of physical interest, e.g. to spin-polarized systems [18, 19],
multi-component systems [20, 21], thermal ensembles [22] and relativistic systems [19,
23, 24, 25].

Until now we have proven some rigorous but rather formal existence theorems.
It might appear that density functional theory is a rather esoteric theory with few
applications. This is by no means the case; in solid-state physics, at least 95 % of
all band structure calculations are done with the KS scheme described above. In
order to actually apply the KS formalism to real systems one has to find adequate
approximations for the xc-energy functional.

2.2 Approximations for the Exchange-Correlation Functional

The most widely used and for many purposes surprisingly accurate approximation is
the local density approximation (LDA)

BEPAI] = [drele™ (n(x)) (45)

xc

which leads to

SELDA[n]  delom(n)

LDA zc xc

= = 46
Ve [P](r) on(r) dn | _ o (46)
elom(p) is the xc energy per unit volume of the homogeneous electron gas which is

well known from Quantum Monte Carlo calculations and from many-body perturbation
theory. The analogous approximation for spin-polarized systems is the local spin
density approximation (LSD)

BESPlnymy) = [drehe™ (ny(x), m, (x)) (47)
where
ne(r)= Y l|pi(r)? , o=t . (48)
occupied

In practical calculations one uses parametrizations for ™. Currently the best para-

metrizations available are the one by Vosko, Wilk and Nusair [26] and the one by
Perdew and Zunger [27].

By its very construction, one might expect the LDA to give good results only for
weakly inhomogeneous systems, i.e. for systems whose density varies very slowly in
space. However, contrary to this expectation, the LDA performs quite well even for
strongly inhomogeneous systems such as atoms, molecules and solids. Total atomic and
molecular ground-state energies typically lie within 1.5 % of the experimental value.
Molecular equilibrium distances are usually reproduced within 3 % of the experimental
data. The Fermi surface of metals is reproduced within a few percent, even for strongly
correlated systems such as the heavy-fermion metals. Lattice constants are typically
within 3 % of experimental data.

Other quantities such as the band gaps of insulators and semiconductors are not
well reproduced. LDA band gaps are often 40 % off the experimental value. The
reason for this failure is a complicated one: While, on one hand, the band gap is an
excitation energy (and therefore beyond the realm of ordinary ground-state density



functional theory), it may on the other hand be expressed as the difference between
the ionization potential I and the electron affinity A:

Egpp=1—-—A=E;(N+1)—2E4,(N)+ Eg (N —1). (49)

Here E,(N) is the ground-state energy of the insulating N-particle system, and
Egs(N £ 1) is the ground-state energy of the same system (i.e. the same vg(r)) with
one electron more or less, respectively. Thus the band gap can be represented in terms
of ground-state energies corresponding to systems with different particle numbers. A
careful analysis shows [28] - [36] that the exact xc potential vE%%[n](r) has discon-
tinuities as a function of the particle number N. In the calculation of the band gap
from (49), these discontinuities need to be taken into account. One obtains the exact
formula (see, e.g. [7], chapter 6.3)

BEgop =€c —ev + 61_1)% (Vee|N4s — Veeln—5) (50)

where ey is the highest KS orbital energy of the valence band while e¢ is the lowest
KS energy of the conduction band. Since vEP4 is a continous function of N, the last
term of (50) vanishes within the LDA and the gap is poorly reproduced.

Besides that, the LDA (as well as the LSD) is deficient in two respects. First, the
LDA does not contain any gradients of the density. A systematic way of constructing
functionals containing density gradients is the so-called gradient expansion [1]. The
first term of this expansion for the exchange-only part was calculated by Sham [37]
and later corrected by Kleinman and collaborators [38, 39, 40], Chevary and Vosko
[41] and Engel and Vosko [42]. The correct result is

5

1 3

—_ . 1
n] = /d 4/3 » O T 016m(3n2)1/ (51)

The calculation of the first term of the gradient expansion of the correlation energy
functional has turned out to be an extremely difficult task. Many authors contributed
to its calculation: Ma and Brueckner [43], Geldart and Rasolt [44] - [47], Langreth and
Perdew [48] - [52], Langreth and Mehl [53, 54], and Hu and Langreth [55, 56]. The
analytic structure of this term is as follows:

B = [ dn () W (52

By now the function f(n) is well known for the densities relevant in atoms, molecules
and solids. For a comparison of different results for f(n), the reader is referred to
[7], chapter 7.6. The currently best functionals involving density gradients are the
so-called generalized gradient approximations [57] - [63], [4], [15], which can be viewed
as heuristic resummations of the gradient expansion. In all systems tested until now,
the generalized gradient approximations performed better than the LSD [4, 62].

The second deficiency of the local approximations is the self-interaction error, aris-
ing from the fact that the self-Coulomb energy contained in

n] = %/d?’r /d?’r'% (53)

is not cancelled exactly by ELDA As a consequence vEP4(r) falls off exponentially for

large r while v&%e falls off as —= for neutral atoms and molecules. A self-interaction
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corrected (SIC) functional for the xc energy was proposed by Perdew and Zunger
(64, 27]:

Byl ny] = EgPlng,ny]
= 2 (Balna] + BiZPlnig, 0])
— 2 (Balny] + EZP[0,ny))) (54)
with
Nio (r) = | i (r) [ . (55)

This approximation yields definite improvement over the LLSD, even for the band gap
of insulators. A drawback of this functional is the fact that the single-particle potential
appearing in the SIC-KS equations is a different one for each orbital.

To summarize, the existence theorems of HK and KS are fairly easy to prove.
The harder part of density functional theory is the construction of appropriate ap-
proximations for the xc functional. Even for the simplest possible approximation, the
LDA, a lot of theoretical work on the homogeneous electron gas was involved: One
needs the high-density limit first treated by Gell-Mann and Brueckner [65], one needs
the low-density limit known as the Wigner crystal [66, 67] and, for the intermediate
density regime, quantum Monte Carlo computations [68] and/or many-body pertur-
bation theory beyond RPA [69, 70] is required. Finally, all these data have to be
put together in a reliable parametrization [26, 27]. The construction of functionals
containing gradients of the density is even harder as can be seen from the long list
of papers quoted above. However, once a reliable approximation for E,.[n] has been
found, the numerical implementation of the KS scheme is rather simple, at least in
comparison with other methods such as CI or diagrammatic many-body techniques.
The crucial advantage of density functional theory is its numerical simplicity, allowing
the treatment of big systems for which the traditional methods of quantum chemistry
are prohibitive.

3 DENSITY FUNCTIONAL THEORY FOR EX-
CITED STATES

As a consequence of the HK theorem, every quantum mechanical observable, in
particular also excitation energies, can be calculated from the ground state density.
Therefore, from a purist’s point of view, the density functional formalism as described
in the last section already provides a formal access to the calculation of excitation
energies. This approach, however, cannot be used in practice because no explicit
approximations are known for the functionals Fcieq[n] corresponding to excited-
state energies. In particular, the KS single-particle energies cannot be interpreted
as excited-state energies, with one exception: The highest occupied KS eigenvalue
Enighest 15 identical with the exact ionization potential I. This statement follows from
the asymptotic behaviour of the KS density

ns(r)= 3 loi@)" = [@nighest(r)]” — exp(=2\/=2 enighestr)  (56)

lowestN
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and from the fact that the exact density (resulting from the many-particle Schrodinger
equation) behaves as

n(r) == exp(—2v -2 1Ir) . (57)

Since, by virtue of the KS theorem, n, and n are identical one finds by comparison of
(56) with (57)

Ehighest = I. (58)

Apart from this case, no prescription for calculating excitation energies from the
ground-state density is available.

The traditional HK theorem only offers the indirect way of calculating the excita-
tion energy from the ground-state density. An attractive alternative would be a HK
variational principle for the excited-state energy itself, involving the density of the
excited state.

Since the HK variational principle is essentially a reformulation of the Rayleigh-Ritz
principle, one first needs to look for a Rayleigh-Ritz principle for excited states. Such
a variational principle is well known; it requires, however, orthogonality of the trial
functions to the exact lower eigenstates to ensure an upper bound for the excited-state
energy. A density functional theory on the basis of this variational principle has been
formulated [71, 72, 73]. Since the exact lower eigenstates are not known, however,
the use of this formalism is restricted, in practice, to the lowest eigenstate of each
symmetry class (where orthogonality to the lower states is ensured by symmetry). A
general density-functional formalism, applicable to an arbitrary single excited state is
not available.

In this section we shall develop a density-functional formalism for ensembles that
allows us to calculate arbitrary excitation energies in principle exactly. The formalism
can be viewed as a generalization of Slater’s transition state method [74]. In section
3.1, we therefore briefly review the Slater transition state. In the following section,
3.2, a Rayleigh-Ritz principle for ensembles is discussed. This variational principle
provides the basis for the excited-state density functional theory to be developed in
section 3.3 .

3.1 Slater’s Transition State

In the Hartree-Fock approach the wave function of an interacting N-electron system
is approximated by a Slater determinant. Variation of the total energy with respect
to the spin orbitals leads to the equation:

ng(r, ')

<__ + /U + ‘ d3 ’) (p]a(r) W(pja_(rl) dsrl
= €jopjo(r) , o=N (59)
with the density matrix
Z%a r)el, ),  N=N+N, (60)
and the density
n(r) = ny(r,r) + ny(r,r). (61)

Any set of orbitals {¢;,} that satisfies these equations makes the total energy station-
ary.
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In an ordinary ground-state HF calculation, egs. (59), (60), (61) are solved self-
consistently in such a way that, in each iterative step, the N orbitals with lowest
energies ¢, are inserted in (60). One is, however, not restricted to this choice of
orbitals. If, in each iterative step, one choses e.g. the N — 1 lowest orbitals plus the
N + 1st state or, more generally,

ija‘P]o ‘P]a() (62)

with a set of given occupation numbers f;, = 0 or 1, and if the procedure converges
(for this given set of occupation numbers) one has obtained another self-consistent
solution of egs. (59), (60), (61) in addition to the ground-state solution. Since the
total energy is stationary at this second Slater determinant as well, one has found with
this procedure a determinantal approximation for an excited state of the N-particle
system.

To simplify the notation, orbitals ¢, and orbital energies ¢, as well as the cor-
responding occupation numbers f, will from now on be characterized by one single
positive integer ¢ which counts both the orbital quantum numbers and the spin index.
The numbering is chosen in such a way, that

€1§52§63§... (63)

With this notation, the ground-state HF solution is obtained from egs. (59), (61), (62)
with the vector of occupation numbers

fas=(1,1,...,1,0,...). (64)
N

By contrast, a “particle-hole excitation from orbital ¢ to p” is obtained with the
occupation numbers

foe=(1,1,...,1,0,1,...,1,0,...,0,1,0,...).. (65)

~ /

For any fixed vector f of occupation numbers, the self-consistent HF energy is given

f§ '
3 3,fnT (r,r' nT (r',r) R 3/7% (r,r")n’(r',r)
/d /d r — 1’| /d /d \r—r’| (66)

where <p§ and nf) are the self-consistent solutions of (59), (61), (62) with the given

vector f. The excitation energy corresponding to a transition from ®,, to &, with

1 1
®,, = ﬁdet(gol, ce o), Bpg = ﬁdet(wl, e Pl Patls - PN, Pp)  (67)
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is then given by
AEp, = Eur(fpg) — Enr(fgs) - (68)

This method of calculating excitation energies has two major disadvantages. First,
the ground-state and the excited-state HF wave functions are generally not orthogonal
since they are eigenfunctions of different Hamiltonians. Second, two self-consistent
calculations are required and, what is even worse, the excitation energy (68) is given
as a difference of two large numbers.

Since the wave functions are not very useful anyway (because of the non-ortho-
gonality) Slater [74] introduced a clever way of calculating the excitation energy (only
the energy, not the wave function) by one self-consistent calculation. This method
involves the so-called transition state. The basic idea of this method is quite simple.
We introduce transition-state occupation numbers fT by

q p
fT:(},1,...,1,%,1,...,1,0,...,0,%,0,...). (69)

This suggests that we consider the occupation numbers as arbitrary continous variables

—

0 < f; < 1. The self-consistent HF energy Fxr(f) then becomes a function of these
continous variables. Setting

q p
6f=(0,...,0,3,0,...,0,—%,0,...) (70)
we can expand the ground-state energy as
B} ; L OE 2~ O 2
Enr(fos) = Enr(fr +6f) = Bur(fr) + —57—| fi+—55—| 0fp+... (T1)
afq fr 8fp fr
and similarly the excited-state energy as
> - = > oF OF
Enr(fo) = Enr(fr = 6f) = Bur(fr) = 57| 8fs= 55| 0fp+-  (72)
afq fr afp fr

Subtraction of the two equations (71) and (72) leads to a cancellation of the second-
order terms in ¢ f and one obtains

ABy, = Buplfy) = Bur(F) = 57|~ Z5HE| +06f).

fr

Neglecting the very small terms of order F’ and using the identity

aEHF(f17f2a ce )
0f;

which was first derived by Slater [74] and later extended within the framework of
density functional theory by Janak [75], we arrive at

AE,, = &,(fr) — £4(fr) (75)

—

_=¢;(f) (74)
f

where ¢,(fr) and e,(f7) are the self-consistent HF single-particle energies obtained
with the transition state occupation fr.
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The obvious advantage of this method is that it requires only one self-consistent
solution of the HF egs. (59), (61), (62) for the calculation of an excitation energy.
Using (62) and (69) the transition-state density is

N
1 1
nr(r) = 3 [0; () + Slep(r)]” + S lea(r) (76)
T2
One has to emphasize that ny cannot be derived from a single Slater determinant.
One rather needs an ensemble corresponding to the density-matrix

A 1 1
D = §|‘1)98><‘1)gs| + §|¢pq><¢pq| . (77)

The ensemble density then reproduces the transition-state density:

DA} = (@) ) + 3 (1) Dy

N N
= S Ll + 5 L@+ gle®f =@ (19
Ji#q
In the same way as the traditional density functional formalism for the ground state
goes beyond HF by the inclusion of correlation effects, the density functional theory
for excited states to be developed below goes beyond the HF calculation of excitation
energies described in the present section. The fact that the Slater transition “state”
represents an ensemble (and not a pure state) was the motivation to formulate a
density functional theory for ensembles. The basis of this formalism is a Rayleigh-Ritz
principle for ensembles.

3.2 Rayleigh-Ritz Variational Principle for Ensembles

To keep things as simple as possible, we consider only a two-state ensemble described
by the density matrix
D = M\ |1){1| + A2|2)(2| (79)

where |1), |2) are the exact ground state and the exact first excited state, respectively,
of some Hamiltonian H:
H|1) = Eq|1) (80)

H|2) = E,|2) . (81)

For simplicity we further assume these eigenstates to be non-degenerate. This restric-
tion as well as the limitation to a two-state ensemble is by no means essential. The
general case of an M-state ensemble including degeneracies is treated in [76].

The ensemble energy associated with D is the weighted sum of the ground-state
energy and the first excited-state energy:

S == tr{f)I:I} == )\1E1 + )\2E2 . (82)
Likewise, the ensemble density is

n(r) = tr{Di(r)} = Any (r) + Aona(r) (83)

14



where n;(r) and ns(r) are the densities of the ground state and the first excited state,
respectively.

With these preliminaries the variational statement can be formulated as follows: If
the weights A1, Ay satisfy the inequality

M > >0 (84)

(i.e. if the weight of the ground state is greater than or equal to the weight of the first
excited state) then the following inequality is satisfied for any pair of orthonormal,
but otherwise arbitrary trial functions ®; and ®,:

A (@1 |H|By) + Mo (B | H|Dy) > ME; + MEy =E . (85)

For A1 # Ao the equality sign holds if and only if the trial functions ®;, ®, are equal
to the exact ground state and the exact first excited state, respectively:

[®1) = (1), [®2) = [2). (86)

If the weights happen to be equal then the equality sign holds if and only if the trial
functions lie in the subspace spanned by the exact eigenfunctions

[@1), @) € (([1),[2) )) - (87)
The proof of this theorem [76] follows the proof of the traditional Rayleigh-Ritz prin-

ciple by expansion of the trial functions in the complete set of eigenfunctions of H.

3.3 Density Functional Theory for Ensembles

We now consider a many-particle system characterized by the Hamiltonian (1) with
fixed particle number N. Requiring the ensemble density (83) to be normalized to N,

N = /d3rn(r) =)\ /d3rn1 (r) + Ao /dsrng(r) =MN+ AN, (88)

we obtain
)\1 = 1 - )\2 , (89)

i.e. the ensemble is characterized by one parameter A = A5 only.
The density matrix, ensemble energy and ensemble density then read

D(A) = (1= )[1){A[+Al2)(2 (90)

E(A) = (1= MN)E; + AE; (91)

nM(r) = (1 — A)n(r) + Mny(r) (92)

where e 1 )
- T2

must be satisfied to ensure the condition (84) for the validity of the variational prin-

ciple. Note that for A = 0 the usual ground-state density functional formalism is

recovered, while the case A = % leads to the equi-ensemble density functional formal-

ism first developed by Theophilou [77].
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By virtue of eq. (91) we have two options to calculate the excitation energy:

By~ By = (€0~ £0)) (94)
and p
By~ By = -E()). (95)

To establish a HK theorem for ensembles, we compare two ensembles densities n(r)
and n'(r) which, for a fixed value of A, are generated by the eigenfunctions {|1), |2)}
and {|1'),|2")} of two potentials v(r) and v'(r), respectively. Following the standard
HK argument and using the variational principle stated in the last section, one can
easily prove [78] a HK theorem for the ensemble density:

v(r) # v'(r) + const = n(r) # n'(r) . (96)

Thus, for given A, the ensemble density uniquely determines the external potential,
its eigenstates and therefore the density matrix, D = D[n] As a consequence, any
ensemble expectation value is a functional of the ensemble density.

Now consider a particular system with external potential vy(r), ensemble density
no(r) and ensemble energy &. Then the total energy functional

EV[n] = FV[n] + / &rn(r)uo(r) (97)
with
FOn] = tr{Dn)(T + U)} (98)
has the variational properties
ETSO’\) [n] > & if n(r) # no(r)
ENn] = & if n(r) = ng(r) (99)

Thus the exact ensemble energy and density can be calculated by minimizing (97).

Similar to the ground-state formalism, the HK principle can be exploited to derive
a KS scheme for ensembles stating that the exact ensemble density of the interacting
system can be calculated as the ensemble density obtained from the ground state Slater
determinant |1,) and the first excited state Slater determinant |2,) of a non-interacting
KS system. The resulting KS equations

(__+U )+ [ o o wu)wmzqwa) (100)

n(r) = (1—/\)< o[ (r)[1s) + A(24[72(r)[25)

= Z |04 (r) = Vlen @) + Aoy (r)* (101)

have to be solved self-consistently for each fixed value of A. As usual, the xc-potential
is given by
(\) [n]

Wil = = (102)

16



where the xc-energy functional is formally defined as

EWVn] = FO@m] — TWn] - % / dr / d%’M . (103)

r—r|
In terms of the KS eigenvalues ¢; the total ensemble energy is given by

N-1

EN) = Ze]()\)Jr(l—)\) NA) F+ Aenii(A) + EQD V] —

- /d3 /43' r_r,| /d3rn nM(x).  (104)

For A — 0 this result reduces to the ground-state-energy expression (41). From eq.
(95) one finds for the excitation energy

E,— F d —E&(A A A 78E£2)["] 105
2= Br= €N =evu(V) —ex(N + —54—| (105)
o)
Here 8E37%\["]|n:nm denotes the derivative with respect to A of the functional only

(i.e. the derivative of n" is not to be taken). Since the KS eigenvalues are smaller
than the ensemble energies, the excitation energy Fy — E; can be computed more
accurately from (105) than from (94).

Eq.(105) is the central result of the density functional theory for ensembles. It
provides a formally exact representation of the excitation energy E>— F; and, therefore,
can be viewed as an “exactification” of the transition-state formula (75). Eq.(105) is
valid for any value of X in the interval [0, 3]. In the limit A — 0, eq.(105) leads to a
new formula for the band gap in insulators

A

0E,,
Egap =€c — €y + }\1_I)I(l] I\ _— (106)

which can be used as an alternative to eq.(50).

As in the ground-state case, practical calculations require explicit approximations
for the xc functional E(}[n]. For the equi-ensemble, Kohn [79] proposed an approxima-
tion by identifying the xc energy functional of an M-state ensemble with the (available)
LDA of a thermal ensemble with entropy S = kgln M. This approximation has been
successfully applied in a calculation of the excitation spectrum of the He atom [80].

4 DENSITY FUNCTIONAL THEORY FOR
TIME-DEPENDENT SYSTEMS

The first steps towards a time-dependent KS scheme were taken by Peuckert [81]
and by Zangwill and Soven [82]. These authors treated the linear density response
of rare-gas atoms to a time-dependent external potential as the response of non-
interacting electrons to an effective time-dependent potential. In analogy to station-
ary KS theory, this effective potential was assumed to contain an exchange-correlation
part, v,.(rt), in addition to the time-dependent external and Hartree terms:

v(rt) + / = r,| L N—— (107)
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Peuckert suggested an iterative scheme for the calculation of v,., while Zangwill and
Soven adopted the functional form of the static exchange-correlation potential in LDA,
ie.

Oege™ (n)

Vge(rt) = . (108)

on n=n(rt)

This approximation can be expected to be good only if the time-dependence of n(rt)
is sufficiently slow. In practice, however, it gave quite good results even for the case
of rather rapid time-dependence.

The approach of Zangwill and Soven is valid under the assumption that a
time-dependent KS theorem exists. Significant steps towards a rigorous foundation
of time-dependent density functional theory were taken by Deb and Ghosh [83] - [86]
and by Bartolotti [87] - [90] who formulated and explored HK and KS type theorems
for the time-dependent density. Each of these derivations, however, was restricted to
a rather narrow set of allowable time-dependent potentials (to potentials periodic in
time in the theorems of Deb and Ghosh, and to adiabatic processes in the work of
Bartolotti). A general formulation covering essentially all time-dependent potentials
of interest was given by Runge and Gross [91]. A detailed description of the time-
dependent density functional formalism will be presented in section 4.1. The central
result is a set of time-dependent KS equations which are structurally similar to the
time-dependent Hartree equations but include (in principle exactly) all many-body
correlations through a local time-dependent exchange-correlation potential.

To date, most applications of the formalism fall in the regime of linear response.
The linear-response limit of time-dependent density functional theory will be discussed
in section 4.2.

4.1 Basic Theorems

In this section we deal with many-electron systems moving in an explicitly time-
dependent potential

V(t) =X [dro, i), () . (109)

The total Hamiltonian is given by

A

Ht)y=T+U+V(t) (110)

where T is the kinetic energy (2) of the electrons and U is the mutual Coulomb
interaction (4). The number of electrons, N, is fixed.

Ordinary time-independent density functional theory is based on the existence
of an exact mapping between densities and external potentials. In the ground-state
formalism, the existence proof relies on the Rayleigh-Ritz minimum principle for the
energy. Straightforward extension to the time-dependent domain is not possible since
a minimum principle is not available in this case. The existence proof for a 1-1
mapping between time-dependent potentials and time-dependent densities, first given
by Runge and Gross [91], is somewhat more involved and will briefly be indicated
below. Starting from the time-dependent Schrodinger equation

9 -
i ®() = H(H)3(1) (111)
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we shall investigate the densities n(rt) of electronic systems evolving from a fixed
initial (many-particle) state

under the influence of different external potentials v(rt). For each fixed initial state
®,, formal solution of the Schrodinger equation (111) defines a map

A v(rt) — 3(1) (113)

between the external potentials and the corresponding time-dependent many-particle
wave functions and a second map

B:®(t) — n(rt) = (®(t)|n(r)|D(¢)) (114)

between the many-particle wave functions and the time-dependent densities. Once
again, the aim is to prove invertibility of the complete map

G :v(rt) — n(rt) . (115)

In the following we shall demonstrate that if the potentials v(rt) are required to be
expandable into a Taylor series with respect to the time coordinate around the initial
time %o, then the map G is indeed invertible up to within an additive, merely time-
dependent function in the potential. In other words, two densities n(rt) and n'(rt)
evolving from a common initial state ®; under the influence of the potentials v(rt) and
v'(rt) are always different provided that the potentials differ by more than a purely
time-dependent function

v(rt) # ' (vt) + c(t) . (116)

Using the condition that the potentials v and v’ can be expanded into a Taylor series,
> 1

v(rt) = ,;) Hvk(r) (t —to)* (117)
201

v'(rt) = kz_:o Ev;c(r)(t —to)F, (118)

eq. (116) is equivalent to the statement that for the expansion coefficients vy (r) and
vy, (r) there exists a smallest integer k& > 0 such that

0u(r) = (1) = 2 (0(rt) = v'(11)) |y, # comst (119)

To demonstrate the 1-1 correspondence we prove in a first step that the current den-
sities

i(rt) = (@(t)[3(x)|®(1)) (120)
and
j(xt) = (@' (1)]j(r)[@'(t)) (121)
are different for different potentials v and v'. Here,
=—= Z (85 (0) (Vo (r)) — (V3 (1))4ho(r)) (122)

is the usual paramagnetic current density operator. In a second step we shall show
that the densities n and n’ are different.
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Using the quantum mechanical equation of motion for an operator O(t)

%@(t)lé(t)\q’(m = (‘P(t)\% —i[O(t), H(1)]|®(t)) (123)
we obtain for the current densities
95trt) = (1) 50) (1)) = ~i(@(0)[ir). A (1) 2(1) (124)
o3rt) = £ @00 (1) = @ OIFE), I 0).  (12)
Since ® and ®’ evolve from the same initial state
D(to) = @'(to) = o (126)
we can write
% ((rt) = §' (1) |y = —i(Dol[i(x), H(to) — H'(t0)]|Bo)
= no(r)V (v(rty) — v'(rty)) (127)
with the initial density
no(r) = (Po|A(r)|Do) - (128)

If the condition (119) is satisfied for £ = 0 the right hand side of (127) can not vanish
identically and j and j’ will become different infinitesimally later than to. If (119) holds
for some finite £ > 0 we use eq. (123) (k + 1) times and obtain after some algebra

(2)" ) 30l = ol V) #0 (120)

with B}
w(r) = (%) (o(xt) — o' (1)), - (130)

Once again, we conclude from (119) that
j(rt) # ' (xt) (131)

provided that (116) holds for v and v'. To prove the corresponding statement for the
densities we use the continuity equation

% (n(rt) = n'(rt)) = =V - (j(rt) - j'(xt)) (132)
and calculate the (k + 1)st time-derivative at ¢ = {o:
<%> (n(rt) — n'(rt)) = =V - (no(r)Vwy(r)) . (133)

In order to prove that the densities n(rt) and n'(rt) will become different infinitesimally
later than t;, we have to demonstrate that the right hand side of eq. (133) cannot
vanish identically. This is done by reductio ad absurdum: Assume

V - (no(r)Vuwg(r)) =0 (134)
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and evaluate the integral

/d3rn0(r)(Vwk(r))2 =
S / Erwy(r)V - (no(r) Vg (r)) + f dS (no (r)wy (r) Vo (r)) (135

where we have used Green’s theorem. The first integral on the right hand side of
(135) vanishes by assumption. For physically reasonable potentials (i.e. potentials
arising from normalizable external charge densities), the surface integral vanishes as
well. Since the integrand on the left hand side is non-negative one concludes that

no(r)(Vw(r))2 =0 (136)

in contradiction to wy(r) # const. This completes the proof of the theorem.
Having established the existence of the inverse map

Gt in(rt) — v(rt) +c(t) , (137)

subsequent application of the map A tells us that the many-particle wave function is a
functional of the time-dependent density, unique up to within a purely time-dependent
phase «(t)

d(t) = e‘ia(t)\Il[n](t) . (138)

The ambiguity in the phase, a(t), and the ambiguity in the potential, ¢(¢) are related
via

a(t) = Ne(t) (139)

which is readily verified by insertion in the Schrodinger equation. Therefore the ex-
pectation value of any quantum mechanical operator () is a unique functional of the
density

QInl(t) = (¥[n](6)| Q) [¥[n](2)) - (140)
The ambiguity in the phase cancels out.

Furthermore, as a consequence of (138) and (139), the quantum mechanical action
integral

Alnl = [ a0 i — @) W1l 0) (141

is a unique functional of the density, too. Since the quantum mechanical action (as
a functional of the wave function) has a stationary point at the exact solution of the
Schrédinger equation (111) with the initial condition (112), and since the wave func-
tions are in 1-1 correspondence with the densities, the exact time-dependent density
must be a stationary point of the density functional (141), i.e. we can compute the
exact density by solving the Euler equation

dA[n]
on(rt)

=0. (142)

This variational principle for the time-dependent density allows us to establish a time-
dependent KS scheme which reads as follows:

The exact time-dependent density of a system of interacting particles can be calculated
as the density

n(rt) =3 ¢j(rt)p;(rt) (143)
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of non-interacting particles

.0 %
i—j(rt) = | —— + vs[n](rt) | ¢;(rt) (144)
ot 2
moving in the effective, local single-particle potential
/
t
vln)(xt) = o(et) + [ |:(j r)l| + vyl (xt) - (145)

The proof [91, 5] is analogous to the ground-state case and will not be repeated here.

Once again, the great advantage of the time-dependent KS scheme lies in its com-
putational simplicity compared to other methods such as time-dependent configuration
interaction. The time-dependent KS equations have been successfully applied to the
semi-classical description of atomic scattering processes [92, 93, 94].

4.2 Frequency-dependent Linear Response

In this section we shall consider the density response of an N-electron system being
initially, i.e. at times ¢t < ¢y, in its ground state. In this case, the initial density ng(r)
can be calculated from the ordinary ground-state KS equations

(‘V; ot [P vwc[nour)) o) (1) =50 (r)  (146)

nr)= 3 ). (147)

lowestN

At t =ty a perturbation is switched on so that the total potential is given by
v(rt) = vo(r) + vy (rt) (148)

vi(rt) =0 fort <t. (149)

The objective is to calculate the linear density response ni(rt) to the perturbation
v1(rt). Conventionally, n; is computed from the full linear response function x as

na(rt) = / & [t T dt (et v o (£F) | (150)
0

Since the time-dependent KS equations (143) - (145) provide a formally exact way of
calculating the time-dependent density, we can compute the exact density response
n1(rt) as the response of the non-interacting KS system

ny(rt) = /d3r' /too dt' xges(rt, 't oV (et (151)

where vgl) is the effective time-dependent potential evaluated to first order in the
perturbing potential, i.e.

vV (rt) = vy (rt) + /d3r' ‘7;1 (x tl)| + /d3r' /dt'fmc(rt, r'tny (r't) . (152)

—T
Here the exchange-correlation kernel f,. is given by the functional derivative of v,

dvze[n](rt)

1
on(r't’) ‘n—no (153)

fue(rt, 2't) =
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evaluated at the initial ground-state density nq.

While the full response function x is very hard to calculate, the non-interacting
KS response function can be computed fairly easily. In terms of the static initial KS
orbitals gp(o) (eq. (146)), the Fourier transform of xgg(rt,r't’) with respect to (¢ —t')
can be expressed as

(0) (1 \%, ,(0) (0) (1Y (O (pr
N %k (@) () () gy (1)
XKS(r;raw)—éllEé}_ij(fk f]) w—(é‘]—&‘k)—{—zé

(154)

where f,f; are the usual Fermi occupation factors.

Egs. (151) and (152) constitute the KS equations for the linear density response.
They provide a formally exact self-consistent scheme to calculate the density response
ny(rt).

For practical applications one has to find approximations for the exchange-correla-
tion kernel f,.. To this end, it is useful to express f,. in terms of the full response
function x. An exact representation of f,. is readily obtained by solving eq.(150) for
vy and inserting the result in eq.(152). Eq.(151) then yields

5(t—t)

v — /|

feelno] (xt, 2't") = x i [no] (xt, o't") — x [ng](xt, x't") — (155)
where x5 and x~! stand for the kernels of the corresponding inverse integral opera-
tors.

Once again, the most straightforward approximation for f,. is the LDA where the
functional f,.[n] is replaced by the corresponding function f"™(ny) of the homoge-
neous electron gas, evaluated at the initial density ny(r) of the actual inhomogeneous
system:

fe Aol (xt, 't = frd™ (no, v — ¥, (¢ — ¢)) . (156)
In the homogeneous case, Fourier transformation with respect to (r —r') and (¢ — t')
makes life easier. Eq.(155) then reads

hom

( o) = 1 1 Ar
n aQa - - Ty
ze N0 X¥m(ng, q,w)  x"m(ng,q,w) G2

hom

(157)

In this case, the response function x%’¢" of a non-interacting homogeneous system is
of course well-known: xm is identical Wlth the Lindhard function.

Eq.(157) shows that the response function x"°™ of the homogeneous electron gas
uniquely determines the xc kernel ff°" and thus fZP4. Unfortunately, x"°™ is not
known exactly. However, some exact features of x"*™ are known. From these, the

following exact properties of f°™ can be deduced:

1. As a consequence of the compressibility sum rule one finds [95]
d2
lim f3™ (q,w = 0) = ——(eze™ (n)) = fo(n) (158)

q—0 dn?
where, as before, €™ (n) denotes the exchange-correlation energy per volume of
the homogeneous electron gas.

2. The third-frequency-moment sum rule leads to [96]

hm hom(

q,w—oo)

_ 4y d (epam™(n) 1/3d eram(n)\ _
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. According to the best estimates [97, 26] of 9™, the following relation holds for
all densities

Jo(n) < foo(n) <0. (160)

. In the static limit (w = 0), the short-wavelength behavior is given by [98]

lim fr"(g,w =0) = —p =9 (161)

q—00
where g(r) denotes the pair correlation function.

. For frequencies w # 0, the short-wavelength behavior is [99]

2 47r
: hom _ —_
Jim £227 (.0 7 0) = =3 - (1~ g(0)). (162)
hom (g, w) is a complex-valued function satisfying the symmetry relations
Refy™ (g, w) = Refy™ (¢, ~w) (163)
Imfhom (g, w) = —Imfrom(q, —w) . (164)

hom (g, w) is an analytic function of w in the upper half of the complex w-plane

and approaches a real function f,(q) for w — oo [100]. Therefore, the function
hom (g, w) — fao(q) satisfies standard Kramers-Kronig relations:

dw' Im ™ (g, ')

Re fhom =P [ 165
eflem (g, ) - o (165)

d R hom n __ -
Imfhom _P/ w € ) f (q) ) (166)

w —w
. The imaginary part of f°™ exhibits the high-frequency behavior
om c

Jim I'm hom (g, w) = ~ (167)

for any ¢ < oo [101]. A second-order perturbation expansion [101, 102] of the
irreducible polarization propagator leads to the high-density limit
23w

. In the same limit, the real part of f™ behaves like [103]

hom _ L
wh_)m Re ( ,(U) - foo<Q) + w3/2 .

(169)
Since ¢ > 0, the infinite-frequency value f,, is approached from above. This

implies, in view of the relation (160), that Ref™(q = 0,w) cannot grow mono-
tonically from fy to feo.
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The above features of f™ are valid for a three-dimensional electron gas. Analogous

results have been obtained for the two-dimensional case [101, 104, 105].

The approximation (108) employed by Zangwill and Soven leads, by virtue of eq.
(153), to the following approximation for f.:

2 ,hom
ZS (et 0't") = 6(t — t')d(r — r,)de:ici;n) (170)
n n=no(r)
Comparison with (158) shows, that
ZS(pt,0't") = 6(t — t')d(r — ') 1 (¢ = 0,w = 0) (171)
n=no(r)

In other words, Zangwill and Soven employed the static (w = 0) response of the
homogeneous electron gas. Gross and Kohn [5, 103] went beyond this limit by explicitly
including the frequency dependence of f ™. Taking into account the exact high- and
low-frequency limits, Gross and Kohn proposed the following parametrization:

Inf2 0= 0.0) = oo (172
where
a(n) = —c(7/c)*?(fs(n) — fo(n))*? (173)
b(n) = (7/¢)**(fx(n) — fo(n))*? (174)
L~ LA/ (175)

4421
fo, fo and c are given by eqs. (158), (159), and (168), respectively. Using the
Kramers-Kronig relation (165), the real part can be expressed as

Re jgm(q = 0,w)

a /8 1 1+s 1—-s 1
= tor s 3br () -5 (5 )

l—s_(1+s 1 9 9
— S = . 1
5 H< : \/§>] s?=1+bw (176)

E and II are complete elliptic integrals of the second and third kind in the standard
notation of Byrd and Friedman [106].

Figs.1 and 2 show the real and imaginary part of f°™ as calculated from (172) and
(176). The functions are plotted for the two density values corresponding to r; = 2
and r; = 4. For the lower density value (r; = 4), a considerable frequency-dependence
is found. The dependence on w becomes less pronounced for higher densities. In the
extreme high-density limit, the difference between fy and f, tends to zero. One finds

the exact result

foo—for~r? forry — 0. (177)

At the same time, the depth of the minimum of Im fhom

ve decreases, again proportional
to 2.
S
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Fig.1. Real part of the parametrization for f2o"(q = 0, w)
(from [96])

Fig.2. Imaginary part of the parametrization for
2™ (q = 0,w) (from [96])

26



Fig.3. Total photoabsorption cross section of the Xe atom versus photon energy in the vicin-
ity of the 4d threshold (from [82]). Solid line: self-consistent time-dependent KS calculation;
dash-dot line: self-consistent time-dependent Hartree calculation (f,. = 0); dashed line:
independent particle result (Hartree and exchange-correlation kernels neglected); crosses:
experimental data from [121].

We finally mention that an extension of the parametrization (172) to nonvanishing
g was given by Dabrowski [107]. A similar interpolation for the exchange-correlation
kernel of the 2-dimensional electron gas has been derived by Holas and Singwi [101].

The time dependent KS scheme defined by egs. (151) and (152) has turned out
to be remarkably successful. It has been applied to the photo-response of atoms
[82, 108, 109] and molecules [110, 111], metallic [112] - [118] and semiconductor [119]
surfaces and, most recently, of bulk semiconductors [120]. As an example for the
quality of the results we show, in Fig.3, the photoabsorption cross section of xenon.

5 DENSITY FUNCTIONAL THEORY FOR
SUPERCONDUCTORS

The traditional description of conventional superconductors is given by the theory
of Bardeen, Cooper and Schrieffer (BCS) [122]. This theory assumes the presence of an
attractive electron-electron interaction induced by the lattice vibrations (phonons) of
a solid. The existence of such an effective attractive interaction was first demonstrated
by Frohlich [123]. This interaction leads to pairing, i.e. to the formation of the so-called
Cooper pairs [124]. The ansatz of an antisymmetrized product of pair wave functions
is the essence of the BCS model. Optimization of this ansatz via the Rayleigh-Ritz
principle leads to the famous BCS gap equation. It is easy to see that the BCS ansatz
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for the wave function of superconductors is the analogue of the Hartree wave function
for normal systems, i.e. exchange-correlation effects are neglected in the BCS model.

In section 5.1 we shall describe a density functional formalism for superconductors
which provides a complete and in principle exact description of the superconducting
state of matter. The formalism leads to a gap equation that includes, in addition
to the BCS terms, an exchange-correlation contribution. This term needs to be ap-
proximated. In section 5.2 we shall develop a many-body perturbation theory for
superconductors which, in section 5.3, will be used to calculate an approximation for
the xc-part of the total-energy functional. On the basis of this approximation, the xc
contribution to the gap equation will be deduced.

5.1 Formalism

We consider superconducting systems described by a grand-canonical Hamiltonian of
the following form:

~

H = T-I—U—i—W-i—/(v(r) — p)n(r) d*r
=[] (D) @) @) + D) )9 ) drdr . (178)

As before, T'is the kinetic energy and U the mutual Coulomb repulsion of the electrons.
W is a (generally nonlocal) pairing interaction

W =— [d [d® [d®x [ %P ()l (x)w(r, v, x, x" ) (%), (x'). (179)
fén [ [Ex [xdlmid o

v(r) is the Coulomb potential produced by a periodic lattice and D(r,r’) is an ex-
ternal pair field which can be viewed as the proximity-induced field of an adjacent
superconductor.

Since the most interesting features of superconducting systems sensitively depend
on temperature, we are going to formulate the theory for a thermal ensemble.

The density functional formalism, first proposed by Oliveira, Gross and Kohn
(OGK) [125], provides a description of superconductors in terms of two “densities”:
the normal density n(r) as usual, and the anomalous density

A(r,r') = (gy(r)dy (r')) - (180)

The diagonal A(r,r) can be shown [126] to be identical, in the appropriate limits, with
the phenomenological order parameter of the Ginzburg-Landau theory [127].

In analogy to the temperature-dependent version [22] of the traditional HK state-
ment, OGK proved a theorem which guarantees the existence of a 1-1 mapping from
the pair of potentials {v(r) — u, D(r,r’')} onto the pair of equilibrium densities
{n(r), A(r,r')}. This statement can be used to derive a set of self-consistent single-
particle “KS” equations that determine, in principle exactly, the densities n(r) and
A(r,r) of the interacting system described by the Hamiltonian (178). At any given
inverse temperature § = 1/(kgT') these equations are:

(_%2 +,(r) — “) ug(r) + /Ds(r, r')vp(r') dr’ = Ejuy(r) (181)
- (‘V; + 1, (r) — u) vi(r) + / Dy(r,r)ur(r') d’r’ = Byop(r) . (182)
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In terms of the functions u(r) and vg(r) the densities are given by

= 2% (P So(B) + o) (=) (183)
Afrx') = 3 (0 () () = vi () (x) () (184)

where fz denotes the Fermi distribution

1

fs(E) = 158" (185)

Eqs.(181) and (182) contain two effective single-particle potentials: the “normal” po-

tential vs(r) and the effective pair potential Dy(r,r’). Both are functionals of the
normal and the anomalous density:

vs[n, Al(r) /‘

Dy[n, Al(r,r') = D(r, ¥’ +//w r, v, %, x)A(x, x') d®x d*x' + D2 n, Al(r,r') . (187)

d3r'+vﬁ .[n, A](r) (186)

The xc potentials are formally defined as functional derivatives of an xc-free-energy
functional F% [n, A] which explicitly depends on temperature:

B n
ol Al(r) = 2z e (159)
AL
DA fn, ) = =5 (159)

Since vy and D; depend on the densities the whole set of equations (181) to (189)
has to be solved self-consistently. Eqgs. (181), (182) are structurally similar to the
Bogoliubov-deGennes equations [128], but - in contrast to the latter - include xc effects
in principle exactly. We mention that external vector potentials can be included in
the formalism in straightforward fashion [129].

Eqgs. (181) - (189) can be decoupled exactly [130] into a set of normal KS equations
and a BCS-type gap equation. This is achieved with the ansatz

ug(r) = uppp(r) | Ui (r) = vpp” 4 () (190)

where u; and v, are complex numbers and the ¢j, are solutions of the “normal” KS
equation

(_V; + o, A](r)) or(x) = exur) (191)

with the single-particle potential (186). The index k& includes crystal momentum and
band index. Insertion of (190) in the Bogoliubov-KS equations (181), (182) leads to
the 2 x 2 eigenvalue problem

G D) e
where /d3 /d3r oi(r)e*, (r)Dy(r, 1) . (193)
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This eigenvalue problem is easily solved:

= +R, (194)
with
Ry, = /(e — w)* + | Dy (k) ? (195)
1 Er — /,L:| 2
1 196
R [ Ey (196)
1 —nE
W %sign(Ek)e“s’“ [1 + ’“E “] (197)
k
where Du(k)
e = 20 (198)
| Ds (k)|
The densities then read
6 —
o) =3 (1 o SR ) [on)P (199)
k k
and L D) 8
A(r,r) = 3 > ]S% tanh(ng)gok(r)@_k(r') : (200)
k k
Insertion of (187) into (193) leads to the following integral equation for D(k):
1 kYD, (K ,
D,(k) = D(k) + 5 3 % tanh <B§’° ) + Dyl D) (F) (201)
K k!

where D(k) and D,.(k) are defined in analogy to eq. (193). w(k, k') is given by

w(k,
/d3 &' [dx [axoq@)et @i, % x)on e () . (202)

Self-consistent solution of egs. (181) - (189) is completely equivalent to solution of the
cycle (191), (199) - (202).

In practice, one starts with an ordinary KS calculation for the material in question,
i.e. one solves (191) with v, given by

vs[n](r) / T

From this calculation we obtain single-particle orbitals ¢ (r) and single-particle ener-
gies €. With these ¢ and with w(k, k'), resulting from the ¢ (r) via (202), we solve
the integral equation (201) for D, and calculate the densities via egs. (199), (200).
Insertion into (186) then yields a new single-particle potential v; and we start again
with eq. (191). The whole cycle is repeated until self-consistency is achieved.

The separation of the original equations (181) - (189) into a traditional KS equa-
tion (191) and a BCS type gap equation (201) is of particular importance because it
achieves a separation of energy scales: the gap function Dy(k) is usually three orders
of magnitude smaller than characteristic features, such as band gaps, of the normal
band structure ;. Furthermore, the dependence of the single-particle potential (186)

d3r' + Ve[ (T) . (203)
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on A is expected to be small, so that a self-consistent solution of the traditional KS
scheme (i.e. with the single-particle potential v,[n] of (203)) will be very close to the
result of the full self-consistency cycle (191), (199) - (201).
In the homogeneous limit we have
ikr _ k_2

(pk(l') ~ e s Er = 9 s (204)

and eq. (201) reduces rigorously to the BCS gap equation if D, is neglected. Thus
the traditional BCS model can be viewed as the homogeneous Hartree limit of the
density functional theory for superconductors presented here.

In order to go beyond BCS one needs approximations for the functional D,.[D;].
The construction of an approximation for D,. in the homogeneous case will be the
objective of the subsequent sections.

5.2 Perturbation Theory for Superconductors

In this section we will develop the diagrammatic formalism of many-body perturbation
theory for superconducting systems. To this end we split the original Hamiltonian into
two parts

H=H,+W (205)
with
~ 2 ~
fy = X [ (= o) - u) ot
a=1 2
— [ [ (D7 (e, X))y () + Dl )L ()BL ) (206)
and
W=U+W
= %Z /131‘1 d°ry |d°r; d31’4¢2(1’1)1@21 (ro) Wy o (1‘1,1“2,1'3,1“4)1@0' (1‘3)1&0(1‘4) (207)

One has to emphasize that H, already describes a superconducting system due to the
external pair potential D(r,r’). Hy can be diagonalized by the Bogoliubov-Valatin
transformation [131]

Wy (r) = ;(uk(r)‘m — vp(0)4,) (208)
y(r) = ;(uk(r)m + 0 (t)7hy) (209)

with fermionic quasi-particle operators 4xt, Jx,- The wuy(r),v,(r) satisfy eigenvalue
equations with the same algebraic structure as (181),(182) and can be determined in
the same manner.

The diagonalized Hamiltonian reads

Ho=>"(ex — = Be) + >_ Ril ko (210)
k k,o

with 5 being the eigenvalues of the Schrodinger equation
v2
(—7 + v(r)) or(r) = eppp(r) (211)

31



and

Ry = /(ex — )2 + [D(k) 2 (212)
where

/d3 /d?'wk r)o* () D(r, 1) . (213)

The densities resulting from H, are given by

n(r) = ; (1 - 5’“R_k a tanh(ng)) lop(r)[? (214)
- _1D@®, 8 ,
Ar,r') = 3 > R, tanh(ng)gok(r)go_k(r) . (215)

Every eigenstate of H, is a simultaneous eigenstate of the “quasi-particle number
operator”

=3 Ak (216)
k,o

With the complete set of eigenstates of the non-interacting superconductor described
by H, we are able to construct a perturbation theory in the same fashion as it is
usually done for normal-state systems.

With the usual definition of the finite-temperature Heisenberg and interaction in-
teraction pictures of some operator O

Heisenberg picture : O(7)y = et (217)

interaction picture : O(1); = eHorOeHor | (218)

(where 7 is an “imaginary time” to be identified with the inverse temperature) the
“time” evolution operator in the interaction picture is given by

Ulr,m') = Homg=H(r=1") g=Hor (219)

A

U(T,7") satisfies the equation of motion

—U(T, ") = W (1)U(T,T") (220)

which can formally be solved

TT :i 1n/dT1 /dTn W( )) (221)

T is the time ordering operator defined for fermionic operators fl, B by

P (amee) ={ o) T (222)

Now the grand-canonical partition function Z for the full interacting system can be
expressed as

o [ 1\n B 8 " o~ ~
_y &Y Jan... [anTr {pT (W(r)r... W(r)i)) (223)

|
n=0 n.
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where

Zy = tr{e‘ﬂﬁo} (224)
is the partition function and

5 e b (225)

o= Tr {e‘ﬂﬁo}

the statistical density operator of the non-interacting system.

Expressing W in terms of the quasi-particle operators 4 and using the complete
set of eigenstates of Hy (and Nv) for the evaluation of the trace we are able to prove
Wick’s theorem. With the definition of the contraction of two operators &;,&;

1
O!i(Ti)]Olj<Tj)I =Tr

—N

po (6 () 165(7)1) } (226)
Wick’s theorem reads

Tr {ﬁoT ( . .1,201.(1'2'7'2')[ .. .Qz:;j (I‘jTj)[ .. )} =
= Z( all completely contracted terms ) (227)

) M 1
Note that for our superconducting Hy contractions of the form 1 or ¥y’ do not
vanish as in normal-state perturbation theory. Defining one normal and two anomalous
one-particle Green’s functions of the non-interacting system

1
G, (rr,x'r") == — o (x7) 100), (') (228)
0
F(er,v'7") 1= = 4y (v7) 19 ('7'); (229)
1
FOlrr,x'r') = — ol (er) L (7)), (230)

we are now able to write down the Feynman rules for the diagrammatic evaluation of
the expansion (223):

1. The non-interacting Green’s functions are represented by

a) G((f,), (r7,1r'7")

b) F\9 (er,x'r")

U-I

c) Fég),T (r7,x'7")

33



2. The interaction is represented by

,IZ)O'O" (1'1, Iy, T3, 1'4)

3. Green’s functions beginning and ending at the same interaction line are inter-
preted as limits:

GO (7, r'r) == lim G, (7, 1r'7)

0,0’ gt 0,0’

(0) ) e— 1 0) (pr!
F, oi(rr,r'r) i= T,h%n;l+ F, 5 (r7' r'r)
(0)f Y — T O 1
F, (r7,x'r) == T'h—>nrl+ F, (7' x'7)

4. The sum over all coordinates at the vertices has to be taken.

5. The sign of a graph of order n is (—1)"*? where ¢ is the number of permutations
needed to bring the field operators in proper order.

6. The numerical factor of a graph of order n is

1

5| ) symmetric

1 if the gl"aph 18 { asymmetriC }
n!

with respect to the central vertical axis.

In formulating rule no. 6 we used the linked cluster theorem which can be proved
using the same arguments as in normal-state perturbation theory
Z
— = exp (Z all connected graphs) . (231)
Zy
In Fig.4 we show all topologically distinct graphs contributing to the free energy of
the system up to second order in the interaction.

5.3 Exchange-Correlation Contributions to the Gap Equation

In this section we shall present explicit results for the xc part Fj. of the free-energy
functional obtained with the diagrammatic methods developed in the last sections.
The functional derivative (189) of Fj. with respect to the anomalous density then
leads to the xc terms in the gap equation (201).

We restrict ourselves to the case of a homogeneous electron gas, i.e. to vanishing
external potential v(r) = 0, and translationally invariant pair potentials D(r,r’) =
D(|r — r'|). Furthermore, we restrict ourselves to the simplified phonon-induced elec-
tron-electron interaction adopted by BCS
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Fig.4. All topologically distinct, connected graphs contributing to the
partition function up to second order
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~BCS
wo’a’ (rla o, I3, r4)

d3k d3kl d3q ik!(r{—1r ik(ro—r iq(rao—r
- _6”’_”'/(27r)3/(2%)3/(2703V(k'ak'—Cl)ek( rralgfdralglalraTr) (239)

n_ |V if|%2—u|<wpand|’“2i—u|<wp
Vik k) = { 0 otherwise (233)

with wp being the Debye frequency. The Coulomb interaction of the electrons is
neglected. In principle, the formalism is capable of treating the Coulomb interaction
as well but, beginning in second order, some of the diagrams contributing to the
partition function are divergent (like for the normal-state homogeneous electron gas).
A resummation of these divergent graphs to infinite order would be necessary to obtain
finite, physically meaningful results. In normal-state perturbation theory the simplest
resummation of this kind is known as random phase approximation (RPA) [65].

Under the conditions stated above there is only one contribution to the xc free
energy in first order:

P = F| ]
B Pk, [ ko
B _V/(27T)3/(27T)3V(_k1’_k1)
(1 - 5‘}; a tanh(ngl)> (1 - 5“;27;“ tanh(ng2)> (234)

with V being the volume of the system.
The term involving the anomalous propagators (229), (230)

also contributes to the free energy. This term leads to the Hartree part of D, (i.e. to
the second term on the right hand side of eq. (187) ) and is therefore not included in
the exchange-correlation part of the free energy.

In real physical systems, wp/u is a small quantity. It therefore is not necessary to
evaluate all the 28 second order diagrams listed in Fig.4 but only the dominant ones
in wp/p. These dominant contributions then give:

L I C
Y 2
T (2n)? (n®)
1D (ky)? B (e — 1)? g
/ Pk, V (ky, ki ) (W tanh( Ry, ) + R ool <4§ Rk1)> (235)
with . 8
©0) — _kTH i
n© — / o (1 i tanh(ZRk)> . (236)

In order to determine the xc functional D, in the gap equation (201), the functional
derivative of Fj. with respect to A*(r,r’) needs to be calculated. This calculation is
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not straightforward because the perturbative result for F,. given in egs. (234), (235)
represents the xc free energy as a functional of the potentials

F:cc = wc[ﬂa D] (237)

and not as a functional of the densities n and A. A perturbative analysis similar to
the one for the free energy allows one to express the densities as functionals of the
potentials:

n = n[u, D] (238)

A = Alu, D] . (239)

The HK theorem then guarantees that these two equations can be inverted, leading
to the inverse functionals

= pln, A (240)

D = Din, A]. (241)

If we knew these functionals then, by insertion into (237), we would have an expression
for Fy. as a functional of the densities, F,. = Fy.[n,A]. The inverse functionals (240),

(241) are of course not known explicitly. Fortunately, the calculation of

Py [uln, A], Dln, A

Dae(r, r') = OA*(r,1")

(242)

does not require the explicit knowledge of the inverse functionals (240), (241) . Knowl-
edge of the direct functionals (238) and (239) is sufficient to calculate D,. by means
of implicit functional derivatives. After a tedious calculation, adopting the zero-order
functionals (214) and (215) for n[u, D] and A[u, D] !, one finally obtains

Sk, V (ki kl)Zo(k1)>
Jd®ko 75 (ko)

(243)

[

DU, D)) = 1 Z,(k) (v<k, k) -

[dkaV (ka, ko)? Z3(ks)
[d®k1Zy(ky) ] (244)

C

DRl DR = (1) [V K 2209 - 2301

with the functions

8

Zo(k) = > B tanh (; R (245)

2% tanh(5 Ri) cosh® (5 Ric) + B| Dy (k)|

(ex — m)D (k)( ! fanh(2Ry) 2 )

e T ZSEON Ry ) T R (B Ry
Z1(k) = Ry 2 cosh;(sz) (246)
(M tanh(Z Ry) + %)
Ry 27K coshQ(ng)
— Ds<k) _ (5k — ,u)2 6_2 tanh(ng)
0= Mt h(Ry) + M[ Re 8 coshz('ng)+
Ry A T coshz(g Ry)
L fann(? 2 2ex — 1)* — | Ds(K)[*

+ <R_k tanh(ERk) - COSh2?ng)> ( 2R2 > (247)

!The influence of higher perturbative contributions to the functionals n[u, D] and A, D] is cur-
rently being investigated.
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Zg(k) — (6k - ,u)

(ex — 1) 3 |Ds(k) 4
————tanh(5Ryx) + ——————
2Ry bR cosh®(2 Ry)
Ds(k)* . 5B |D,(k)[? B tanh(§ Ry)
tanh®(=
l R an (2Rk)+ ARD 2cosh2(§R)+
£ B |1Ds (k) [?
+———— [tanh® (= Ry) — — 248
cosh?(2 Ry) (an (2 k) Ry )] 249
and
Ric = /(e — 1 + D, (k)2 . (249)
If no external pair field is present, the following gap equation results from (201):
3k’ (k, k’ k'
D) =5 [ e tanh(§ R) + DRID] + DRID]. (250

A numerical solution of this equation is currently under study. We hope that the
new exchange-correlation terms will provide a better understanding of the recently
discovered high-T. superconductors.
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