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1 Introduction

Density functional theory (DFT) is a powerful quantum mechanical method for calculating
the electronic structure of atoms, molecules and solids [1, 2, 3]. The success of DFT
hinges on the availability of good approximations for the total-energy functional. In this
article we shall review a particular approach to the construction of such approximations
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which involves explicitly orbital-dependent functionals. Before describing the nature of this
approach we first briefly review the foundations of DFT.
We are concerned with Coulomb systems described by Hamiltonians of the type

IA{:T—FWCH,—{—V (1)
where (atomic units are used throughout this article)

7=3(-37) (2

i=1

denotes the kinetic-energy operator,

. 1 X 1
We = o — (3)
2 %:1 |ri — ;]
i

represents the Coulomb interaction between the particles, and

V= Zv(ri) (4)

=1

contains all external potentials of the system, typically the Coulomb potentials of the nuclei.

Modern DFT is based on the celebrated theorem of Hohenberg and Kohn (HK) [4]
which, for systems with nondegenerate ground states, may be summarized by the following
three statements:

1. The ground-state density p uniquely determines the ground-state wave function ¥[p]
as well as the external potential v = v[p]. As a consequence, any observable of a
static many-particle system is a functional of its ground-state density.

2. The total-energy functional
Euylp] :==< U[p]|T + Wen, + Vol ¥[p] > (5)

of a particular physical system characterized by the external potential vg is equal to
the exact ground-state energy FEy if and only if the exact ground-state density pg is
inserted. For all other densities p # pg the inequality

By < By, |p] (6)

holds. Consequently, the exact ground-state density pp and the exact ground-state
energy Fy can be determined by solving the Euler-Lagrange equation

1)
WEUO [p] = 0. (7)
3. The functional
Flp] =< W[p]|T + Wem|¥[p] > (8)

is universal in the sense that it is independent of the external potential vg of the
particular system considered, i.e. it has the same functional form for all systems with
a fixed particle-particle interaction (W¢yp, in our case).
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The proof of the HK theorem does not depend on the particular form of the particle-
particle interaction. It is valid for any given particle-particle interaction W, in particular
also for W = 0, i.e. for non-interacting systems described by Hamiltonians of the form

H g = T + Vs. (9)
Hence the potential Vg(r) is uniquely determined by the ground-state density:

Vs(r) = Vs[p](r). (10)

As a consequence, all single-particle orbitals satisfying the Schrodinger equation

v2
<—7 + Vs[p](r )) p;j(r) = ejip;(r) (11)
are functionals of the density as well:

;(r) = ;[pl(r). (12)

The HK total-energy functional of non-interacting particles is given by

Fslp) = Tslpl + [ &*r pla)Vs(r) (13)

where Ts[p] is the kinetic-energy functional of non-interacting particles:

N 2
> [l ( z ) eilpl(e). (14)

lowest ¢;

We emphasize that the quantity (14) really represents a functional of the density: Func-
tional means that we can assign a unique number Ts[p] to any function p(r). This is done
by first calculating that very potential Vg(r) which uniquely corresponds to p(r). Several
numerical schemes have been devised to achieve this task [5, 6, 7, 8, 9, 10]. Then we take
this potential, solve the Schrodinger equation (11) with it to obtain a set of orbitals {¢;(r)}
and use those to calculate the number Ts by evaluating the right-hand side of Eq. (14).
As a matter of fact, by the same chain of arguments, any orbital functional is an (im-
plicit) functional of the density, provided the orbitals come from a local, i.e. multiplicative
potential.

Returning to the interacting system of interest we now define the so-called exchange-
correlation (xc) energy functional by

Bl = Flg) - 5 [ [ g PEPE) (15)

Ir—r’l

The HK total-energy functional (5) can then be written as

Fuldl = Tslol + [ @rp(eoo(e) + 5 [ dr /d3"’ )(|)+Exc[p] (16)

In historical retrospective we may identify three generations of density functional
schemes which may be classified according to the level of approximations used for the
universal functionals Ts[p] and Ex[p].



In what we call the first generation of DFT, explicitly density-dependent functionals
are used to approximate both Ts[p] and Fx.[p]. The simplest approximation of this kind is
the Thomas-Fermi model, where Fy[p] is neglected completely and Ts[p] is approximated
by

18] = 5 (35%)° [ dbr o) ()

yielding

3 2/3 p(r
E,;)I(;F[p] 10 (37[' /d37'p 5/3 +/d37'1)() /d3 /d3 ! W (18)

as approximate expression for the total-energy functional. For functionals of this type the
HK variational principle (7) can be used directly, leading to equations of the Thomas-Fermi
type. As these equations only contain one basic variable, namely the density p(r) of the
system, they are readily solved numerically. The results obtained in this way, however, are
generally of only moderate accuracy in T, yielding unacceptably large errors in Ej.

The second generation of DFT employs the exact functional (14) for the non-interacting
kinetic energy and an approximate density functional for the xc energy:

EXS[p] = Tg™<*[p] +/d3rvo /d3 /d3 o) +Exc[ . (19)

This total-energy expression leads to the Kohn-Sham (KS) version of DFT [11] as will be
shown in the following. Plugging Eq. (19) into the variational principle (7) yields

_ 5TsxaCt[p] v 3 1 (r,) 5Exc[ ]
0= dp(r) ol +/d v —r/| + Sp(r) (20)

The variation of the non-interacting kinetic energy functional is given by

STE*"p] = 52 < ilp]] — —Isoz[p]
i=1

= 5[ /d?’r'Vs[p p(r )] (21)

=1

where the single-particle equation (11) has been used. Since the HK theorem ensures a
one-to-one mapping between the density and the single-particle potential, a variation Jp
of the former corresponds to a unique variation 6Vs of the latter. Therefore, the variation
of the single-particle energies ¢; can be calculated using first-order perturbation theory
yielding

de; =< ilpl|6Vs[pllwilp] > - (22)

Using this result in (21) gives

STE o) = ~ [ &' Vslpl(x')op(c') (23)

which, combined with Eq. (20) leads to

Vso)(x +/f’ +w4u) (24)



where we have defined the xc potential as

3 Exc[p]
Vi == 25
dplr) = (25)
Being the HK variational equation of the interacting system, Eq. (20) determines the
exact ground-state density of the interacting system. Since Eq. (24), on the other hand, is
equivalent to Eq. (20), the density

N

pr) = > a0 (26)

i=1
N lowest ¢;

resulting from the solution of the Schrodinger equation (11) with the potential (24) must be
identical with the ground-state density of the interacting system of interest. Egs. (11), (24),
(25) and (26) are known as Kohn-Sham equations. In practice, these equations have to be
solved self-consistently employing approximate but explicitly density-dependent functionals
for Exc[p]- The resulting scheme is still easy to solve numerically and gives — especially for
sophisticated density-gradient-dependent approximations of Ey.[p] — excellent results for a
wide range of atomic, molecular and solid-state systems.

Finally, in the third generation of DFT, one employs, in addition to the ezact expression
for T, also the exact expression for the exchange energy given by

E}e;xact [P] — _% Z % /d3’f'/d3'r" (P;a(r)‘Plta(r’)(PkU(r)‘Pja(r’)_ (27)

_ pl
o=tk jk=1 fr =

Only the correlation part of Ey.[p] needs to be approximated in this approach. In con-
trast to the conventional second-generation KS scheme, the third generation allows for the
treatment of explicitly orbital-dependent functionals for E. as well, giving more flexibility
in the construction of such approximations.

The central equation in the third generation of DFT is still the KS equation (11). The
difference between the second and third generation lies in the level of approximation to the
xc-energy. As a consequence of the orbital dependence of Ey. in the third generation of
DFT the calculation of Vic[p](r) from Eq. (25) is somewhat more complicated. A detailed
derivation will be given in the following section for the spin-dependent version of DFT. The
result is an integral equation determining the xc potential. This integral equation, known
as the optimized effective potential (OEP) equation [12, 13], is difficult to solve. To avoid a
full-scale numerical solution, Krieger, Li and Iafrate (KLI) [14, 15, 16, 17, 18, 19, 20, 21, 22]
have devised a semi-analytical scheme for solving the OEP integral equation approximately.
This scheme is described in the subsequent section. After that, some rigorous properties
of the OEP and KLI solutions will be deduced and the relation of the OEP method to the
Hartree-Fock (HF) scheme will be discussed.

For heavier systems, relativistic effects become more and more important. For example,
the nonrelativistic (x-only) ground-state energy of the mercury atom is 18408 a.u. while
the relativistic value is 19649 a.u. This demonstrates that a relativistic treatment is indis-
pensable for heavier systems. In section 3 a relativistic generalization of the OEP and KLI
methods will be developed. A selection of numerical results for atoms, molecules and solids,
including both relativistic and nonrelativistic calculations, will be presented in section 4.
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The total-energy functional (16) can also be written as

By, [0] = Gl 2/d3 /d?’""(r) -|—/d37"p (r)vo(r) (28)

where G[p] encompasses all the non-trivial parts of the functional E,,[p]. The functional
G|p] can be expanded in powers of the particle-particle interaction Wep:

Glpl = GOl + GW o] + G o] + . (29)

where the superscript denotes the order in the coupling constant e2. (The densities p
that are inserted in these functionals may or may not depend on e? as well. This latter
dependence is not of interest here). In the first generation of DFT, the whole functional
G|p] is approximated by a simple explicit functional of the density. The logical development
of DFT towards more and more accurate functionals requires that more and more parts
of G[p| be treated exactly. This inevitably leads to the use of orbital functionals because
all the ezact functionals of DFT are explicitly orbital-dependent and thereby only implicit
functionals of the density. The second generation of DFT, equivalent to the Kohn-Sham
method, treats the zero-order term of G[p] exactly:

Vol = TE**[p). (30)

The third generation of DFT, leading to the OEP method, additionally employs the exact
first-order term of G|p]:

Vel = EZ[o] (31)

Since the expressions (30) and (31) are easily expressed in terms of the KS Green function,
the expansion (29) suggests that a systematic orbital representation of the correlation
energy

Eclp] = Gl + GP[p] + ... (32)

can be achieved using the techniques of many-body perturbation theory. Some future
directions along these lines will be presented in section 5.

We finally mention that a time-dependent generalization of the OEP has recently been
developed [23] to deal with explicitly time-dependent situations such as atoms in strong
laser pulses [24]. In the linear-response regime this method has led to a successful procedure
[25] to calculate excitation energies from the poles of the frequency-dependent density
response. Time-dependent applications of this kind will not be discussed in the present
article. The interested reader is referred to recent reviews of time-dependent DFT [26, 27,
28].

2 The OEP method, basic formalism

2.1 Derivation of the OEP equations

We are going to derive the OEP equations for the spin-dependent version of DFT [29,
30], where the basic variables are the spin-up and spin-down densities p4(r) and p(r),
respectively. They are obtained by self-consistently solving the single-particle Schrodinger
equations

2
(—% + VSJ[pT,m](r)) ¥io(r) = €jopjo(r)  j=1,....N, —o=t]  (33)
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where
Ny
pe(r) = |@io(r) . (34)
=1

For convenience we shall assume in the following that infinitesimal symmetry-breaking
terms have been added to the external potential to remove any possible degeneracies. The
KS orbitals can then be labeled such that

810<€20<...<6NUJ<S(NG+1)U<... (35)

The Kohn-Sham potentials Vs, (r) may be written in the usual way as

/
Vso(r) = vo(r) + /d37‘, |rp(_rl)_,| + Vieo (1), (36)
where
p(r) = Y po(r) (37)
o="{
and 5By | |
— xc [Py Pl
VXCO’(r) . 5po'(r) N (38)
The starting point of the OEP method is the total-energy functional
N, 1
By lorp] = 3 > / dr ¢}, (r) (_EVZ) Pio (r)
o="1}i=1
1 p()p(r')
3 + 3 3,
-I—/d rvo(r)p(r)+2/d r/ d’r v
+EG™ [{pjr}] (39)

where, in contrast to ordinary spin DFT, the xc energy is an ezplicit (approximate) func-
tional of spin orbitals and therefore only an implicit functional of the spin densities ps and
py- In order to calculate the xc potentials defined in Eq. (38) we use the chain rule for
functional derivatives to obtain

oEPy _ B [yl
Vieo () = o)
B 1 g s SO [{9)r)] Sialr)
- 3T 9 J .C.
- a§¢§/ ; Spia(t’)  Spe(r) te.c (40)

and, by applying the functional chain rule once more,

i v [ s [ SESEP {oir}] dpia(r)) >5v55<r")
OEP (1) _ 3y 3y ¢ J cc. | —(——F—.
W= 3 3 e ( Soa)  8Vss) ) ppm) Y

The last term on the right-hand side is the inverse Xgl (r,r’) of the static density response
function of a system of non-interacting particles
6pa(r)

XSa,p (r,r) == W (42)



This quantity is diagonal with respect to the spin variables so that Eq. (41) reduces to

OEP
Ver () = > Z / &' / a3 < b 5%(1[({9,0)”}] (f‘fsjé )) +c.c.) Xsl(x".r).  (43)

a=1,] i=1

Acting with the response operator (42) on both sides of Eq. (43) one obtains

! — ! 5EOEP [{@jr}] dpia(r’)
/d3 Vieo! (t')xso (v aZN;/dS Sralr )J Vg (1) +c.c. (44)

To further evaluate this equation, we note that the first functional derivative on the right-
hand side of Eq. (44) is readily computed once an explicit expression for EOEP in terms of
single-particle orbitals is given. The remaining functional derivative on the right-hand side
of Eq. (44) is calculated using first-order perturbation theory. This yields

i Pro (T sok[,( r)
51/1:0 SE Z . TR STROE S i (T). (45)
Ic;éz

Using this equation, the response function

XSa,B (I‘,I‘ ) = (5V55 (Z <pza <Pza ) (46)

is readily expressed in terms of the orbitals as

Y (I‘ % i (Pw )(pk:a( )(pka( I)(piv(rl) +c.c (47)
st i=1 k=1 Eic — Eko -
ki

Inserting (45) and (47) in Eq. (44), we obtain the standard form of the OEP integral
equation:

z / a1, () (VP () = tseio (1)) Gisio (¥,7) i () +ccc. =0 (48)
where 1 B9 {41,
R R o
and
Ggw r r = Z(Pka (Pk”( ) (50)

— Eko
k;ﬁz

The derivation of the OEP integral equation (48) described here was given by Shaginyan
[31] and by Gorling and Levy [32]. It is important to note that the same expression results
[12, 13, 16, 19, 33, 34] if one demands that the local single-particle potential appearing in
Eq. (33) be the optimized one yielding orbitals minimizing the total-energy functional (39),
i.e. that

SEQFP

=0. (51)
6Vso(r) Vg, —VOEP
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This equation is the historical origin [12] of the name optimized effective potential. As
was first pointed out by Perdew and co-workers [35, 36], Eq. (51) is equivalent to the HK
variational principle. This is most easily seen by applying the functional chain rule to
Eq. (51) yielding

6E°EP EOEP §p,(x')

)
3./
E 2
0= 5VSJ / ' 5pa (1) 6Vse(r) (52)

Once again, the last term on the rlght—hand side of Eq. (52) can be identified with the static
KS response function (42). Hence, acting with the inverse response operator on Eq. (52)

leads to the HK variational principle

5 EOEP
0= 5@ (53)

2.2 Approximation of Krieger, Li and Iafrate

In order to use the OEP method derived in the previous section, Eq. (48) has to be solved
/ OEP V OEP

oo - Unfortunately, there is no known analytic solution of V. -

for the xc potential
depending explicitly on the set of single-particle orbitals {¢;; }. Thus, one needs to solve the
full integral equation numerically, which is a rather demanding task and has been achieved
so far only for systems of high symmetry such as spherical atoms [15, 19, 21, 13, 37, 38] and
for solids within the linear muffin tin orbitals atomic sphere approximation [39, 40, 41].
However, Krieger, Li and Iafrate [14, 16] recently proposed a transformation of Eq. (48)

that leads to an alternative but still exact form of the OEP integral equation which lends
VOEP

oy . Following Krieger,

itself as a starting point for a highly accurate approximation for
Li and Iafrate [14, 16], we define

Pio(T /dsr Pis (T Vx?EP( ) - uxcz’a(r,)) GSiU(rIa r), (54)

such that the OEP integral equation (48) can be rewritten as

Z ¢za <)010' + cc. =0. (55)

Since the KS orbitals {¢;,} span an orthonormal set, one readily concludes from Eq. (54)
that the function 9;,(r) is orthogonal to ¢;,(r):

[ @0 = 0. (56)

The quantity Gg;,(r',r) given by Eq. (50) is the Green function of the KS equation pro-
jected onto the subspace orthogonal to ¢;,(r), i.e. it satisfies the equation

(hso(x) = cir) Gsio(',1) = = (30" = 1) = @io (')}, () (57)

where hg,(r) is a short-hand notation for the KS Hamiltonian

. V2
hiso (v) i= =< + Vsolpr, p](x)- (58)

Using Eq. (57), we can act with the operator (hgy — €i5) on Eq. (54), leading to
(hso () = €0 ) V3o (1) = = (VT () = txcio (r) = (V2 = ixeio) ) @lo(x)  (59)
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where V,.;; denotes the average of Vieo (r) with respect to the ith orbital, i.e.

VL i= [ dr g, (e) VIR (1) pia (x) (60)

and
Uxcio ‘= /d37” <p;o-(r)uxcia(r)(;0ia(r)- (61)

The differential equation (59) has the structure of a KS equation with an additional
inhomogeneity term. Eq. (59) plus the boundary condition that v} (r) tends to zero as
r — oo uniquely determines 9} (r). We can prove this statement by assuming that there
are two independent solutions ¢, | (r) and ¥}, 5(r) of Eq. (59). Then the difference between
these two solutions, ¥ (r) := 97, 1 (r) — 9}, »(r), satisfies the homogeneous KS equation

~

(hso — €i0) Vis(r) =0, (62)

which has a unique solution
Uiy (r) = @i (1), (63)

if the above boundary condition is fulfilled. However, this solution leads to a contradiction
with the orthogonality relation (56) so that U} (r) can only be the trivial solution of
Eq. (62),

Ui (r)=0. (64)

This completes the proof.
At this point it is useful to attach some physical meaning to the quantity v;,: From

Eq. (54) it is obvious that 1;, is the usual first-order shift in the wave function caused by the
YV OEP _

XCco

perturbing potential §V;, = Uxcio- Lhis fact also motivates the boundary condition

assumed above. In x-only theory, uy;, is the local, orbital-dependent HF exchange potential
so that 1;, is the first order shift of the KS wave function towards the HF wave function.
One has to realize, however, that the first-order change of the orbital dependent potential
Uxio[{¢jr }] has been neglected. This change can be expected to be small compared to 6V;,
[16].

To further transform the OEP integral equation (55), we solve Eq. (59) for Vg, (r)9? (r):

2
Vo (£)% () = — (VPP (1) — i () — (VIR uxcz-a)so;;(rn(%ﬂw) ¥4, (x). (65)

We then multiply Eq. (55) by the KS potential Vg, (r):

Z VSO’ ww (PZU( ) +cc. =0, (66)

and employ Eq. (65) to obtain

2

l v
0= Z {(VX‘SEP( ) — txcio(r) — (Vioig axcw))w;‘a(r) - <7 + 5i0> ¢§a(r)}wa(r) + c.c.
(67)
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Solving this equation for V.OFF yields
1 &
Vx?EP( ) = 2p (I‘) Z {"Pio(r)‘2(uxcia( ) (VX%LE;P ax(:io‘))
TN =1

+ (%wz;(r) - ez-(,w;;m) pia)} +ee(69)

The second term in the curled brackets may be rewritten by using the KS and the OEP
equation again, leading to

Ng VZ
Z < 9 Vio(r) + €ig¥iy (r )) ®io(r) + c.c.

i=1

No 2 2
= <V7 ;:,<r>> pio ) %()(%ww(r))]mc.

= -, V- (¥}, (r)Vpis(r)) + c.c. (69)

In this way Eq. (68) may be written as

Vot (x) 2% Zma )2 (vxcio (1) + (VT = fixeio) ) + .. (70)

with
1

|pic (r)]?
Eq. (70) is an exact transformation of the original OEP integral equation (48). The advan-

tage of Eq. (70), although still being an integral equation, lies in the fact that it may serve

as a starting point for constructing approximations of V.2EF: We only need to approximate

*

. in Eq. (71) by a suitable functional of the orbitals.

V- (46 (r)Vis (r)) - (71)

vxcia(r) = Uxcio (I‘) -

The simplest possible approximation is obtained by completely neglecting the terms
involving 7, i.e. by replacing vxcic by Uxcic. At first sight, this approximation might
appear rather crude. It can be interpreted [14, 16], however, as a mean-field approximation
in the sense that the neglected terms averaged over the ground-state spin density p,(r)
vanish. To demonstrate this, we investigate the quantity

3 (R
I= /d rV- 3 Z:ZI (wia(r)Vg%(r)) + c.c. (72)

which amounts to the difference between the exact V.OFF (r) and the approximated xc

potential averaged over p,(r). From Eq. (54) one easily derives

¢w Z Aiko ( ) Pro (1)

k;éz
00
Z Aigo (VSU(I')(P;:U (I‘) - 5ka‘PZU(r)) = VSO’( )¢w Z Azkasktf‘pka( ) (73)
k=1 k=1
ki ki
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where we have used the abbreviation
Aty = ——— [ g3, ) (VP () — weio ) 0 ) (74)
ag

Insertion of Eq. (73) in Eq. (69) leads to
1 e,
= =5 [ &S (Vo @iy (0)io ()
i=1

- Z Aiko€koPho (T)Qio (T) + igt, (r)is (T) + c.c.) =0 (75)

k=1
k#i

where the last step follows from the orthogonality of the KS orbitals together with Egs. (55)
and (56). Hence, the neglected terms have zero average value.

The resulting equation, known as the KLI approximation, is given by [14, 15, 16, 17,
18, 19, 20, 21, 22, 42, 43, 44]

I/xlf;(l;l 2p Z |<p’w (chia( ) (VXIEZLUI axcia)) + c.c. (76)

which has proven to be an excellent approximation to the full xc potential V.2EF (r), as

will be shown in section 4. We immediately recognize that this form is very similar to the
Slater potential. It should be noted that — in contrast to the work of Krieger [16] — we did
not use any asymptotic properties of ¥;, or ¢;, in the derivation of Eq. (75). This implies
that the KLI approximation is also justified for solid state systems.

In contrast to the full OEP equation (48), the KLI equation, still being an integral
equation, can be solved explicitly in terms of the orbitals {¢;,}: Multiplying Eq. (76) by
|¢jo(r)|? and integrating over space yields

VKL yS, 4 z Mg (VEEL — 2 (it + i) ) (77)
where
VS, / Br \s% r |z i' oin (um(r) + Ueio (1)) (78)
e 5, o ()l (1)
Mjiy = / R (79)
The term corresponding to the highest occupied orbital ¢n_, has been excluded from the
KLI

sum in Eq. (77) because V,

X

remaining unknown constants (VR — @,.;,) are determined by the linear equation

cNoo = UxcNyo> which will be proven in the next section. The

N,—1
z 1 _ L/ _

S (i = Myir) (VEH = 3 (e + ki) ) = (Vo = 5 (i + ki) ) (50)
i=1
with j = 1,... N, — 1. Solving Eq. (80) and substituting the result into Eq. (76), we obtain
an explicitly orbital-dependent functional.

We conclude this section in remarking that the derivation given here differs slightly
from the one given by Krieger, Li and lafrate [14, 16]. The main difference is that we
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choose to work with the quantity 1;,, which is related to p;, introduced in Ref. [14, 16] by
Vie = PicPio- Since both 1;, and @;, are well-behaved functions, p;, has poles where @;,
becomes zero. It is therefore more convenient to work with the well-behaved function ;.
especially for the considerations of the next section.

We finally note that the KLI equation (76) can also be obtained by a less rigorous
derivation, namely by approximating the energy dominator in the Green function (57) by
a single constant as was first suggested by Sharp and Horton [12] and further elaborated
by Krieger, Li, and Iafrate [15, 17, 19, 20, 21, 22].

2.3 Rigorous properties of the OEP and KLI potentials
2.3.1 An important lemma

In this section a number of rigorous statements on the optimized effective potential of
finite systems will be derived [45]. For this purpose, the exchange-only potential and the
correlation potential have to be treated separately. The exact exchange potential of DFT
is defined as

exact
SEE

Violpt, pyl(r) = TACR o=11 (81)

where the exact exchange-energy functional is given by Eq. (27). In an ordinary OEP

calculation, one only determines the potential Vi, [pto, pjo](r) corresponding to the self-
consistent ground-state spin densities (py9,pjo) of the system considered. If one were to
calculate Vi, [pt, py] for an arbitrary given set (py,p)) of spin densities one would have to
perform the following three steps:

1. Determine the unique potentials Vs, [p+, p](r),0 =1, ], corresponding to the given
spin densities (o1, py)

2. Solve the Schrodinger equation (33) for the spin-up and spin-down orbitals with the
potentials of step (1)

3. Plug the orbitals obtained in step (2) into the OEP integral equation

No
Y- [ @ 0 () (Vao ) = tsio () Gisio (0 ) pio () + .. =0 (82)
i=1

and solve this equation for Vi, keeping the orbitals of step (2) fixed.

In this way Filippi, Umrigar and Gonze [46] have recently calculated the exchange poten-
tials corresponding to the ezact (not the x-only) densities of some atoms where the exact
densities were determined in a quantum Monte-Carlo calculation. Likewise, for any given
approximate functional E.[{y;s}], the corresponding correlation potential

Varlon, i) = 5 (53)

is obtained by the above steps (1) and (2), and step (3) replaced by the solution of

No
S [ & 6o ) (Veo &) = tcio () Gsio (', )i () + o = 0. (84)
i=1
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Whenever, in the following derivations, the OEP equations (82) and (84) are used or
transformed it is understood that the orbitals {y;,} are kept fixed so that they always
correspond to a unique fixed set (p4,p) of spin densities.

We first prove an important lemnma concerning the constants defined by Egs. (60) and
(61). The lemma states that

(1)

'foNaa = VxNyo

s satisfied for

1 6Eexact
Uxioc\r') = =
) = @) b0 )

with the exact exchange-energy functional;

(i)

(85)

ﬂCNg—O’ = V;:Naa

is satisfied for any approximate correlation energy functional E.[{gis}] having the

property
1 OF,
- ¢ _ "% const ,i=1...N, . (86)
@i (T) 0pic (r)

Ucio (I‘) =

We begin with the proof of statement (ii). To this end we use Eq. (59) for the correlation
part only:

V2 * *
<_7 + ng(r) - 52'0) ¢ia(r) = (Vco(r) - ucia(r) - Cio) ‘Pio(r) (87)
where we have introduced the abbreviation
Cia = ‘701'(7 — Ucjg (88)

(dropping the superscript OEP for notational simplicity). If Eq. (87) is satisfied with
potentials Vs, (r), Vi (r) and uci,(r) it will also be satisfied with the constantly shifted

potentials
VSO’(I‘) = VSO’(r) + Bso (89)
f/CU(I') = ‘/ca(r) + B (90)
Ucio (I‘) = Ucio (I‘) + Bis (91)

and the corresponding eigenvalues &;, and the constants I:/'m-a, cio- The constants Bg,,
B.,, Bj, cancel out in Eq. (87) because the eigenvalues &;, resulting from solving the
Schrodinger equation (33) with the potential (89) are given by

é:io =¢€ir + BSG’ (92)

and the constants T:/w, ficic obtained from the correlation parts of Eqgs. (60), (61) with the
potentials (90), (91) are

Vcia = Vcia + Bca (93)
acz":f = Ucio + Bia . (94)
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Hence we can assume without restriction that

VSa(r) Tﬂf (95)
Veg(r) =% (96)
Ucio (T) =3 0. (97)

In the following we shall investigate the asymptotic behavior of the KS orbitals ;s (r)
and of the quantities ;,(r) determined by Eq. (87). As a shorthand we write

Pic(r) = Bio(r) fis(Q) (98)
hio(r) = Wig(r)gic(R) - (99)

The aim is to determine the asymptotically dominant functions ®;,(r) and ¥;,(r). The
angular parts fi,(Q2) and g;,(€2) are not of interest in the present context. Using the fact
that the KS potential of finite neutral systems behaves asymptotically as [47]

1
Voo (r) =% - (100)

the KS equation (33) leads to the following asymptotic equation

1142 1
<_§ ;dT2T T 51’0) ®is(r) =0. (101)
The asymptotic form of ®;,(r) is easily found to be

efﬂia"'

By (r) =5 pl/Pic (102)

T
with

Bic =V —2¢is - (103)

By virtue of Egs. (87) and (102), ¥;,(r) must satisfy the asymptotic equation

11d2 1 e Pior
(—5 ;W’f' - ; - 6i0> \I[Z'O'(T) = (WZ (T) - CZO’) rl/ﬁw r (104)
where we have introduced the quantity W;,(r) defined by
(Vo (¥) = tteio () "=F Wi (r)wiq (2) - (105)
From Egs. (96) and (97) we know that
Wis(r) =50 (106)

Inserting the ansatz

e_ﬂio'r
Tig(r) = pic(r) r (107)
in Eq. (104) we find that the function p;,(r) must satisfy the equation
Lo g o 4 Pio _ o /6 )
pia’ IBZO'pz'a- + ioT 1 Czo— ;é 0 (108)

r

2
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and

1 o . :
ipgla - IBiUpZU' + pL = _Witr(’r)rl/ﬂw if Cic=0. (109)

The asymptotic solution of Eq. (108) is immediately recognized as

pio(r) 725 =2 (/B +) (110)
i
so that
Tio(r) = —O—f" r1/Bio g=Bia if Ci, #£0. (111)
io
Writing
Pio(r) = Fig(r)r/Piet1 if Ciy=0 (112)

one readily verifies by insertion in Eq. (109) that

Fip(r) =50 (113)

as a consequence of (106).
We now prove statement (ii) of the lemma by reductio ad absurdum: Assume that
Cn,o # 0. Then the asymptotic form of Uy _,(r) is given by (111) and we conclude that

* C o -1 — *
U, (D)ono () F — 5 T I L I etr)

For i # N,, on the other hand, we obtain

2 _q ] N
Vi (1) pio (v) = Gz’a(r)r(" ) 2T g (Q) fio () (115)
where
_Cia/ﬁw if Cia 7é 0

G; = . 116
otr) {Fia(r) =¥ it Ci,=0 (16)

From this we conclude that the OEP integral equation
YN, o (T) N, o Z Vio (T)pic(r) + c.c. =0 (117)

is not satisfied for r — oo because the dominant term given by (114) cannot be canceled by
any of the other contributions (115) which all fall off more rapidly (cf. Eq. (35)). Conse-
quently the 1);, cannot be solutions of the OEP equation which is the desired contradiction.
This implies that C,, = 0 which completes the proof of statement (ii).

In order to prove statement (i) of the lemma we first investigate the asymptotic form
of the quantities uy;,(r). Employing the exact exchange-energy functional (27) we find

o (1) = — z_; %Kﬁa(r) (118)
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with

Kiiole) = [ byt Cie P00 (119)

Performing a multipole expansion of Kj;,(r) and using the orthonormality of the KS or-
bitals we find

1

Kiio(r) =3 . (120)
1 . .

Kjio(r) =% —m kiio($2) i F ] (121)

with some integer m > 2 that depends on i and j. Hence the sum in Eq. (118) must be
dominated asymptotically by the j = N, term:

Uxio (T) =% _%U(I(‘I)‘)KNUZ'G(I') . (122)

Using Egs. (120), (121) and the asymptotic behavior (102) of the KS orbitals we obtain

1
o () F (123)
and for ¢ # N,
r—Q (;*+*m) :
Uyio (r) = —r\PNoa Pic elBic=Broalr . (Q) . (124)

We recognize that uy;,(r) diverges exponentionally to —oo for i < N,. In the x-only case,
the quantities 1;,(r) satisfy the equation

<_v7 + VSO(r) - 51’”) w;'ka(r) = (an(r) — Uxio (I‘) - C’iU) (p;fa(r) (125)

where

Cia = ina — Uxig - (126)
In the following we prove statement (i) of the lemma by reductio ad absurdum: Assume
that Cn,, # 0. Then, by Eq. (123), the right-hand side of Eq. (125) for i = N, is

asymptotically dominated by —Chn, ¢}, »(r) and we obtain, in complete analogy to the
correlation-only case:

C
Un,o(r) = —No0 1.1/BNeo g BNoaT for Cn,s #0. (127)

IBNO-O'

For i < N,, the right-hand side of Eq.(125) is dominated by —uy;s(r)e}, (r). Using
Egs. (102) and (124) ;4. satisfies the asymptotic differential equation

114> 1 et i
(‘T%r——_w) i) = e ) e (128)
rar r

From this equation one readily concludes that

1 e
Tig(r) = 61\{7_5_7'(6%" m) e Pnoor , 1 < N, . (129)
a0 10
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We note in passing that all the functions ;,, i = 1...N,, have the same exponential decay,
e PNeoT  determined by the highest occupied orbital energy Bn,, = v/—2¢n,o. This fact
further supports the interpretation of the quantities 1;, (in the x-only case) as a shift
from the KS orbitals towards the HF orbitals: The HF orbitals ¢fF are known [48] to be
asymptotically dominated by the exponential decay e #Noo" of the highest occupied orbital.
The same holds true for the shifted KS orbitals (p;s + is)-

From Egs. (102), (127) and (129) we obtain

* C a -1 — *
D, o ()N, o(r) = —5% T(ﬁN"" )e 2ot o (D N, (82) - (130)
and
: TR N € = ) BT :
wig(r)goig(r) — 51\,7—5-7" Ngo io e oo TPia 'gio-(Q)in'(Q)az < No_. (]_3]_)
e io

Once again we conclude that in the OEP equation (117) the asymptotically dominant term
(130) cannot be canceled by any of the other terms (131), leading to the contradiction
that the 1, (r) are not solutions of the OEP integral equation. Hence we conclude that
Cn,s = 0 which completes the proof of the lemma.

The original proof [13] of statement (i) was based on the asymptotic form of the Green
function which is easily accessible only in 1D. Considering the 3D Green function, Krieger,
Li and Iafrate [19] made it plausible that the statement holds true in the 3D case as well.
An alternative proof was recently given [49] for the x-only case. This proof is based on
the scaling properties of the exchange-energy functional and can therefore not be general-
ized to the case of correlation. The proof presented above for the correlation part of the
OEP (statement (ii) of the lemma) is valid for all correlation energy functionals leading to
asymptotically bounded functions u.;,(r). For asymptotically diverging u.;,(r) the lemma
might still be valid. In particular, if the divergence is the same as the one (Eq.(124)) found
in the exchange case, the proof of statement (i) carries over. The lemma has a number of
important consequences which will be discussed in the following two subsections.

2.3.2 Asymptotic form

In this section we shall investigate the asymptotic form of the exchange and correlation
potentials. It will be shown that Vi,(r) and uyn,.(r) approach each other exponentially
fast for 7 — oo, and that the difference between Vi, (r) and ucn,,(r) decays exponentially
as well. Using the notation of the last section the detailed statements read as follows:
Theorem 1:

1 1
B(Ng—1)o0 BNgo

m) e~ (BNo—1)0=BNgo)T (132)

Vio (r) — uxn, o (1) = r(

where m is an integer satisfying m > 2.

Theorem 2: If the constant C(y,_1), defined by Eq. ( 88) does not vanish then

2 -2 41
Veo (T) — tien, o(r) Ti)or(ﬁ(zv,,_na BNy o )6—2(&%_1)0—,3%0)1“_ (133)

If C(n,-1)c = 0 the right-hand side of (133) is an upper bound of |Veo(r) —
UcN,o(T)| for r — o0, d.e. for C(n,_1)s = 0, Veo(r) and ucn,s(r) approach
each other even faster than given by the right-hand side of Eq. (133).
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To prove theorem 1 we write

e_/BNo-a""

Un,o(r) =q(r) (134)

r

Using the lemma of the last section ensuring that Cn,_, = 0, ¢(r) must satisfy the following
asymptotic differential equation:

1 _3; " _3; ! _(3 - "’1)
_ET Noo @' (1) + BN, o "Neoq(r) —r Noo q(r) = Vo (r) — uxn,o(r) - (135)

This is readily verified by inserting (100), (102) and (134) in Eq. (125). By virtue of
Egs. (35) and (131) the sum

Z djw )Pio (T (136)
must be asymptotically dominated by the i = (N, — 1) term which decays as

T/JEkNaq)a (r)(p(Ng—l)a (r)

1 1 —9_
r—Qo 1 T(BNGU +B(No-—1)0' 2 m) e (PNgotB(No-1)o)T (137)
ENyo — &(N,—1)o

This term cannot be canceled by any other term of the sum (136). Hence, for the OEP
equation (55) to be asymptotically satisfied, the expression (137) must be canceled by the
1 = N, term which behaves as

_1
YNyo (B)PN, o (r) = Q(T)T‘(ﬂNU" 2)6_%”"” : (138)

Equating the right-hand side of Egs. (137) and (138), the function ¢(r) is readily determined
to be

q(r) = 1 T(m%) e (Bo-1)0—BNga)T (139)
E€Nyo — &(N,—1)o
Finally, by inserting this result in the left-hand side of Eq. (135), we confirm that the
right-hand side of this equation decays asymptotically as stated in theorem 1.
To prove theorem 2 we write for the correlation-only case

eiﬂNJUT
U, o(r) = p(r)— (140)
Since Cn,, = 0, p(r) must satisfy the following asymptotic differential equation (cf.
Eq. (109)):
1 *g; " *5; ! _(B - 'H)
—ar T () 4 Bgor Terpl(r) — 1 er ) plr) = Vi () —teno () - (141)
If C(n,-1)0 # 0, the sum
Ny—1
Z Vi (0)pio (T (142)

is asymptotically dominated by the i = (N, — 1) term which, according to Eqs. (115) and
(116), decays as

2 4
YN, -1)0 (L) PN, 1)o(T) = T(B(NU*”" )672’8‘%‘1)” . (143)
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Once again this term cannot be canceled by any other term of the sum (142). Hence it
must be canceled asymptotically by the ¢ = N, term which behaves as

_1 o9
Vipo (D)N,o(r) =5 p(T)T(BN"" )e_m Neel (144)

Equating the right-hand sides of Eqs. (143) and (144) we can identify the asymptotic form
of p(r):
I T
p(r) « 7n<ﬁ’(1\r(,—1)a BNgo +1) e 2(BNo—1)0 =BNgo)T (145)

Insertion of this expression in the left-hand side of Eq. (141) proves Eq. (133) for the case
Cn,-1)0 # 0. If C(n, —1)s = 0 the asymptotic form of Ve (r) — ucn,»(r) cannot be stated
explicitly. It is clear, however, that the i = N, term (144) must be canceled asymptotically
by some contribution to the sum (142). Since, by Egs. (115) and (116), all contributions
to the sum (142) fall off more rapidly than the right-hand side of (143), p(r) must decay
more rapidly than the right-hand side of (145). Hence, by Eq. (141), the right-hand side
of (133) provides an upper bound of |Vey(r) — ucn, o (r)| for r — oo if Cn, 1), = 0. This
completes the proof.

Since the asymptotic form of uyn,.(r), as derived in Eq. (123), is —1, theorem 1

immediately implies that
1

Vi (r) =5° - (146)
This is a well-known result that has been obtained in several different ways [13, 14, 16, 19,
47,50, 51, 52]. The exact correlation potential of DFT is known [47] to fall off as —a/(2r%)
for atoms with spherical N and (N — 1)-electron ground states, with « being the static
polarizability of the (N — 1)-electron ground state. Theorem 2 provides a simple way of
checking how the OEP correlation-only potential V. (r) falls off for a given approximate
orbital functional EZPP*[{¢p;,}]: One only needs to determine the asymptotic decay of

ucNaa(r)-

We now turn to the discussion of the KLI potential. We shall demonstrate that the
above rigorous properties of the full OEP are preserved by the KLI approximation. To
this end we write the KLI approximation (76) separately for the exchange and correlation

potentials:
No
> 1o (1) (VM (x) — Usio(r) — (VAL = Uxig)) =0 (147)
i=1
N, - -
> lgio (1) (VIS (x) = Ueio () = (VI = Ueio ) ) =0 (148)
i=1
where, for convenience, we have introduced
1 ,
UX'L'U (I‘) = 5 (uXiJ(r) + Uxio (I‘)) (149)
and 1
Ucio (r) = 5 (Ucio () + tcio (r)) (150)

in order to deal with real-valued quantities only. Following the argument given in the
beginning of section 2.3.1 (Egs. (89) - (97)) we can assume without restriction that

Ves'l(r) =30 (151)
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Voo (r) =370 (152)
Ueio(r) =30 . (153)
This is because the structure of Egs. (147) and (148) is again such that an additive constant
in the potentials (151) - (153) cancels out. Of course, Eq. (153) is valid only for those

approximate orbital functionals E¢[{p;,}] leading to bounded functions uc;, (r) for r — oo
(cf. condition (86)).

In order to determine the asymptotic form of the KLI-x-only potential VXM (r), we first
investigate the asymptotic behavior of the term E,ﬁ’l |0io (r) [Puyis (r) appearing in the KLI
equation (147): By Egs. (118) and (119) the expression

Ng—1
|‘70Na0(r)|2uXNa0' ) + Z lpio (r ‘ Uxio (T)

can be written as

Ng—1 Ny
= [pn,o(r )| UxN, o (T) + Z Z‘Pw (P](J' )Kjio (r)
i=1 j=1
Ngs—1 N,
_ o2 [w R [ pio(®) \ [ e (T) > .
oot (N > Jz_:(m,a(r)) <so;*v,,a<r> ! )> |

Since K jj,(r) decays as an inverse power the double sum over ¢ and j must be asymptotically
dominated by the term with ¢ = N, — 1, j = N, so that

o )2 (o (1) + ‘P(Na—l)a(r)K e .
[N, o (r)|" | uxn, o (r) T ong (1) TN (o) (r)

The KLI equation (147) then yields
N, )
> i 5) [ VM) — o (1) — (VAH Ui )|
i=1
= |‘PNaa(r)|2 [VXIELI(T) — UxN,o(r) — (VXI%,IJ - ﬁxNaa)

P(No—1)o(T)
+ | ————K _1elr) +coc
( SONUU(P) Ny(Ny—1) (r) >

T Z Ieig@l” (VXELI(r)  Uio(r) — (VXI;,LI - UU))] —0. (154)
|‘;0N o

Since the KLI equation must be satisfied in the asymptotic region, the expression in square

brackets on the right-hand side of Eq. (154) must vanish identically for » — oo. The

term involving ¢y, _1),(r)/¥N,s(r) cannot be canceled by any of the terms involving

|0io (r)|2/|¢n, o (r)|? because the latter decay more rapidly. From this we conclude that

‘/)(IéLl(r) - UxNaO'( ) (VXI]<VLIU - ﬁXNga')

o P(No—1)o (I‘)

r

1

—> on (I‘) KNa(Nafl)O'(r) + c.c.
a0
1 1
= _T(B(er)a  BNgo _m)e*(b’(zv(,_na —BNgo)r (155)
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where, in the second step, we have used Egs. (102) and (121). Uxn,s(r) goes to zero
asymptotically (cf. Eq. (123)) and the arbitrary additive constant in VXM (r) had been
fixed in such a way that VX (r) vanishes asymptotically (cf. Eq. (151)). Hence Eq. (155)
immediately implies that [14, 16, 19]

VN = Uenyo (156)

and thereby

_ 1 1
VXIE_LI(P) — UXNO-O'(r) 7‘2}0 _rr-(ﬂ(No-—l)o' BNgo m)e_(ﬂ(Na-fl)a'_ﬁNo-o')T . (157)

We thus conclude that both the lemma, of section 2.3.1 and the theorem 1 are preserved
in the KLI approximation. Once again, Eqs. (123) and (157) immediately imply that
[14, 16, 19]

T—00 1
VELL T2 - (158)

For the correlation potential VEM(r) the considerations are even simpler. Dividing the

KLI equation by |¢n, ,(r)|? we find:

0= VcléLI(r) - UcNaa( C'N o Z |‘;0w (Vclém(r) - Ucia(r) - Oio) (159)
|QON0'0'

where

Cio :=VEM _ Uy . (160)

By Egs. (102), (152) and (153) all the r-dependent functions in (159) vanish asymptotically.
Since the KLI equation (159) must be satisfied for r — oo as well we readily conclude that

Cn,o =0 (161)
so that
Pic
VEL () — Uen, o Z |9|01;N (Cia — Veo (r) + UE(r )) ) (162)

If C(n,-1)s # 0, the right-hand side of (162) is asymptotically dominated by the i = (N, —1)
term and we obtain

__ 2 2
VCELI(I-) — U, (1) e T(E(Noq)a ﬂNo—a)e_2(ﬂ(No-—1)o-_ﬂNa0')T (163)

If C(n,-1)c = 0, the right-hand side of (163) is an upper bound of |[VELL () — Uen, o (1)
for r — oo. We note that VEM(r) and Uen,,(r) approach each other exponentially fast
for r — oo with the same exponential function as theorem 2 predicts for the full OEP.
However, the power of r multiplying the exponential function in (163) differs by 1 from the
power in theorem 2.

2.3.3 Derivative discontinuities

In the early eighties an unexpected property of the exact xc potential was discovered
[63, 54, 55]: Writing the density p(r) = M £(r) with a shape function £(r) integrating
to 1 and allowing for arbitrary (fractional) particle numbers M, the exact xc potential
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Vie[ME](r) is a discontinuous function of M. None of the standard density functionals
such as the LDA, gradient expansions or GGAs show these discontinuities. Once again
KLI were the first to point out [16, 19, 17] that the OEP correctly reproduces the required
discontinuities, as will be discussed below.

DFT is readily extended to systems where the density p integrates to a non-integer
particle number

M=N+w:/d3rp(r) with NeN, 0<w<1 (164)

(see [2] for a detailed description). In this generalization, a system with fractional particle
number N + w is described by an ensemble consisting of the N and N + 1 particle systems.
Specifically, the ensemble density pny, of the system with non-integer particle number
N + w is given by

prvta(r) = (1 w) py (x) +wpn 11 (r) (165)

where py and pyy1 are the ground-state densities of the N and N + 1 particle systems,
respectively. The ensemble energy is given by

Eniw=(1-w)Ey +wEN41, (166)
i.e., the energy for fractional particle number is obtained by connecting the ground-state

energies of integer particle numbers by straight lines. As a consequence,

0By

M 1
50 €R, (167)

(M)

jumps discontinuously if M passes through an integer. From (166) one obtains

-I1(Z): Z-1<M<Z
(M) = (168)
—AZ): Z<M<Z+1
where I(Z) is the first ionization potential
I(Z) = Ez_1(Z) — Ez(Z) (169)
and A(Z) the electron affinity
A(Z) = Ez(Z) — Ez41(Z) (170)

of a system with nuclear charge Z, electron number M and energy Fj;(Z). Using the HK
variational equation

SE[p]
= u(M (171)
3o(e) |y~ M)
we can express the derivative discontinuity of the total-energy functional
A = lim { OFlpl|  _ OBl } (172)
w—=0 | dp(r) Netw dp(r) In_w o
in terms of the chemical potential
= lim {p(N + w) — p(N —w)} . (173)
w—0
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By virtue of Eq. (168) we obtain
A =1I(N)—- A(N). (174)

This fundamental equation shows that the derivative discontinuity of the total-energy func-
tional is identical with the band gap of an infinite insulator and, in the case of finite species,
with twice the chemical hardness. A glance at the expression for the total energy (16) shows
that only two terms may contribute to the derivative discontinuity, namely 75 and E\..
In order to further evaluate the derivative discontinuity of the interacting system, we first
observe that for a system of N non-interacting particles the derivative discontinuity Ay onint
of the total energy

. = lim OBlp] - Ll
Anonmt - tl—)o{ 5p(r) Netw (5,0(1‘) N—OJ}
. 5Ts[p] _ 5TS[P]
- iﬁo{ op() |yyy  Op(T) N_w} (175)

is given by
Anonint = Inonint — Anonint = 5N—|—1(N) —EN (N) (176)

where ¢,,,(M) denotes the m-th single particle orbital of the M-particle system. If the
right-hand side of Eq. (175) is evaluated at the ground-state density py of the interacting
N-particle system, the non-interacting system leading to this density is the KS system and
the resulting discontinuity is

Anoning = enr1 (V) —eX°> (V) . (177)

N_‘“}PN

Hence the total discontinuity of the interacting system

_ o ) OEp]
A = ul;lg%){ép(r)

~ 0E[p]
N+w 5p(r)

_ { 0T o] 0T [p] }
= lim -
w=0 | 0p(r) Iy Op(r) Iy o -
w—0 | dp(r) Ntw dp(r) |In_y )
can be written as
A= Af“fosnint + AXC (179)
where
Ay = lim { 0Bxe|p] - 5EX°[p]‘ } : (180)
w—0 | dp(r) Netw dp(r) In_u o
As it is known [47] that
I=—-e5(N) (181)
and
A= e (N +1) (182)
it follows from Egs. (174), (177) and (179) that
Ase = eni(V + 1) — e (V). (183)
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Figure 1: Screening and screening response potentials Vi (r) and V}I*P(r) for Ca from the
OEP and KLI method.

We will now investigate the xc-potential. First we observe that the exact xc-energy
functional may be written in terms of the (coupling-constant averaged) pair-correlation
function gy, [p](r, ') as

/pa )p(r’( ) /
Byelp] = z [ [ o PR e s < 1) (184)

Following van Leeuwen, Gritsenko and Baerends [56], the xc-potential may be split up in
the following manner:

Vieo (1) = Vi (v) + Vo' (r) (185)

where the screening potential is defined as

p
Vi) = 3 [ @ £ Gealelte ) 1) (186)
and the screening response potential as

res / n Po’ ( )pa (( ) ”) 590’0” [p](r',r")
chap ;’//ds d3 |I‘I I./I| 5pa(r) ° (187)

As the xc-energy may be written as
Bl = 5% [ dr oV (o) (188)
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it is obvious that the discontinuity of the xc-potential will only show up in the screen-
ing response potential and not in the screening potential, as the xc-energy itself must be
continuous as a function of particle number.

In the x-only limit, the pair-correlation function is given by

no__ B E%"le WigWjioPio (I‘)QO;FU (rl)QOjJ(rl)(P;a(r)
9x oo’ [p]( ’ ) - (1 Do (r)pa(rl)

) 500’ (189)

where w;, denotes the possibly fractional occupation number of the orbital io. Substitution
into (186) gives for the exchange part of the screening potential

SCr r) = 1 & . (r : (r 2
Vi) = g X o 0l () (190)

which is responsible for the 1/r behavior of Vi, for large r. By comparison with the exact
potential in the form of Eq. (70) the exchange part of the screening response potential is
identified as

Vi (r) =

() Za [(ina - ﬂxz’a) ‘@ig(r”z +V (¢io—(r)v(pig(r))] . (191)

i=1

The last term in the above expression is the one omitted in KLI approximation and therefore
known to be small. The first term, on the other hand, shows a clear step structure. It is
almost constant within the atomic shells where the orbitals vary little and changes rapidly

5.0
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3.0

(n [a.u.]
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g ——- KLl w=10
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Figure 2: Derivative discontinuities in the screening response potential V™" (r) for Ca*
for Ny = 9 + w electrons from the x-only OEP and KLI method.
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at the atomic shell boundaries, where the orbitals decay. This is clearly visible in Figure
1 where the screening and screening-response potentials from the OEP and KLI method
are plotted for the Calcium atom. The step structure, first discovered by van Leeuwen
et. al. [56], is responsible for the discontinuity of the total exchange potential as a function
of particle number. As the particle number changes through an integer N to N + w with
w << 1 and a new outer shell is started to be filled, a new step is added to VP (r), shifting
the total potential by a constant, i.e. by A. In Figure 2 this discontinuity is plotted for the
Calcium ion. Clearly, the OEP and KLI methods give very similar results. This constant
shift has no effect on the KS orbitals in the limit of vanishing w as the KS equation (33)
is invariant under additive constants to the KS potential. This is consistent with the fact
that the density, being just the sum of the absolute squares of the occupied orbitals, is a
continuous function of the particle number.

2.4 Hartree-Fock versus x-only OEP, a comparison

In this section we compare the x-only OEP scheme with the Hartree-Fock (HF) method.
Both approaches are based on the same total-energy functional:

Bulterll = X 5 [dreinfe) (~192) guote)

o=",} i=1

+/‘drvext /d3/d3lp "
r—r|

1 Z /d3 /d3 ) Po(r Po—(|1‘ ,T) (192)

O’Ti

where
Z Py (t) g (1) - (193)

In HF, this total energy functional is mlmmlzed without restriction (except for orthonor-
mality of the orbitals), leading to the variational equation

<_v7+uext<r>+/d3r |f ) /d"’ ,,, ) vip (') =€ig %ig (r). (194)

This single-particle Schrodinger equation features a non-local effective potential. By con-
trast, in the OEP method the total-energy functional (192) is minimized under the sub-
sidiary condition that the orbitals come from a local potential, i.e.,

where V.OFF (r) is determined by the integral equation (82). Since the self-consistent HF
solutions of Eq. (194) yield the lowest possible value of (192) the energy obtained from the
self-consistent OEP scheme is necessarily higher:

V2
<—7 + Vexs (T) + /d3 ) + VOEP(p )) oS (r) = eRSpKS(r) | (195)

EHF < EOEP (196)

The difference between the two, however, turns out to be very small as we shall see in
section 4.
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A well-known consequence [48] of the non-locality of the HF potential is the fact that
the occupied HF orbitals all have the same exponential decay:

OHF (1) "2 e BNao™  foralli < N, . (197)

The orbitals resulting form the OEP, on the other hand, fall off each with its own orbital
energy
RS (1) "= e PioT for all 4. (198)

In HF, the effective potential acting on an unoccupied orbital ¢¥ (r) falls off exponentially.
This is most easily seen by rewriting the exchange term as

HF !
X Py (r,r')
(EFEF) ) = [ P )

No HF (1.
(-3 gttt e (199)
i=1 Tuo

where

K (r) — /d3rl P (r)pug (r') - (200)

tuo |r — /|
The term in curly brackets can be interpreted as a local exchange potential (which depends
on the orbital it acts on). Since Ki.X falls off with a power law (cf. Eq. (121)) the local
exchange potential in curly brackets falls off exponentionally if ©!F (r) is a virtual orbital,
and hence the total HF potential falls off exponentially as well. As a consequence the HF
potential can support very few (if any) unoccupied bound states which are a very poor
starting point if used as a lowest-order approximation for excited states. By contrast, the
x-only OEP falls off as —1/r (cf. Eq. (146)) for all orbitals, including the unoccupied ones.
In recent calculations of excitation energies, the unoccupied OEP eigenvalues were found to
be an excellent starting point [25, 26, 27, 57, 58]. Likewise, the band gap of semiconductors
and insulators is much too large in HF while the x-only OEP yields band gaps rather close
to experiment (see also section 4.4).

3 Relativistic generalization of the OEP and KLI methods

In the previous section the use of orbital-dependent xc-functionals was discussed within
the context of nonrelativistic DFT. Relativistic effects were completely neglected. How-
ever, if heavier elements come into play, relativistic contributions become more and more
important: For example, the ground-state energies of high-Z atoms or the bond lengths
of molecules are changed considerably [59]. Also, the importance of relativistic effects in
solids was recognized long ago [60].

In this section, we present the generalization of the OEP and KLI methods to the realm
of relativistic systems. Before doing so, we first briefly outline the fundamental ideas of
relativistic DFT (RDFT).

Similar to non-relativistic DFT, a HK theorem can be proven which can be summa-
rized as follows [61]: The renormalized ground-state four current j”(r) of an interacting

system of Dirac particles uniquely determines — up to within a gauge transformation — the

o

external static four potential Ag

[7“] as well as the ground-state wave function ¥[j¥]. As
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a consequence, any observable of the relativistic many-body system under consideration is
a unique functional of the ground-state four current. (For a more detailed discussion of
RDFT, also including questions of renormalization, the reader is referred to recent reviews
[62, 63].) As usual, the exact four current of the interacting system can in principle be
obtained from an auxiliary non-interacting system — the relativistic Kohn-Sham (RKS)
system [62, 64, 65, 66]:
)= Y () ek(r) (201)
—c2<sk§€N
Here and in the following, we assume that vacuum contributions can be neglected.
This means that we restrict ourselves to the calculation of relativistic effects and ignore
radiative corrections. Since we aim at electronic structure calculations for atoms, molecules
and solids, the neglected terms are expected to be small.
The four-component spinors ¢ (r) are obtained from the single-particle Dirac equation

Yo (—iey - V + & + 3, 45[7)(x) ) () = exepn(r) (202)
(for notational and metric conventions cf. [67]). The local effective potential A%[j¥](r) is
given by
Kr v W 3 Iju(rl) wrav
ALLI) = A§w) + [ P T AL (209)

where the first term is the static external potential, for example the potential of the nuclei
assumed at rest. The second term represents the Hartree potential, whereas the last term
denotes the xc four potential defined by

B[]
ju(r)
with the relativistic xc energy functional Fy.[7”] now being a functional of the four current

j¥. Egs. (201)-(204) represent the relativistic KS (RKS) scheme which has to be solved
self-consistently.

A [3")(r) = (204)

3.1 Relativistic optimized effective potential method

Similar to the nonrelativistic case, the HK theorem, applied to the non-interacting system,
guarantees that the RKS spinors are unique functionals of the ground state four current.
Therefore, every relativistic xc functional

Eye = xc[{(Pj}] (205)

depending ezplicitly on the set of single-particle spinors {¢;} is an implicit functional of j”.
To calculate the corresponding xc four potential A#.(r), one has to resort to the optimized
potential method, now generalized to the realm of relativistic systems subject to static but
otherwise arbitrary external four potentials [68].

The relativistic OEP (ROEP) integral equation can be derived in close analogy to its
nonrelativistic counterpart: We again start out from the very definition of the xc four
potential, Eq. (204). By applying the chain rule for functional derivatives, one obtains
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Y )
A () )

= > [ [a ( SERC [{io}] bk (r') +C.C‘> 0450(x") 06

Spr(r')  5Asy(r") dj#(r)

—c2<ep<en

As in the non-relativistic expression (41), the first functional derivative is readily calculated
once an approximation for Eyc[{¢;}] is given. The last functional derivative in Eq. (206)
is identified with the inverse of the static response function of a system of non-interacting
Dirac particles, defined as

45" (r)

Ny N . 2

Xs (r,r'): 5 A5y () (207)
such that Eq. (206) can be rewritten as
SEZPTP [{p;}] der(r')
AROFP (1) _ /d3 " xc j k 4ee | xal (1) .
i ( ) —C2<8k<6N &Pk(rl) 5ASV(I'") XSV“( )

(208)

Acting with the response operator (207) on both sides of Eq. (208) and using the identity

/dsr Xgiu(r", r) X (r,') =67 6(r" — ') (209)

leads (after rearranging the indices) to

/ sROEP 3 /5E>I§:OEP[{<PJ'}] dpp(r')
/d3 Aver - (F) xg' (') = Z /d T Sor(™)  5Asu(r) +c.c. (210)

—c2<ep<en

The remaining functional derivative dyy/0Ag, can be calculated by using first-order per-
turbation theory, yielding

Ekp — &

dpp(r ) o(r')
545y (1) Z )" (r) . (211)
l;ék

Once again, this expression can be used to express the response function

v d _
X (r,r') = 5 Agy () ( > Wk(r)WHSOk(I')> (212)
v —c2<ep<en
in terms of the RKS spinors:
v @k (t) v i (r') @i (r)y" i (r
Xg' ()= > klr lg(k )_ 61( Ner) | e (213)

—c?<ep<en l;k

Finally, putting Egs. (210), (211) and (213) together leads to the relativistic generalization
of the OEP integral equation:

> far («sk( ')y AROEF (1)

—c?<ep<en

SEZOEP [{p5}]

dpp(r!) ) Gsk(r',r) 707”%(1‘) +c.c.=0

p=0,1,2,3 (214)
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where

Gor(r',r) =% i)l (r) (215)

These four integral equations determine the local xc four potential A¥.(r) — up to an

AROEP

r) to vanish asymptotically
XCLL

arbitrary constant which can be specified by requiring
(for finite systems) — and have to be solved self-consistently with the RKS equation (202).

3.2 Relativistic KLI approximation

In close analogy to the nonrelativistic situation, one has to deal with the ROEP integral
equations numerically. Owing to the four-component structure of Eq. (214) and to the
fact that four integral equations have to be solved, considerably more effort is needed to
determine the xc four potential A% (r) as compared to the nonrelativistic case. Therefore,
a simplified scheme for the calculation of A%, (r), leading to the relativistic generalization
of the KLI approximation discussed in section 2.2, is presented in the following [68].

By defining

ROEP
SR

vl = [dr (gak(r')w"ASc%EP(r') S

) ésietn (216)
one can rewrite the ROEP integral equation as

> k()Y er(r) +cc. =0, (217)

—c2<ep<en
where the adjoint spinor v (r) is defined in the usual way, i.e.
Pi(r) = e (218)

The quantity ¢};(r), although being a four-component object, closely resembles its namesake
introduced in Eq. (54): One readily proves the orthogonality relation

[ &ruleen) =o. (219)

Furthermore, its physical interpretation discussed in section 2.2 remains valid in the rel-
ativistic domain. Again, a differential equation that uniquely determines w,t(r) can be
derived again. To demonstrate this, we use the defining property of Ggx(r',r)

Gon(r',r) (hfy —ex) = — (' — 1) — i)} (r) (220)
where the operator iAL;B denotes the hermitian conjugate of the RKS Hamiltonian, i.e.
R (I i 2 v
hy == (zc'y- V +c¢“ + v Ag,,(r)> , (221)

acting from the right on the unprimed variable of Ggy(r',r) (the arrow on top of the
gradient indicates the direction in which the derivative has to be taken). Using Eq. (220),
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we can act with the operator (BL — ¢r) on Eq. (216), leading to the differential equation
determining ¢;2(r):

i) (hh — &)

3.1 ! ! 5EROEP ! 7t
— A v XC
- _/d r (gok(r )VVAXC(I‘ ) - (5g0k(r,) ) GSk(r ,I') (h’D - Ek)
_ v SEROPT TROEP _ f
= - (‘Pk (r)"/VAxc(r) - 5@}:(1,) + (Axck - chk:) P, (I‘) ) (222)
with the constants ARQEF and iy introduced in accordance to Eq. (60), i.e.
ARG i [ @ (o) AR (1) () (223)
and ROEP
OFE
— . 3 XC
e = [ d'r oy P (224)

Eq. (222) can now be used to further transform the ROEP integral equation (217). We
therefore multiply Eq. (217) by A%(r):

Y ARy ek(r) +ce. =0 (225)

—c?<ep<en

and employ Eq. (222), solved for AOS(r)zp};(r), to obtain

B , § EROEP B )
> (@@ AR () - = — (AR — ) 0L ()

—c2<ep<en o (I‘)
) (e ¥+ =y As(r) = 2Pk) JaPrrn(e) + e =0, (220
Defining the 4x4-matrix
uv ._1 = Va0 0 297
T =5 3 (@@ er(r) + e (227)
—c2<ep<en

we rewrite Eq. (226) as

j“”(r)Afc?,EP (r) = % Z (aﬁck(r) + @k (r) Y i (r) (AECC,)CEP — ﬂxck) ) +c.c., (228)

—c?<ep<en

where af_,.(r) is a shorthand notation for

e () = WC(I,)WOWN%(I‘) — Pi(r) (ic"/'e +& = As(r) - 70€k> Pyt er(r) (229)

In order to solve Eq. (228) for AROEP(r)  we first have to demonstrate that the 4x4-

XCL

matrix J(r) defined by Eq. (227) is nonsingular, i.e. that the inverse J !(r) exists. Using
the commutator algebra of the y-matrices

i =24", (230)
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where ¢”* denotes the metric tensor and the fact that the hermitian conjugate of +* is
given by

v

;
7 =70, (231)
JH¥(r) can be rewritten as

T (r) = j*(x) g"° — j°(r) g + " (r) "° . (232)

From this equation the determinant of [J(r) is easily calculated:

i) gHr) ) 73(r)

o (T — | ITE 5w _ 4r< _ j?(r))

det (J(r)) = j2(r) jo(r) =p(r) |1 2p2(r) (233)
73 (r) 7°(r)

where, in the last step, the four current was decomposed into the density and the spatial
component of the current according to

. 1,
@) = (). £3w) - (234)
Since p(r) > 0 and j(r)/cp(r) represent the velocity field v(r) < 1 of the system, one obtains
det (J(r)) >0 (235)

proving that the inverse J1(r) exists.
Therefore, Eq. (228) can be solved for the xc four potential:

AROPP () = 2 7,00 DD (aen(e) + Bl s ) (ABEP — ) ) + . (236)

—c?<ep<en
This equation represents an exact transformation of the ROEP integral equation (214). In
particular, due to the appearance of the quantity w,t(r) in a? . (r), Eq. (236) is still an inte-
gral equation. Similar to its nonrelativistic counterpart, Eq. (70), a simple approximation
is obtained by completely neglecting all terms involving w,t(r) in Eq. (229). The resulting

equation representing the relativistic generalization of the KLI approximation is then given
by

RKLI | 5E>IcicOEP 0_v -y ARKLI  —
Axcp, (I‘) =5 jpy (I‘) Z T ‘-Pk(r) + Jk (I‘) (Axck B U’XCk) +c.c.
2 ) dpr(r)
—c*<ep<en
(237)
where the orbital current is defined as
Jr(r) == @r(r)v" pr(r) (238)

Although still being an integral equation, this RKLI equation can be solved explicitly in
terms of the RKS spinors. This can be seen by multiplying Eq. (237) by j/(r), summing
over all u and integrating over space, yielding

B _ . 1 _ %
AT = AT+ > My (AchkLI -3 (e — chk)) (239)

—c2<ep<en
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where

s .1 2By it 1 SEROEP 4
el ©= 5/ iy (r) T, (r) ) > (W’Y 7 o (r) + C-C-) (240)
—c?<ep<en
and
My = [ &t T3 05 ) (241)

The unknown coefficients (AREL — £ (4, — 4% ,)) are then determined by the set of linear

equations

1 - 1 - 1
S (30— M) (A= S (o — 8 ) = (A= 5 ( — k) (202)

—c2<ep<en

Inserting the result in Eq. (237) we finally obtain an expression for the xc four potential

ASCI;LI(r) that depends explicitly on the set of single-particle spinors {¢;}.

3.3 Relativistic OEP in the electrostatic case

In the previous section, we discussed the extension of the OEP method to relativistic sys-
tems subject to static but otherwise arbitrary external fields. In particular, the ROEP
method allows one to deal with external magnetic fields of arbitrary strength. In elec-
tronic structure calculations for atoms, molecules and solids, however, we most commonly
encounter situations where no magnetic fields are present (in a suitable Lorentz frame,
typically the rest frame of the nuclei). In this so-called “electrostatic case”, the general
approach presented above can be considerably simplified.

We consider the situation where the spatial components of the external four potential
vanish, i.e. Aex(r) = 0. (This also includes a partial fixing of the gauge.) Then, one
can derive a simplified Hohenberg-Kohn-Sham scheme [63, 64, 69] stating that the zeroth
component p(r) = jo(r) of the ground-state current density alone uniquely determines
the scalar external potential V' = V[p| as well as the ground-state wave function ¥[p].
Consequently, only the scalar effective potential Vs(r), given by

Vslpl(e) i= Vess(6) + [ d'r |r”fri.,| + Vielpl(@), (243)
with 5Eyel]
__ 0Ex[p

VXC [p] (r) M (5,0(1‘) I (244)

is present in the RKS equation (202). By applying the definition for Vi.(r) to the case
of explicitly orbital-dependent xc functionals Ey.[{¢;[p]}], we obtain the ROEP integral
equation for the “electrostatic case”:

ROEP
OB

czggw/d%’ (@;(I‘I)VX%OEP(F') - W) Gsi(r',r) r(r) + cc. =0. (245)

Although this equation, first derived in the x-only limit by Shadwick, Talman and Norman
[69], is considerably simpler than the ROEP integral equation (214), its numerical solution
is still a very demanding task and has been achieved so far only for spherical atoms [63,
64, 69, 70].
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In order to avoid a full numerical treatment of Eq. (245), one can again derive an
RKLI approximation. Following the arguments in section 3.2, the RKLI equation for the
“electrostatic case” is:

VRKL(r) = >

2p(1‘) —c?<ep<en

( 5 E}:ZOEP

S¢p(r) @r(r) + pr(r) (_X%;?LI — ﬂxck)> +c.c., (246)

with V.RELL defined similar to Eq. (223). As in the nonrelativistic case, this equation
can be understood as a mean-field-type approximation to the full ROEP integral equation
(245) [68]. Furthermore, the RKLI equation (246) closely resembles its nonrelativistic
counterpart, Eq. (76). In section 4.2, we will show that the RKLI approximation (246) is
highly accurate when applied to the calculation of relativistic effects in high-Z atoms.

To conclude this section, we emphasize that the results of this section can not be ob-
tained as a well-defined limit of the results of the sections 3.1 and 3.2 but must be derived
separately within the framework of RDFT in the “electrostatic case” [63, 64]. This is be-
cause the basic variables of the underlying HK theorems are different: In the “electrostatic
case”, the density p(r) alone is sufficient to determine all ground-state properties of the
relativistic, interacting many-body system, whereas the four current j#(r) must be used
when arbitrary external four potentials are considered. This does not mean that the spatial
components j(r) of the four current vanish in this case; they are simply functionals j[p](r)
of the density.

4 Numerical results

4.1 Exchange-only calculations for nonrelativistic systems
4.1.1 Atomic systems

The x-only limit of the xc energy functional is given by the exact Fock term, Eq. (27).
As explained in the preceding section, the OEP method then provides the corresponding
exchange potential V®*2(r) and therefore represents the exact implementation of x-only
DFT. Consequently it provides a benchmark for testing approximate exchange energy func-
tionals employed within the Kohn-Sham scheme. In this section, we will review selected
results of fully self-consistent x-only calculations performed with the OEP method and the
KLI approximation to it [13, 14, 16, 17, 18, 19, 20, 21, 22, 33, 36, 37, 38, 42, 44, 52, 71, 72,
73, 74] as described in section 2. For comparison, we list the results from traditional KS
calculations using the x-only LDA (xLDA), where the exchange energy is given by

R it) : py) [ #rokio) (247)

the generalized gradient approximation (GGA) due to Becke (B88) [75],

4 2
EB88[5) = ELDA[p) — dPrpd (r Zelr) 2
x 1Pl = Ex7pl 5[;:#/ p()(1+6ﬁxa(r)8inh_1%(r)) o
where
2o(r) = (Y20 249
ps (r)

35



and = 0.0042, and the GGA due to Perdew and Wang (xPW91) [76, 77, 78], which may

be written as
BV =3 () X [ (5,w) (250)

U:Tan
with
~ 1+0.19645s sinh™'(7.79565) + (0.2743 — 0.1508 exp(—100s?)) s>

F(s) = (251)
(1 + 0.19645s sinh 1 (7.79565) + 0.00454)

and v
5,(r) = %. (252)
(672)% pz (r)
We will also give results obtained with the xLDA-SIC functional
No
EPA U pi0}] = BPAprpll = Y0 Y EXPM el 0]
o="mli=1
L 5~ X2 [ oy [ e 10100 i ()2
_§;Z/dr/dr' - (253)
o=, i=1
(254)

employed within the KLI scheme for comparison. We will refer to this method as xLLDA-
SICKLI, respectively. As it has been found [43] that the exact OEP for the xLDA-SIC
functional yields results which differ only marginally from the ones obtained with the KLI
approximation, we will not list them here. In addition, we include the results of spin-
unrestricted HF (SUHF) calculations, taken from [15].

For the OEP, KLI, B88, PW91 and xLDA calculations we have used a numerical code
which solves the radial part of the Schrédinger equation (33) on a logarithmic mesh by
the Numerov method as described in [79]. For non-spherical open-shell systems angular
averaging was used in order to calculate the density and the exchange energy according to
the Fock expression (27), for the latter in the form suggested by Slater [80]. Therefore,
an analytical treatment of the angular parts was possible for all systems. The SIC-LDA
energy functional was evaluated using spherically averaged total and orbital densities, as it
was found [43] that the use of the exact nonspherical densities results only in minor changes
of a few tenths of a percent. The OEP integral equation (48) for the radial variable r,

o0
/ dr' K (r, Vo (') = L, (r) (255)
0
with N
K, (rr') =S P [ R0l gt ()G (12 ) i (1) (256)
o\T, = . Pig\T sio\T, T )Pio\T
=1
and N
1) =3 [ T8 [ a0t d00 gt (Yo () i (e, )i (1) (257)
o = an Pig\T )Uxio\T sio\T, T )Pio\T
=1

was solved on the same mesh as the radial Schrodinger equation by numerical quadrature.
The radial parts of the functions Gg;,(r,r’) were obtained from the radial parts of the

36



Table 1: Absolute total ground-state energies for H through Ar calculated self-consistently
employing various x-only approximations. SUHF results have been taken from [15]. All
numbers in atomic units.

SUHF OEP KLI B88 PW91 xLDA xLDA-SICKLI
H 0.5000 0.5000 0.5000 0.4979 0.4953 0.4571 0.5000
He 2.8617 2.8617 2.8617 2.8634 2.8552 2.7236 2.8617
Li  7.4328 7.4325 7.4324 7.4288 7.4172 7.1934 7.4342
Be 14.5730 14.5724 14.5723 14.5664 14.5543 14.2233 14.5784
B 24.5293 24.5283 24.5281 24.5173 24.5035 24.0636 24.5490
C  37.6900 37.6889 37.6887 37.6819 37.6658 37.1119 37.7450
N 54.4046 54.4034 54.4030 54.4009 54.3824 53.7093 54.5064
O 74.8136 74.8121 74.8117 74.8148 74.7964 73.9919 74.9624
F 99.4108 99.4092 99.4087 99.4326 99.4130 98.4740 99.6351
Ne 128.5471 128.5454  128.5448 128.5901 128.5689  127.4907 128.8586
Na 161.8590 161.8566 161.8559 161.8834 161.8613 160.6443 162.2170
Mg 199.6146  199.6116 199.6107 199.6320 199.6120  198.2488 200.0273
Al 241.8768 241.8733 241.8723 241.8829 241.8617  240.3561 242.3409
Si 288.8545  288.8507  288.8495  288.8551  288.8320  287.1820 289.3775
P 340.7193 340.7150 340.7137  340.7107  340.6857  338.8885 341.2989
S 397.5063 397.5016 397.5002  397.4921 397.4665 395.5190 398.1483
Cl 459.4826 459.4776  459.4760  459.4697  459.4426  457.3435 460.1966
Ar 526.8175 526.8122 526.8105 526.7998  526.7710 524.5174 527.5994

orbitals @;,(r) and the corresponding complementary solutions of the radial part of the
Schrodinger equation (33). A more detailed description may be found in [13, 72, 37].

In Tables 1, 2 and 3 we show the total ground-state energies obtained with the x-only
DFT methods mentioned above and the SUHF scheme for neutral atoms with nuclear
charge Z from 1 to 54. The OEP ground-state configurations used for the transition
elements are listed in Table 4.

Comparing the first two columns of Tables 1, 2 and 3, it is evident that the SUHF and
OEP results are very close to each other [9]. For some transition elements marked with an
asterisk in Tables 2 and 3 the SUHF results have been obtained as expectation value of the
Hamiltonian with respect to a linear combination of two or more Slater determinants in
order to ensure a wave function exhibiting the appropriate symmetry, whereas the OEP and
the other DFT calculations have been performed with a single-determinant wave function.
This is the reason why for these systems the difference between the two values is larger.
OEP and KLI results using more than a single Slater determinant have been performed by
Li et. al. [15].
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Table 2: Absolute total ground-state energies for K through Kr calculated self-consistently
employing various x-only approximations. For elements denoted with an asterisk the SUHF
results have been obtained by using wave-functions consisting of more than one Slater de-
terminant, whereas the DF'T results are obtained with a single-determinant wave function.
SUHF results have been taken from [15]. All numbers in atomic units.

SUHF OEP KLI B88 xPW91 xLDA

K 599.1649 599.1591 599.1571 599.1483 599.1194 596.7115
Ca 676.7582 676.7519 676.7497 676.7529 676.7262 674.1601
Sc 759.7359 759.7277 759.7249 759.7567 759.7294 757.0083
Ti*  848.4066 848.3802 848.3772 848.4360 848.4078 845.5307
V* 942.8856 942.8569 942.8539 942.9369 942.9078 939.8733
Cr  1043.3568 1043.3457 1043.3422 1043.4917 1043.4564 1040.2732
Mn 1149.8698 1149.8600 1149.8569 1149.9671 1149.9360 1146.5831
Fe  1262.4500 1262.4380 1262.4344 1262.5851 1262.5543 1259.0385
Co* 1381.4186 1381.3818 1381.3781 1381.5710 1381.5400 1377.8606
Ni*  1506.8303 1506.8340 1506.8303 1507.0634 1507.0321 1503.1881
Cu 1638.9642 1638.9523 1638.9481 1639.2804 1639.2473 1635.2392
Zn  1777.8481 1777.8344 1777.8307 1778.1196 1778.0870 1773.9099
Ga 1923.2612 1923.2487 1923.2454 1923.4735 1923.4402 1919.0951
Ge  2075.3603 2075.3483 2075.3453 2075.5287 2075.4937 2070.9811
As  2234.2399 2234.2281 2234.2251 2234.3657 2234.3291 2229.6475
Se  2399.8691 2399.8573 2399.8543 2399.9654 2399.9289 2395.0759
Br 2572.4418 2572.4300 2572.4269 2572.5159 2572.4780 2567.4546
Kr  2752.0550 2752.0430 2752.0398 2752.1006 2752.0613 2746.8661

As, by construction, the SUHF scheme gives the variationally best, i.e. lowest total
energy, the x-only OEP solutions are always somewhat higher in energy, with the exception
of one and two electron systems where the two methods coincide. The largest difference
occurs for Be where the ground-state energies differ by 41 ppm. The disagreement decreases
with increasing atomic number to about 2 ppm for Xe. We point out that these differences
are due to the different nature of the HF and DFT approach and are resolved by the
correlation contributions, which are defined differently for each scheme [81]. Therefore, the
quality of the approximate x-only DFT approaches has to be judged by comparison with
OEP rather than HF results [9].

To assess the quality of the KLI approximation, we have plotted on the left-hand side
of Figure 3 the deviation of the KLI from the exact OEP results as a function of atomic
number. As both methods use the same total energy functional but the KLI scheme yields
an approximate one-particle potential, the inequality EOFF < EXLI [16] is always satisfied.
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Table 3: Absolute total ground-state energies for Rb through Xe calculated self-consistently
employing various x-only approximations. For elements denoted with an asterisk the SUHF
results have been obtained by using wave functions consisting of more than one Slater de-
terminant, whereas the DF'T results are obtained with a single-determinant wave function.
SUHF results have been taken from [15]. All numbers in atomic units.

SUHF OEP KLI B88 xPW91 xLDA

Rb  2938.3576 2938.3455 2938.3421 2938.3909 2938.3517 2932.9835
Sr 3131.5457 3131.5334 3131.5299 3131.5791 3131.5422 3125.9981
Y 3331.6846 3331.6710 3331.6670 3331.7256 3331.6880 3325.9712
Zr*  3539.0117 3538.9700 3538.9656 3539.0327 3538.9941 3533.1035
Nb  3753.6006 3753.5855 3753.5807 3753.6672 3753.6223 3747.5635
Mo 3975.5530 3975.5371 3975.5320 3975.6140 3975.5678 3969.3323
Tc  4204.7949 4204.7793 4204.7741 4204.8362 4204.7943 4198.3724
Ru* 4441.5409 4441.5088 4441.5032 4441.5925 4441.5498 4434.9512
Rh* 4685.8822 4685.8485 4685.8429 4685.9394 4685.8959 4679.1175
Pd  4937.9210 4937.9060 4937.9016 4938.0157 4937.9712 4931.0100
Ag  5197.6989 5197.6815 5197.6758 5197.7652 5197.7196 5190.5783
Cd  5465.1331 5465.1144 5465.1084 5465.1907 5465.1463 5457.8218
In  5740.1694 5740.1514 5740.1455 5740.1999 5740.1550 5732.6492
Sn  6022.9325 6022.9149 6022.9091 6022.9450 6022.8985 6015.2128
Sb 6313.4870 6313.4697 6313.4639 6313.4799 6313.4318 6305.5658
Te  6611.7856 6611.7683 6611.7625 6611.7725 6611.7246 6603.6768
I 6917.9814 6917.9642 6917.9582 6917.9671 6917.9181 6909.6900
Xe 7232.1384 7232.1210 7232.1150 7232.1165 7232.0662 7223.6572

The results differ only slightly [15, 16, 19], the difference being largest for Li with 13 ppm
and dropping to 0.8 ppm for Xe. For one and two-particle systems the KLI approximation
is exact and thus gives total energies identical to the exact OEP solutions. The mean
absolute deviation from the exact DFT values provided by the exact OEP scheme for all
atoms displayed in Tables 1, 2 and 3 is only 3.1 mH.

Turning to the conventional approximations, i.e. to explicit density functionals, the
high accuracy of the KLI approximation becomes evident. In Figure 3, we have plotted
the difference between the exact total x-only ground-state energies and the results of the
two GGAs for the atoms listed in Tables 1, 2 and 3. Comparing the left with the right plot
in Figure 3, the much larger error of the conventional density functionals is clearly visible.
It is also apparent that the GGAs do not provide an upper bound for the total energy:
For quite a few atoms the GGA results lie below the exact ones. For the B88 exchange
functional, this is most pronounced for He, where the deviation is —594 ppm while the
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Figure 3: Difference between the total energy from x-only OEP and KLI calculations (left)

and between the total energy from x-only OEP and B88 and PW91 calculations (right) in
ppm.

xPW91 functional underestimates the exact value for Ne by —183 ppm. As for the KLI
approximation, the absolute magnitude of the error of the GGAs decreases with increasing
atomic number. For the B88 functional, the error drops from 4200 ppm for the Hydrogen
atom to 0.6 ppm for Xe, whereas the xPW91 functional yields errors of 9400 ppm and 7.6
ppm for the same atoms, respectively. The mean absolute deviation is 66 mH for the B88
and 53 mH for the xPW91 energy functional.

A glance at the xLDA results for the total energy displayed in Tables 1, 2 and 3 shows
that these results differ considerably from the exact OEP ones. The error introduced by this

Table 4: OEP ground-state configurations of the transition elements.

Atom Configuration Atom Configuration
Sc 3d'4s? Y 4d!5s?
Ti 3d24s? Zr 4d35s?
\Y% 3d34s? Nb 4d45s!
Cr 3d%4st Mo 4d35st
Mn 3d°4s? Tc 4d55s?
Fe 3d%4s? Ru 4d"5st
Co 3d74s2 Rh 4d85s!

Ni 3d84s? Pd 441050
Cu 3d104s! Ag 4d105s!
Zn 3d104s2 Cd 4410542
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Table 5: Absolute eigenvalues of Ar obtained from various self-consistent x-only calcula-
tions. SUHF values have been taken from [82]. All values in atomic units.

SUHF OEP KLI B88 xPW91 xLDA xLDA-SICKLI
1s 118.6104  114.4524  114.42789 114.1890 114.1887  113.7159 114.3650
2s 12.3222 11.1534 11.1820 10.7911 10.7932 10.7299 10.9804
2p 9.5715 8.7339 8.7911 8.4107 8.4141 8.3782 8.6191
3s  1.2774 1.0993 1.0942 0.8459 0.8481 0.8328 1.0497
3p 0.5910 0.5908 0.5893 0.3418 0.3441 0.3338 0.5493

approximation is clearly the largest of all the approximate x-only functionals considered
here. It drops from 85800 ppm for Hydrogen to 1170 ppm for Xe, yielding a mean absolute
deviation of 156.7 mH.

xLDA-SICKLI results for atoms H through Ar are given in Table 1. As for the KLI cal-
culations employing the exact exchange energy functional, the method yields exact results
for one and spin-unpolarized two electron systems. For atoms with more electrons, the
xLDA results are considerably improved by the SIC scheme but for heavier atoms the re-
sulting total energies are still worse than the ones obtained from the two GGA approaches.
The mean absolute deviation for the atoms H through Ar is 299 mH.

Table 6: Absolute eigenvalues of Cu obtained from various self-consistent x-only calcula-
tions. SUHF values have been taken from [37]. All values in atomic units.

SUHF OEP KLI B88 xPW9I1 xLDA xLDA-SICKLI
1st 328.7940 321.5109 321.3829  321.4929 321.4910 320.7080 321.4691
2st 40.8187 38.2779 38.2515 38.1898 38.1923 38.0830 38.2498
2pt 35.6168 33.5336 33.5481 33.4859 33.5336 33.4214 33.5755
3st  5.0124 4.2328 4.1868 4.0360 4.0387 4.0054 4.1463
3pt  3.3222 2.7535 2.7191 2.5751 2.5782 2.5577 2.6973
3dt  0.4891 0.3046 0.2854 0.1616 0.1648 0.1575 0.2923
45t 0.2396 0.2405 0.2440 0.1625 0.1639 0.1588 0.2693
1s| 328.7921 321.7166 321.5309 321.4919 321.4900  320.7069 321.6692
2s] 40.8195 38.4734 38.4660 38.1925 38.1946 38.0860 38.4544
2pl 35.6193 33.7275 33.7608 33.4877 33.4913 33.4235 33.7789
3s)  5.0116 4.4212 4.4131 4.0399 4.0419 4.0093 4.3469
3pl 3.3274 2.9410 2.9443 2.5782 2.5807 2.5609 2.8968
3dl 0.4933 0.4893 0.4984 0.1558 0.1587 0.1512 0.4801
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Table 7: Absolute eigenvalues of the highest occupied orbital for atoms of the nitrogen
group obtained from various self-consistent x-only calculations. SUHF and OEP values
have been taken from [15]. All values in atomic units.

SUHF OEP KLI B88 xPW91 xLDA  xLDA-SICKLI

2pt 05709  0.5712  0.5705  0.2846 0.2867  0.2763 0.5363
N 2s) 0.7258  0.7258  0.7245  0.5036 0.5059  0.4820 0.7247
3pt 03921  0.3916  0.3905  0.2100 0.2113  0.2033 0.3582
P 3sl 0.5562  0.5562  0.5554  0.3921 0.3944  0.3840 0.5690
4pt 0.3702  0.3691  0.3678  0.1975 0.1988  0.1929 0.3356
As 4s] 0.5561  0.5562  0.5559  0.4145 0.4174  0.4106 0.5896
5pt 0.3358  0.3347  0.3336  0.1819 0.1832  0.1785 0.3032
Sb 58, 0.4689  0.4693  0.4696  0.3491 0.3520  0.3478 0.5032

The trends found for the total ground-state energies remain valid for most quantities
of interest: The HF and OEP results differ very little, the KLI scheme provides the best
approximation to the exact DFT results, the GGAs are (sometimes only slighty) worse
while the xLDA is by far the least accurate approximation. However, the xLDA-SICKLI
results are often of higher quality than those obtained from any of the GGAs.

For example, in Tables 5 and 6 we have listed the eigenvalues ¢;, corresponding to
the occupied orbitals of Ar and Cu, respectively, as obtained with the various methods.
In DFT, the energy eigenvalues have no physical interpretation except for the highest
occupied one which — in the exact theory including all correlation effects — is equal to
the ionization potential of the system [47]. However, the eigenvalues of the inner orbitals
may indicate the quality of the exchange potential Vi(r). While the highest occupied
eigenvalues obtained within the exact x-only OEP scheme are very close to the SUHF
values, the inner eigenvalues differ more, illustrating their auxiliary nature within DFT
calculations. The KLI approximation yields results very close to the exact OEP values,
indicating the high quality of the KLI exchange potential. Most notable is the agreement of
the highest occupied eigenvalues. As a typical example, we have listed the highest occupied
eigenvalues for the atoms of the nitrogen group in Table 7. Both the GGA and the xLDA
calculations are seriously in error, yielding results which are too small by roughly a factor
of two. For Cu, the two outermost majority-spin eigenvalues are incorrectly ordered if
the B88 or xLDA functionals are used. These errors in the outermost orbitals are due to
the incorrect asymptotic behavior of the approximate potentials. The inner orbitals are
usually in better agreement with the exact results. The xLDA-SICKLI results are clearly
much better than the results from any of the explicitly density-dependent functionals. In
particular, the improvement over the xLDA results is very remarkable. This demonstrates
the great importance of the self-interaction correction part of the exchange functional,
which is responsible for the correct —1/r decay of the xLDA-SICKLI exchange potential.
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Figure 4: Exchange potentials V;(r) for Ar from various self-consistent x-only calculations.

The xLDA-SICKLI description even corrects the wrong ordering found in xLLDA for the
two outermost majority-spin eigenvalues in Cu.

In Figures 4 and 5 we have plotted Vi(r) resulting from various x-only schemes for
the Ar atom. Figure 5 shows the asymptotic region in greater detail. As expected, the
KLI potential closely follows the exact OEP curve, the two being indistinguishable in the
asymptotic region where they both decay like —1/r, as was shown in section 2.3.2. For the
xLDA-SICKLI potential, the same holds true. However, the exact OEP and the xLDA-
SICKLI potential agree less closely in the inner regions as compared to the KLI potential.
The exchange potentials corresponding to all of the conventional functionals decay too
rapidly, the one obtained from the xPW91 functional even introduces a spurious dip in
this region. The B88 potential is known [37] to decay like —1/r2. The so called intershell
peaks , i.e. the maxima of the potential occuring in the intershell regions, clearly visible
in the OEP and KLI potentials, are not properly reproduced in the conventional DFT
approximations. This is also the case for the xLDA-SICKLI potential, which exhibits no
outer peak at all. Despite the rather close agreement of the innermost orbital energies,
both of the GGA potentials exhibit an unphysical divergence at the position of the nucleus
which may be traced back to the density gradients in the expressions for the exchange
energy, cf. Egs. (248) and (250). In Figure 6 we have plotted the difference between the
spin-up and spin-down exchange potentials for Cu, which is a measure for the tendency of
the atom to favour spin-polarization. While the KLI and xLDA-SICKLI approximations
roughly follow the overall shape of the exact result but miss most of the finer structure,
both of the GGAs and the xXLDA give very different results. Most strikingly, they fail to
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Figure 5: Exchange potentials V;(r) for Ar from various self-consistent x-only calculations
in the valence region. In this region, the xLDA potential is identical to the B88 one.

Table 8: Expectation values of r? for some noble gases. SUHF and OEP values from [15].
All numbers in atomic units.

SUHF OEP KLI B88 xPW91 xLDA xLDA-SICKLI
He 1.1848 1.1848 1.1848 1.2644 1.2805 1.3275 1.1848
Ne 0.9372 0.9372 0.9367 0.9952 1.0015 1.0036 0.9524
Ar  1.4464 1.4465 1.4467 1.4791 1.4876 1.4889 1.4699
Kr 1.0981 1.0980 1.0985 1.1176 1.1232 1.1803 1.1124
Xe 1.1602 1.1600 1.1607 1.1716 1.1768 1.1716 1.1695

reproduce the constant shift between Vit (r) and Vi (r) in the inner region of the atom.
This is, to a lesser extent, also true for other atoms [37].

The accuracy of the calculated electron densities may be assessed by comparing various
r™ expectation values. In Table 8 we list the r? expectation values for the noble gas atoms
He through Xe as calculated with the various schemes. This quantity puts a strong weight
on the electron density of the outer shells and therefore represents a measure of its quality in
that region. The SUHF and OEP values are almost identical, while the KLI approximation
introduces only a small error. The errors introduced by the conventional DFT methods are
about two orders of magnitude larger, while the xLDA-SICKLI results lie somewhere in
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Table 9: Expectation values of v~ for some earthalkali metals. SUHF and OEP values
from [15]. All numbers in atomic units.

SUHF OEP KLI B88 xPW9I1 xLDA xLDA-SICKLI
Be  2.1022 2.1022 2.1039 2.1017 2.1008 2.0766 2.0934
Mg  3.3267 3.3267 3.3258 3.3261 3.3259 3.3147 3.3256
Ca  4.0080 4.0080 4.0086 4.0085 4.0084 4.0010 4.0050
Sr 5.1729 5.1729 5.1723 5.1729 5.1728 5.1685 5.1712

between, which is largely due to the correct asymptotic form of the potential. Again, the
remarkable improvement over the LDA due to the inclusion of the self-interaction correction
part is noteworthy.

The density in the inner region of the atom heavily contributes to the 1/r-expectation
value, which we show for the four lightest alkaline earths in Table 9. While the SUHF
and OEP values are identical to all given digits and the xLDA gives the worst results,
the comparison of the KLI and GGA results shows an unexpected feature as the latter
are always better than the former. This is somewhat surprising as the GGA exchange
potentials show an unphysical singularity for » — 0 as discussed above.
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Figure 6: Difference between spin-up and spin-down exchange potentials, AVy(r), for Cu
from various self-consistent x-only calculations
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Table 10: Magnetization density ((0) = (p1(0) — py(0))/(p+(0) + py(0)) at the position
of the nucleus for atoms of the nitrogen group from various self-consistent calculations.
SUHF, OEP, and KLI values have been calculated from the results given in [15]. All values
in units of 1075.

SUHF OEP KLI B88 xPW91 xLDA xLDA-SICKLI
N 910.8 921.5 -1623 125.0 195.7 -255.3 -98.2
P -63.8 -72.1 -97.5 -116.9 -115.6 -129.4 -199.4
As -24.2 -27.1 -26.3 -39.2 -36.4 -40.5 -46.8
Sb -9.0 -10.4 -9.6 -15.1 -13.7 -16.0 -15.4

The magnetization density ((0) = (p4+(0)—p,(0))/(p+(0)+p,(0)) at the nucleus provides
a very sensitive test for the quality of the spin densities. In Table 10 this quantity is shown
for the four lightest atoms of the nitrogen group. The relatively large difference between
the SUHF and OEP results underlines the sensitivity of this quantity. For the nitrogen
atom the KLI approximation leads to a completely worthless result as the sign is reversed
compared to the OEP value. For this atom, the GGAs give the right sign but only one tenth
of the correct number. For P, As and Sb the KLI scheme provides the best approximation,
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Figure 7: Magnetization density ¢ = (p+ —py)/(pt + py) for Cu from various self-consistent
x-only calculations. The result from the PW91 functional is very similar to the one from
the B88 one.
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whereas the xLLDA is worst. The pattern apparent from these few systems is by no means
special but rather typical throughout the periodic table [15]. We conclude that no current
approximations yield even moderate accuracy for the magnetization density at the nucleus.

Another failure of the KLI and xLLDA-SICKLI approximations is apparent from Figure
7, where we have plotted the magnetization density for Cu. Clearly, the KLI results are
twice as far off the exact curve as the GGA and xLLDA approximations. For most systems,
however, the differences are not as dramatic as for Cu.

4.1.2 Diatomic molecules

In order to demonstrate the validity of the KLI approach for more complex systems, we
have performed KLI calculations for diatomic molecules employing the exact exchange
energy functional as defined by equation (27). Our calculations have been performed with
a fully numerical basis-set-free code, developed from the X« program written by Laaksonen,
Sundholm and Pyykkoé [83, 84, 85]. The code solves the one-particle Schrodinger equation
for diatomic molecules

V_2 A Zo
2 |R1 —I‘| |R2 —I‘|

+ Va(r) + VXIELI(I')> Pjo(r) = €jopjo(r), (258)

where R; denotes the location and Z; the nuclear charge of the i-th nucleus in the molecule.
This partial differential equation is solved in prolate spheroidal coordinates on a two-
dimensional mesh by a relaxation method. The third variable, the azimuthal angle, is
treated analytically. The Hartree potential

_ 3./ p(r')
Va(r) = /d T Py (259)
and the functions
_ 1 i * 3 ./ QO?J(I',)QO]W(I',)
io(F) = s 3o r) [ v E O (260)

needed for the calculation of the exchange potential VXM (r) (cf. Eq. (76)) are calculated
as solutions of a Poisson and Poisson-like equation, respectively. In this step, the same
relaxation technique as for the solution of the Schrodinger equation (258) is employed.
Starting with an initial guess for the wave functions ¢;,(r), equations (258), (259), (260)
together with (76) are iterated until self-consistency is achieved. A detailed description of
the code is given in [86].

For comparison, we have performed additional x-only calculations with two other ap-
proximations of V,,(r) and E,, respectively. The first one of these, denoted by Slater in
the following, employs — like the HF and x-only KLI methods — the exact representation
(27) of E, but uses the averaged exchange potential due to Slater [87] given by

1
Po(r)

V:cst; (I‘) = -

No * / . /
> (P;a(r)(:oz’a(r)/d?’rl $ig (1) 0o (T') )%;"(r) : (261)

ij=1 r—rx

This expression can also be obtained from (76) by setting the constants Vicis — tixeio €qual
to zero for all . The other is the well known x-only local density approximation (xLDA)
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Table 11: X-only results for LiH. HF values for bond length of 3.015 a.u. from [86]. Present
calculations performed on a 153 x 193 grid with bond length of 3.015 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA
EtoT -7.9874 -7.9868 -7.9811 -7.7043
€10 -2.4452 -2.0786 -2.3977 -1.7786
€20 -0.3017 -0.3011 -0.3150 -0.1284
Qf 0.6531 0.6440 0.8614 0.8679
Q5 7.1282 7.1365 6.9657 6.7717
Q5 2.9096 2.9293 3.0799 2.6924
Q4 16.0276 16.1311 15.5881 15.0789

Table 12: X-only results for BH. HF values for bond length of 2.336 a.u. from [86]. Present
calculations performed on a 193 x 265 grid with bond length of 2.336 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA
Eror -25.1316 -25.1290 -25.1072 -24.6299
1o -7.6863 -6.8624 -7.4837 -6.4715
€20 -0.6482 -0.5856 -0.6358 -0.3956
€3¢ -0.3484 -0.3462 -0.3721 -0.1626
Qf 5.3525 5.3498 5.2991 5.3154
Q5 12.1862 12.1416 11.4720 11.9542
Q5§ 15.6411 15.5618 14.3328 14.0904
Qs 25.8492 25.4188 25.2152 21.9134

of conventional DFT, where the exchange energy is given by Eq. (247). As for the KLI
calculations, we have successfully tested our implementations on atomic systems.

Results are given in Tables 11 through 18 for LiH, BH, FH, Hes, Lis, Bes, No and
OH™. For each system we show the total ground state energy ETor, the various orbital
energies € and the nonzero electronic contributions to the dipole, quadrupole, octopole and
hexadecapole moments denoted by Qf, Q$, Q5 and Qf, calculated from the geometrical
center of the respective molecule. For FH, Ny and OH~ we give the total moments Qi
(including nuclear contributions), calculated from the center of mass of the respective
molecule. For these three molecules we also present the expectation values of 1/r, denoted
by < 1/r >, calculated at the nuclei.
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Table 13: X-only results for FH. HF values for bond length of 1.7328 a.u. from [86]. Present
calculations performed on a 161 x 321 grid with bond length of 1.7328 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA

EroT -100.0708 -100.0675 -100.0225 -99.1512
€10 -26.2946 -24.5116 -25.6625 -24.0209
€90 -1.6010 -1.3994 -1.4327 -1.0448
€30 -0.7682 -0.7772 -0.8167 -0.4483
€ir -0.6504 -0.6453 -0.6897 -0.3109

tot -0.7561 -0.8217 -0.8502 -0.6962
Qi 1.7321 1.8012 1.8472 1.7124
Qe -2.5924 -2.7222 -2.8781 -2.4662

sot 5.0188 5.1825 5.3720 4.7068
<1/r >u 6.1130 6.0878 6.0909 6.0901
<1l/r>p 27.1682 27.1622 27.6049 27.0289

Table 14: X-only results for Hes. HF values for bond length of 5.6 a.u. from [86]. Present
calculations performed on a 209 x 225 grid with bond length of 5.6 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA
EroT -5.72333 -5.72332 -5.72332 -5.44740
Elog -0.92017 -0.91929 -0.91977 -0.51970
€lou -0.91570 -0.91566 -0.91614 -0.51452
5 31.36165 31.35931 31.35907 31.35507
4 245.8779 245.8643 245.8615 245.8255

For the quantities of physical interest, i.e. for E¢o, the energies exponmo of the highest
occupied orbitals and the multipole moments, the x-only KLI and HF results differ only
slightly, typically by a few hundredths of a percent for the total energies, a few tenths of a
percent for egomo and a few percent for the multipole moments. The largest difference for
enomo is found for Bey, where the results differ by 3%. For Ns, the energetic order of the
1m, and 30, orbitals obtained with the HF method is reversed in all DF'T approaches, which
reproduce the experimentally observed order of the outer valence ionization potentials [89].
As far as the multipole moments are concerned, the largest discrepancy between the x-only
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Table 15: X-only results for Lio. HF values for bond length of 5.051 a.u. from [86]. Present
calculations performed on a 209 x 225 grid with bond length of 5.051 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA
EtoTt -14.8716 -14.8706 -14.8544 -14.3970
Elog -2.4531 -2.0276 -2.3875 -1.7869
€1lou -2.4528 -2.0272 -2.3873 -1.7864
€20g -0.1820 -0.1813 -0.1989 -0.0922
5 27.6362 27.4993 29.0014 29.4401
g 159.9924 159.6809 169.1300 172.8505

Table 16: X-only results for Bes. HF values for bond length of 4.6 a.u. from [86]. Present
calculations performed on a 209 x 225 grid with bond length of 4.6 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA
EroT -29.1337 -29.1274 -29.0939 -28.4612
Elog -4.73150 -4.09876 -4.60353 -3.78576
€lou -4.73147 -4.09872 -4.60351 -3.87571
€20g -0.39727 -0.33452 -0.37659 -0.23067
€20u -0.24209 -0.23489 -0.26524 -0.13163
5 46.0878 46.2475 43.4833 46.2501
g 261.774 277.365 249.135 281.950

KLI and HF approach occurs for the total hexadecapole moment of OH™, where the results
differ by 11.9%. The 1/r-expectation values obtained with the HF and x-only KLI methods
are almost identical, differing by only a few hundredths of a precent with the exception
of the ones for the hydrogen nuclei in FH and OH™, where the difference is an order of
magnitude larger. In these cases, the Slater and for FH also the xLDA approximation give
values closer to the HF results.

Except for the cases mentioned above, the Slater method gives values for EvoT, emomo,
the multipole moments and 1/r-expectation values which differ to a larger extent from both
the KLI and HF results than the latter from each other. From the energy eigenvalues of
the inner orbitals it is obvious that the Slater exchange potential V;5 (r) is deeper than the
one obtained in the KLI method which therefore yields results closer to the HF ones.

50



Table 17: X-only results for No. HF values for bond length of 2.07 a.u. from [86]. Present
calculations performed on a 209 x 225 grid with bond length of 2.07 a.u. All numbers in
atomic units. Taken from [88].

HF KLI Slater xLDA

Etor -108.9936 -108.9856 -108.9109 -107.7560
Elog -15.6822 -14.3722 -15.2692 -13.8950
€lou -15.6787 -14.3709 -15.2682 -13.8936
E20g -1.4726 -1.3076 -1.3316 -0.9875
€20u -0.7784 -0.7452 -0.7473 -0.4434
E30g -0.6347 -0.6305 -0.6521 -0.3335
€1mu -0.6152 -0.6818 -0.6960 -0.3887
Qe -0.9372 -0.9489 -1.1757 -1.1643

tot -7.3978 -6.7481 -7.1272 -6.2553
<1/r >N 21.6543 21.6439 21.9749 21.5820

Finally, the xLLDA results differ strongly from the other methods, yielding much higher
total energies. Especially prominent are the values for expomo, which are roughly twice as
large as the ones from any of the other methods. Once again, this is due to the wrong
exponential decay of V.LPA(r) for large r. For the negatively charged molecule OH™ there
is no convergence of the self-consistency cycle if the xLDA approximation is used.

We expect that the bulk part of the differences between the x-only KLI and the HF
results is not caused by the KLI approximation, but is rooted in the different nature of
the HF and the DFT approaches. This was found for atomic systems as discussed in the
previous subsection and we see no reason why this should not be the case for molecular
systems as well.

However, the x-only KLI approach is also prone to reproduce some failures of HF
theory. For example, the dissociation energy of Bes is found to be —12.3 mH in the HF
and —17.2mH in the x-only KLI scheme, i.e. the molecule is predicted to be unstable by
both methods. The xLDA, on the other hand, gives 14.6 mH for the dissociation energy,
which is still far from the exact value of 3.8mH (calculated from the results given in [90] and
[91]) but at least leads to a stable molecule. This effect is also present for other systems and
has to be corrected by properly chosen correlation functionals. Calculations on diatomic
molecules using the LDA-SIC functional in KLI approximation have been reported by
Krieger et. al. [92, 93].
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Table 18: X-only results for OH~. HF values for bond length of 1.835 a.u. from [86].
Present calculations performed on a 105 x 145 grid with bond length of 1.835 a.u. All
numbers in atomic units.

HF KLI Slater

Eror -75.4180 -75.4145 -75.3681
€lo -20.1858 -18.5775 -19.6091
€20 -0.9009 -0.7062 -0.7316
€3¢ -0.2508 -0.2363 -0.2668
Eir -0.1097 -0.1066 -0.1355
Qtet 0.4855 0.5792 0.5941
Qfet -1.8314 -1.9808 -1.7975
(0] 1.4003 1.7646 1.9280

tot -4.0346 -4.5159 -4.6758
<1/r >nu 5.7355 5.7061 5.7399
<1/r >0 23.2588 23.2524 23.6925

4.2 Comparison of nonrelativistic with relativistic results

The discussions in the preceding section were solely based on nonrelativistic DFT. In order
to investigate the influence of relativistic effects, we present, in this section, results of fully
relativistic calculations on closed-shell atoms.

Since we are not concerned with any magnetic fields in our calculations, the following
analysis is done in the framework of the “electrostatic case”, discussed in section 3.3. First
of all, a brief remark concerning the nature of relativistic interactions has to be made: In
QED, the electron-electron interaction, mediated by the exchange of photons, is properly
described by the (free) photon propagator Dg,,(w —y). It can be decomposed into an
instantaneous (longitudinal) Coulomb part and a transversal contribution that contains all
retardation effects [94]:

5(z° —o°)

J— + Dg;,T (x—y). (262)

Dgu(x - y) = igOuQOV

Based on this decomposition, we may split Fy[p| as well as Ey.[p] into their longitudinal
and transverse contributions, i.e.

Eulp] = Exqlp] + Eglo] (263)
Exe[p] EL[p] + Ex[p] - (264)

Aiming at calculations for atomic systems, we can expect the interaction to be dominated
by the familiar Coulomb term. Therefore, as a starting point, it seems plausible to neglect
all transverse contributions. This approach represents the RDFT analogue of the standard
relativistic many-body treatment employing the Dirac-Coulomb Hamiltonian.
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Restricting ourselves to the longitudinal (Coulomb) interactions, we have performed
self-consistent calculations in the x-only limit of RDFT. In analogy to the nonrelativistic
case, the x-only limit of the xc energy functional is defined by using the exact expression
for the exchange energy functional, i.e. the relativistic Fock term

Tr )l (r') i (r!
E)]:,exact[p] _ _% Z /d37" /d37_/ (Pj( )<pk|(r)ip];§| )‘P]( ) . (265)

—c2<ej,ep<er

in the case of longitudinal interactions only. As discussed in section 3.3, the exact longitu-
dinal exchange potential V.(r) can be obtained by solving the full ROEP integral equation
(214) with Ey. replaced by EL**2° Simultaneous solution of the ROEP integral equation
and the RKS equation (202) therefore represents the exact implementation of the longitu-
dinal x-only limit of RDFT. It is compared to the RKLI method, which employs the same
exact expression (265) for the exchange energy and only approximates the local exchange
potential V.*'(r) by means of Eq. (246).

Besides, we list results of traditional x-only RKS schemes obtained from the longitudinal
x-only LDA (xRLDA), given by

EERPA ) = [ el () (5) (266)

with the nonrelativistic energy density

1
3 (3\3 1
PR () — -2 () ot (267)
and the relativistic correction
5 1 2n . 2n* 1 (77 aursinhﬁ)2
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@5 (0) .—6—|—3ﬂ2—|—3ﬁarsmhﬁ 350 Inn AV 2 (268)
with
Lo o \\3
B(r) = —(3n%p(r)) (269)
and )
n(r) == (1+8r)?)*. (270)

Furthermore, we performed calculations with two recently introduced relativistic GGAs
(RGGAs) [70, 95]. The first one is given by the functional

eRSaA ] = [ reTPA () (95(8) + 9(€)2(6)) (271)

with the quantity g(¢) proposed by Becke (RB88)
3

9Bss(§) = 272
pes (¢) 1+ 9d€¢Y/2arcsinh [2 (672)1/3 51/2] /(4m) (272)
(d=0.2743). The second one is a [2/2]-Padé approximant (RECMV92) [52]
Ar€ + ArE?
gecmvoz(€) 1€ + Aat (273)

T 1+ Bié + Bo?
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Table 19: Parameters for the longitudinal correction factor (275). Taken from [70]

RECMV92 RBS88
al 2.21259 2.20848
a2  0.669152 0.668684
bl 1.32998 1.33075
b2  0.794803 0.795105

(A1 = 0.3402, Ay = 5.9955, By = 27.5026, By = 5.7728), where

B Vp(r) 2
0= (s e

The relativistic effects are accounted for via the function ®%(3), which is also given by a
[2/2]-Padé approximant
14+ a2+ axpt

L
() = 1+ 0182 + b4

(275)

with the constants given in Table 19.

These various approaches are analyzed for spherical (closed-shell) atoms. To this end,
the spin-angular part of the wave function is treated analytically and the remaining radial
part of the Dirac equation is solved numerically on a logarithmic mesh employing an Adams-
Bashforth-Moulton predictor-corrector scheme [64]. We also note, that for these closed-shell
atoms the transverse Hartree energy vanishes, i.e. Eg = 0. In all our calculations we use
finite nuclei modeled by a homogeneously charged sphere with the radii given by

Ruua = 1.0793 A3 4 0.73587 fm (276)

and A being the atomic mass taken from [96]. We mention in passing that employing
finite nuclei is not necessary to ensure convergent results as, for example, in the relativistic
Thomas-Fermi model. We incorporate finite nuclei because they represent the physically
correct approach.

In Table 20, we show the longitudinal ground-state energy EL. obtained from the
various self-consistent x-only RDFT approaches and, in addition, from relativistic Hartree-
Fock (RHF) calculations. Furthermore, since we are interested in the effects induced by
relativity, we calculated the relativistic contribution to EtLot, defined by

AEo == Eiy[p"] — Eigg ™ (277)

which is listed in Table 21. We note that the nonrelativistic total ground-state energies
ENR[pNR] are not those of section 4.1, but have also been calculated employing finite nuclei.
From Table 21, we realize that the inclusion of relativistic effects leads to drastic corrections
especially for high-Z atoms. For example, Table 21 shows that the relativistic correction
of Hg amounts for about 6.7% of the total energy thus demonstrating the need for a fully
relativistic treatment. Comparing the different approaches, we basically find the same

trends as in the nonrelativistic context: The RHF and ROEP data agree closely with each
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Table 20: Longitudinal ground-state energy —EL, from various self-consistent x-only and
RHF calculations. A denotes the mean absolute deviation and 6 the average relative
deviation (in 0.1 percent) from the exact ROEP values. All numbers in atomic units.
Taken from [68].

RHF ROEP RKLI RBS88 RECMV92 xRLDA
He 2.862 2.862 2.862 2.864 2.864 2.724
Be 14.576 14.575 14.575 14.569 14.577 14.226
Ne 128.692 128.690 128.690 128.735 128.747 127.628
Mg 199.935 199.932 199.931 199.952 199.970 198.556
Ar 528.684 528.678 528.677 528.666 528.678 526.337
Ca 679.710 679.704 679.702 679.704 679.719 677.047
Zn  1794.613 1794.598 1794.595 1794.892 1794.880 1790.458
Kr 2788.861 2788.848 2788.845 2788.907 2788.876 2783.282
Sr 3178.080 3178.067 3178.063 3178.111 3178.079 3172.071
Pd  5044.400 5044.384 5044.380 5044.494 5044.442 5036.677
Cd  5593.319 5593.299 5593.292 5593.375 5593.319 5585.086
Xe  7446.895 7446.876 7446.869 7446.838 7446.761 7437.076
Ba  8135.644 8135.625 8135.618 8135.612 8135.532 8125.336

Yb 14067.669 14067.621 14067.609 14068.569 14068.452 14054.349
Hg 19648.865 19648.826 19648.815 19649.141 19649.004 19631.622
Rn 23602.005 23601.969 23601.959 23602.038 23601.892 23582.293
Ra 25028.061 25028.027 25028.017 25028.105 25027.962 25007.568
No 36740.682 36740.625 36740.609 36741.900 36741.783 36714.839
A 0.006 0.189 0.168 8.668
) 0.002 0.103 0.108 6.20

other, the small differences resulting again from the different nature of the two approaches
which correspond to different definitions of the respective correlation energies. Since with
increasing atomic number, the inner orbitals, contributing most to the total energy, become
more and more localized, the differences between the non-local RHF potential and the local
ROEP decrease. In fact, we see from Table 20 that the smallest deviations are found for No.
Comparing the second and third columns of Table 20, it is obvious that the RKLI method
yields results in very close agreement with the exact ROEP ones. The mean absolute
deviation from the exact ROEP data of the 18 neutral atoms listed in Table 20 is only
5 mH. Hence it is of the same order of magnitude as the corresponding mean absolute
deviation in the nonrelativistic case as discussed in the preceding section. Moreover, when
looking at Table 21, we realize that the relativistic contributions to EL, are reproduced
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Table 21: Relativistic Contribution —AEL, from various self-consistent x-only and RHF
calculations. A denotes the mean absolute deviation and ¢ the average relative deviation
(in 0.1 percent) from the exact ROEP values. All numbers in atomic units. Taken from
[68].

RHF ROEP RKLI RBSS RECMV92 xRLDA
He 0.000 0.000 0.000 0.000 0.000 0.000
Be 0.003 0.003 0.003 0.003 0.003 0.002
Ne 0.145 0.145 0.145 0.145 0.145 0.138
Mg 0.320 0.320 0.320 0.321 0.321 0.308
Ar 1.867 1.867 1.867 1.867 1.867 1.821
Ca 2.953 2.953 2.953 2.952 2.953 2.888
Zn 16.771 16.770 16.770 16.779 16.779 16.555
Kr 36.821 36.820 36.820 36.822 36.821 36.432
Sr 46.554 46.553 46.553 46.552 46.551 46.092
Pd  106.527 106.526 106.526 106.526 106.525 105.715
Cd  128.245 128.243 128.243 128.243 128.241 127.323
Xe  214.860 214.858 214.858 214.825 214.822 213.522
Ba  252.223 252.222 252.221 252.176 252.173 250.725
Yb  676.559 676.551 676.549 676.590 676.588 673.785
Hg 1240.521 1240.513 1240.511 1240.543 1240.538 1236.349
Rn 1736.153 1736.144 1736.142 1736.151 1736.151 1730.890
Ra  1934.777 1934.770 1934.768 1934.781 1934.783 1929.116
No 3953.172 3953.155 3953.151 3953.979 3954.015 3944.569
A 0.001 0.056 0.058 1.788
) 0.009 1.14 1.35 33.7

almost perfectly within the RKLI scheme. In other words, almost no additional deviations
are introduced by the relativistic treatment of the KLI scheme, so that the high quality
of the nonrelativistic KLI approximation is maintained in the relativistic domain. Turning
towards the conventional x-only schemes, the conclusions drawn in section 4.1 can be
repeated: The RGGAs, although clearly improving over the xRLDA, are worse by more
than one order of magnitude when compared to the RKLI, whereas the xRLDA yields the
least accurate results.

These trends also remain valid when other quantities of interest are considered. For ex-
ample, in Table 22 we have listed the relativistic contributions to the longitudinal exchange
energy, defined analogously to Eq. (277). Again, only small deviations between the ROEP
and RKLI results are found. From the third and fourth columns of Table 22 we notice
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Table 22: Relativistic Contribution —AFy to the exchange energy from various self-con-
sistent x-only calculations. A denotes the mean absolute deviation and & the average
relative deviation (in percent) from the exact ROEP values. All energies in atomic units.
Taken from [68].

ROEP RKLI RBS8 RECMV92 xRLDA
He 0.000 0.000 0.000 0.000 0.000
Be 0.001 0.001 0.001 0.001 0.000
Ne 0.015 0.015 0.015 0.015 0.007
Mg 0.029 0.029 0.029 0.029 0.015
Ar 0.118 0.118 0.117 0.118 0.069
Ca 0.172 0.172 0.171 0.171 0.104
Zn 0.627 0.626 0.632 0.632 0.402
Kr 1.215 1.214 1.212 1.211 0.814
Sr 1.478 1.477 1.473 1.472 1.005
Pd 2.785 2.787 2.782 2.780 1.958
Cd 3.264 3.264 3.255 3.252 2.322
Xe 5.021 5.020 4.977 4.974 3.657
Ba 5.739 5.736 5.684 5.680 4.215
Yb 12.043 12.024 12.027 12.024 9.194
Hg 19.963 19.956 19.965 19.957 15.734
Rn 26.637 26.620 26.612 26.610 21.307
Ra 29.241 29.218 29.225 29.224 23.513
No 52.403 52.402 53.168 53.205 43.683
A 0.004 0.053 0.056 1.819
s 0.079 1.03 0.857 35.9

that the results of the RGGA functionals — with the exception of No — are also in excellent
agreement with the exact data. However, since the RGGAs are optimized for exactly these
quantities [70], this might not come as a surprise. Again, the RLDA is the least accurate
approximation. It is worthwhile noting that the exchange energy ET is influenced quite
substantially by relativistic effects, too. Taking again Hg as an example, we realize that the
5.8%-contribution to EX is of the same order as for the total energy. Furthermore, even for
lighter atoms such as Mg, the relativistic corrections to EL are comparable or even larger
than the differences between the currently best nonrelativistic exchange-energy functionals
as might be seen by comparing the results to the ones of section 4.1. As a consequence, a
relativistic treatment is indispensable for the ultimate comparison with experiments [64].
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Figure 8: Longitudinal exchange potential V. (r) for Hg from various self-consistent x-only
calculations. Taken from [68].

AV (r) [a.u]

0.001 0.01 0.1 1 10
r[a.u.]

Figure 9: Relativistic contribution to the exchange potential AVy(r), Eq. (278), for Hg
from various self-consistent x-only calculations. Taken from [68].
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Table 23: Single particle energies (—ep;;) for Hg from various self-consistent x-only calcu-
lations. All numbers in atomic units.

ROEP NROEP RKLI RB88 RECMV92 xRLDA
1S1/2  3047.430 2756.925 3047.764 3047.706 3047.644 3044.410
251/2 540.056 461.647 539.821 539.782 539.788 539.250
2P1/2  518.061 444.015 517.964 518.080 518.049 517.746
2P3/2  446.682 444.015 446.543 446.616 446.599 446.399
351/2 128.272 108.762 128.187 128.054 128.058 127.905
3P1/2 118.350 100.430 118.333 118.238 118.233 118.148
3P3/2 102.537 100.430 102.507 102.407 102.404 102.346
3D3/2 86.201 84.914 86.193 86.093 86.095 86.060
3D5/2 82.807 84.914 82.802 82.699 82.700 82.668
451/2 28.427 23.522 28.360 28.112 28.114 28.046
4P1/2 24.161 19.895 24.125 23.896 23.895 23.854
4P3/2 20.363 19.895 20.312 20.072 20.072 20.030
4D3/2 13.411 13.222 13.386 13.166 13.166 13.146
4D5/2 12.700 13.222 12.674 12.452 12.453 12.432
4F5/2 3.756 4.250 3.755 3.561 3.561 3.559
4F7/2 3.602 4.250 3.601 3.407 3.407 3.404
551/2 4.403 3.501 4.407 4.289 4.289 4.286
5P1/2 3.012 2.344 3.015 2.896 2.896 2.896
5P3/2 2.363 2.344 2.353 2.224 2.225 2.218
5D3/2 0.505 0.538 0.496 0.366 0.367 0.363
5D5/2 0.439 0.538 0.429 0.299 0.300 0.296
651/2 0.329 0.262 0.332 0.223 0.222 0.222

Next, we turn our attention to local properties such as the exchange potential V.X(r). In
Fig. 8, the exchange potential is plotted for the case of Hg. As expected, the RKLI potential
follows the exact curve most closely, although the strong intershell peaks of the ROEP curve
are not fully reproduced. However, it again improves significantly over the conventional
RDFT results, where this structure is smeared out or even absent. In addition, large errors
are introduced within the conventional RDFT schemes in the asymptotic regions near as
well as far off the nucleus. Since these observations closely resemble the ones made in the
analysis of nonrelativistic systems in section 4.1, we consider the relativistic contribution
separately. The relativistic contribution to the exchange potential, given by

VE[R](r) — VNR[NR) (-
AVx(r) = [pvjl\SR)OEP[pNRSZn) i) ’

(278)
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is plotted in Fig. 9. We first observe strong oscillations between 0.1 a.u. and 5 a.u. These
oscillations are introduced by the displacement of the density due to relativistic effects and
thus represent a direct consequence of the atomic shell structure. As the shell structure of
the exchange potential is not fully reproduced within the RKLI approach, the amplitudes of
the oscillations are somewhat smaller compared to AV,°EP(r). While these deviations are
clearly visible, the RKLI curve is still closest to the exact one, especially in the region near
the nucleus and in the valence region, where large deviations occur for the conventional
RDFT methods.

As a consequence of the failures of the conventional RDFT schemes in the asymptotic
region, large deviations are found for the energies of the outermost orbitals. This obser-
vation — well-known from nonrelativistic calculations — is also found in fully relativistic
treatments as shown in Table 23, where the single-particle energies of Hg are listed. In
contrast, the RKLI approximation, yielding the correct —1/r-behavior of the potential as
r — 00, produces results very similar to the exact ROEP data. Apart from the fact that the
single-particle energies are only auxiliary quantities and do not possess any actual physical
meaning, the influence of relativity is seen very clearly in Table 23. As could be expected,
the effects are strongest for the innermost orbitals whose energies are considerably lowered.
However, due to the requirements of orthogonality this also largely influences the outer or-
bitals which, for example, causes the energy of the 6s1/2 state of Hg to decrease by about
25%. Furthermore, due to the contraction of the s- and p-orbitals, the nucleus is screened
more efficiently, leading to more weakly bound d- and f-levels as can be seen in Table 23.
Finally, we clearly recognize the influence of spin-orbit coupling, removing the degeneracy
in the angular momentum quantum number [ when relativistic effects come into play.

4.3 Inclusion of correlation contributions for nonrelativistic systems

The inclusion of correlation effects into the OEP scheme is straightforward, as indicated by
the subscripts xc in section 2. As we will demonstrate in this section, the correlation-energy
functional developed by Colle and Salvetti [97, 98] is well suited for atomic systems.

This functional has been obtained via a Jastrow-type ansatz for the correlated total
wavefunction through a series of approximations. It may be written in spinpolarized form
as [99]

ES{eill = —abfdr v<r>s<r>[zpa<r>z|wz~,,<r)\2 — 1 1pP

- ina(r)Apa(r) + %P(T)AP(‘?)

—a / Br (r) 25 (279)

n(r)
where
y(r) = 4%, (280)
n(r) = 1+dp(r)3, (281)
(r) = P (r)_iir)cp(r)%. (282)

60



The constants a, b, ¢ and d are given by

a = 0.04918, b=0.132,
¢ = 0.2533, d = 0.349.

Performing the functional derivative with respect to the one-particle orbitals, one obtains

for u,j,(r)[34]
) — ﬁ’y(r) p(r)_j

uejo () = —i(wrw(r) Lot )«

n(r) ¢35 (r) Opjo(r)

_eb_1 9 2
4 (pJO'( ) |f%%a( )( ) [4Zpg Z |V(Pw( )|

- (Vp(r))2 + (pT(r)Am(r) + m(r)APT(r))]

-5 V(10w (Vo) + Vps(x)
~ 7 A(10ER) ) pa(r)
— aby(r)¢(r) [Z_ |V () 45 (20(r) + Ap&(r))]

soga( r)
A3, (r)
©iq(r)
where & denotes the spin projection opposite to o, i.e. ¢ =1 if ¢ =] and vice versa. The
KLI scheme obtained by combining the correlation-energy functional of Colle and Salvetti
with the exact exchange-energy expression (27) will be denoted by KLICS.

+ ab po(r)y(r)é(r) (283)

For comparison, we have also performed calculations on atoms using the conventional
Kohn-Sham method with two standard exchange-correlation energy functionals. The first
one of these is the exchange-energy functional by Becke, c.f. Eq. (248), combined with the
correlation-energy functional by Lee, Yang and Parr [99],

EYprp) = —ab [ dr o)) [ﬁcF (Z pa<r)%) + 71V = 3p(r) 20(0)
316 (Z |Vpo(r) ) (Z Po(r) Dpo(r )]
—a / dr ’y(r)% (284)
e Cp = % (37r2)2/ ? (285)

and ~(r), n(r) and &(r) are given by Eqgs. (280), (281) and (282), respectively. In the
following, this procedure is referred to as BLYP. The other is the generalized gradient
approximation by Perdew and Wang [77] referred to as PW91. Its exchange part is given
by Eq. (250) and the correlation part by

EXWVops o] = /d3rp(r) (6?DA[M,P¢](T) + Hy(r) + Hl(r)) (286)
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where

g 20 £(r) + A@)t()
Holr) = ¢*e)3g (”FHA() <)+A2<r>t4<r>>’ 257
Hi(r) = 15.7559 (C. — 0.003521) ¢*(r)t?(r) exp (—100(]54(1') (ﬁi(‘;)» . (288)
k3 (r)12(r)
ki (r) = (3mp(r) '/, (289)
ky(r) = (4’%)1/2, (290)
3 1/3
rs(r) = <4ﬂp(r)) , (291)
) = py(r) — py(r)
() = P (292)
#r) = 5 [(1+ ) (1= ¢ (293)
> (Vp(r))®
0= R E (294)
R 204€5DA[pTam](r)> B ]_1
Afr) = 5 le p( B 1 (295)
Colr) = c1 + cors(r) + c3r2(r) e (296)

1+ cqrs(r) + c5r2(r) + cor(r)

and a = 0.09, B = 15.7559 x 4.235 x 10 3,c, = —1.667212 x 1073, ¢; = 2.568 x 103,
co = 2.3266 x 1072, c3 = 7.389 x 1076 cq = 8.723, c5 = 0.472 , cg = 7.389 x 1072, £LPA ig
the correlation energy per particle of a homogeneous electron gas in the parameterization
by Perdew and Wang [100] given by

et lpr () = eV (x) (1= f(r)¢H(0))+e” () F ()¢ (1) +ee(x) £ (x) (1= £CH(x)) fd (297)

where

e = [+ @+ (- e 2] (295)
1
e¥(r) = —2a01 (1 + anrs(r)) In (1 + 2a01 (b112(r) + ba122(r) + ba123(r) + bar 24 (r )))
(29
1
" (r) = ~2a02 (1 + arors(r)) In (1 * 2a02 (b127(r) + boax?(r) + b32a® (r) + baoz(r ) ’
(300
1
0re(r) = —2a03 (1 + az3ry(r)) In (1 * 2a03 (b13z(r) + basz?(r) + bssa®(r) + bagz(r ) 7
(301
and
2(x) =y (x). (302)

rs(r) and ((r) are given by Egs. (291) and (292), respectively and the constants are y =
0.5198421, d = 1.709921, ap1 = 0.031097, ap2 = 0.01554535, ags = 0.0168869, a11 =
0.21370 , a2 = 0.20548, a13 = 0.11125, b1y = 7.5957, b1z = 14.1189, b3 = 10.357,
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bor = 3.5876, bos = 6.1977, bog = 3.6231, b3y = 1.6382, b3y = 3.3662, bsz = 0.88026,
bs1 = 0.49294, byo = 0.62517, byg = 0.49671.

As far as available, we will also list SIC results using the exchange-energy functional
given by Eq. (253) and the correlation energy

EYPASIC {5, }] = /d?’rp(r)ei‘DA[P’r,m](r) - Z Za/d3TP(T)E%DA[|<Pz’a|2a0](‘“) (303)
o=1,} i=1

where E%DA is given by Eq. (297). If the corresponding potential is calculated using the

KLI approximation (76), we will denote it by LDA-SICKLI.

4.3.1 Atomic systems

Table 24 shows the total absolute ground-state energies of the first-row atoms. For these
systems, there exist accurate estimates of the exact non-relativistic values obtained from
experimental ionization energies and improved ab initio calculations by Davidson et al.
[102]. It is evident from this table, that the density functional methods perform quite well.
The mean absolute errors, denoted by A and given in the last row of Table 24, clearly
show that the KLICS approach is significantly more accurate than the LDA-SICKLI and
the conventional Kohn-Sham methods and nearly as accurate as recent CI based quantum
chemical results by Montgomery et al. [101]. The situation is similar for second-row atoms,
as can be seen from Table 25. As relativistic effects for these atoms are more important and
experiments increasingly difficult, the comparison of the calculated values with the Lamb-
shift corrected experimental ones from [2] has to be done cautiously and is by no means
as rigorous as for first-row atoms. Nevertheless, the values calculated with the KLICS
approach mirror these experimental values more closely than the other approximations.

Table 24: Total absolute ground-state energies for first-row atoms from various self-
consistent calculations. Quantum chemistry (QC) values from [101]. A denotes the mean
absolute deviation from the exact nonrelativistic values [102]. All numbers in atomic units.

KLICS LDA-SICKLI BLYP PW91 QC exact

He 2.9033 2.9198 2.9071 2.9000 2.9049 2.9037
Li 7.4829 7.5058 7.4827 7.4742 7.4743 7.4781
Be 14.6651 14.6953 14.6615 14.6479 14.6657 14.6674
B 24.6564 24.7022 24.6458 24.6299 24.6515 24.6539
C 37.8490 37.9335 37.8430 37.8265 37.8421 37.8450
N 54.5905 54.7295 54.5932 54.5787 54.5854 54.5893
0) 75.0717 75.2590 75.0786 75.0543 75.0613 75.067
F 99.7302 99.9995 99.7581 99.7316 99.7268 99.734
Ne 128.9202 129.2868 128.9730 128.9466 128.9277 128.939
A 0.0047 0.1282 0.0108 0.0114 0.0045
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Table 25: Total absolute ground-state energies for second-row atoms from various self-
consistent calculations. /\ denotes the mean absolute deviation from Lamb-shift corrected
experimental values, taken from [2]. All numbers in atomic units.

KLICS LDA-SICKLI BLYP PWI1 experiment
Na 162.256 162.672 162.293 162.265 162.257
Mg 200.062 200.536 200.093 200.060 200.059
Al 242.362 242.891 242.380 242.350 242.356
Si 289.375 289.969 289.388 289.363 289.374

341.272 341.930 341.278 341.261 341.272
S 398.128 398.852 398.128 398.107 398.139
Cl 460.164 460.967 460.165 460.147 460.196
Ar 527.553 528.432 527.551 527.539 527.604
A 0.013 0.624 0.026 0.023

Table 26: Absolute exchange energies from various approximations. All values in atomic

units.

KLICS LDA-SICKLI BLYP PWI1
He 1.028 1.031 1.018 1.009
Li 1.784 1.781 1.771 1.758
Be 2.674 2.665 2.658 2.644
B 3.760 3.758 3.727 3.711
C 5.064 5.099 5.028 5.010
N 6.610 6.701 6.578 6.558
(@) 8.200 8.327 8.154 8.136
F 10.025 10.228 9.989 9.972
Ne 12.110 12.416 12.099 12.082
Na 14.017 14.371 14.006 13.985
Mg 15.997 16.401 15.986 15.967
Al 18.081 18.523 18.053 18.033
Si 20.295 20.787 20.260 20.238

22.649 23.196 22.609 22.587
S 25.021 25.618 24.967 24.944
Cl 27.530 28.195 27.476 27.453
Ar 30.192 30.928 30.139 30.116
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Table 27: Absolute correlation energies from various approximations. All values in atomic

units.

KLICS LDA-SICKLI BLYP PW91
He 0.0416 0.0582 0.0437 0.0450
Li 0.0509 0.0715 0.05641 0.0571
Be 0.0934 0.1169 0.0954 0.0942
B 0.1289 0.1532 0.1287 0.1270
C 0.1608 0.1886 0.1614 0.1614
N 0.1879 0.2232 0.1925 0.1968
0) 0.2605 0.2967 0.2640 0.2587
F 0.3218 0.3645 0.3256 0.3193
Ne 0.3757 0.4283 0.3831 0.3784
Na 0.4005 0.4555 0.4097 0.4040
Mg 0.4523 0.5089 0.4611 0.4486
Al 0.4905 0.5502 0.4979 0.4891
Si 0.5265 0.5910 0.5334 0.5322
P 0.5594 0.6314 0.5676 0.5762
S 0.6287 0.7037 0.6358 0.6413
Cl 0.6890 0.7700 0.6955 0.7055
Ar 0.7435 0.8330 0.7515 0.7687

Despite the somewhat larger errors the SIC results constitute a significant improvement
over the conventional LDA results which are not shown here. For the latter the mean
absolute deviation from the exact data is 0.3813 Hartrees for the first-row atoms and 1.225
Hartrees for the second-row atoms.

For further analysis, we list, in Tables 26 and 27, the values of E, and E,. separately.
Ignoring the LDA-SICKLI results for a moment, the data show two main features: First,
the results for E, are lowest for the KLICS and highest for the PW91 method, while the
BLYP-values lie somewhere in between. And second, for E., this trend is reversed, as now
the KLICS results are highest and the ones from BLYP and PW91 are lower in nearly
all cases. In Table 28 we show results of various z-only calculations performed with only
the exchange-energy parts of the respective functionals. For the spherical atoms listed,
there exist exact x-only OEP values [37, 52]. It is evident, that the KLI-approximation
gives values much closer to the exact ones than the generalized gradient approximations.
From this and from Tables 26 and 27 one may conclude that an error cancellation between
exchange and correlation energies occurs in the BLYP and PW91 schemes which leads
to rather good total energies. Exchange and correlation energies separately, however, are
reproduced less accurately in the BLYP and PW91 approaches. In the KLICS scheme,
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Table 28: Total absolute exchange energies of spherical first and second-row atoms for
various self-consistent x-only calculations. The exact OEP data are from [37, 52]. All
values in atomic units.

KLI xLDA-SICKLI B8&8 PW91 OEP
He 1.026 1.026 1.016 1.005 1.026
Li 1.781 1777 1.768 1.754 1.781
Be 2.667 2.658 2.652 2.638 2.666
N 6.603 6.691 6.569 6.547 6.604
Ne 12.099 12.398 12.086 12.061 12.105
Na 14.006 14.355 13.993 13.968 14.013
Mg 15.983 16.383 15.972 15.950 15.988
P 22.633 23.177 22.593 22.565 22.634
Ar 30.174 30.905 30.122 30.089 30.175

Table 29: Ionization potentials calculated from ground-state-energy differences of first-
row atoms. QC values are from [101]. A denotes the mean absolute deviation from the
experimental values, taken from [103]. All values in atomic units.

KLICS LDA-SICKLI BLYP PW91 QC exp

He 0.903 0.920 0.912 0.905 0.903
Li 0.203 0.200 0.203 0.207 0.198 0.198
Be 0.330 0.335 0.330 0.333 0.344 0.343
B 0.314 0.327 0.309 0.314 0.304 0.305
C 0.414 0.445 0.425 0.432 0.413 0.414
N 0.527 0.565 0.542 0.551 0.534 0.534
0 0.495 0.520 0.508 0.505 0.499 0.500
F 0.621 0.673 0.656 0.660 0.639 0.640
Ne 0.767 0.825 0.808 0.812 0.792 0.792
A 0.009 0.022 0.010 0.014 0.001

both exchange and correlation energies are of high quality. As far as the LDA-SICKLI
approach is concerned, both exchange and correlation energies are too low. Therefore, no
error cancellation occurs leading to rather large errors in the total energies.

Limitations of the DFT approaches become evident for ionization potentials and elec-
tron affinities. In Tables 29 and 30 we show ionization potentials calculated from ground-
state-energy differences and QC values from [101] as well as experimental ones from [103].
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Table 30: Ionization potentials calculated from ground-state-energy differences of second-
row atoms. /\ denotes the mean absolute deviation from the experimental values, taken
from [103]. All values in atomic units.

KLICS LDA-SICKLI BLYP PWI1 experiment
Na 0.191 0.195 0.197 0.198 0.189
Mg 0.275 0.284 0.280 0.281 0.281
Al 0.218 0.222 0.212 0.221 0.220
Si 0.294 0.307 0.294 0.305 0.300
P 0.379 0.392 0.376 0.389 0.385
S 0.380 0.394 0.379 0.379 0.381
Cl 0.471 0.495 0.476 0.482 0.477
Ar 0.575 0.595 0.576 0.583 0.579
A 0.004 0.009 0.005 0.004

The performance of the KLICS, B88 and PW91 methods is similar, while the LDA-SICKLI
scheme leads to results showing a mean absolute deviation from the experimental values
which is roughly twice as large as for any of the other DFT methods. On the whole, QC
calculations lead to clearly better results. Somewhat surprisingly, the DFT methods work
better for the second-row than for the first-row atoms.

In exact DFT, the highest occupied orbital energy of the neutral atom is identical with
the ionization potential, while for negative ions the highest occupied energy level coincides
with the electron affinity of the neutral atom [47]. How well ionization potentials and
electron affinities are reproduced by the highest occupied energy eigenvalues resulting from
an approzimate xc functional is therefore a measure of the quality of the xc potential. Table
31 shows the ionization energies obtained from the highest occupied single-particle-energy
eigenvalue of the neutral atoms. For the BLYP and PW91 approaches the resulting values
are much worse than the ones in Table 29 and 30. The deviation from experiment is around
100 percent for all atoms. This is due to the incorrect asymptotic behavior of the BLYP
and PW91 potentials. The KLICS and LDA-SICKLI potentials, on the other hand, have
the correct —1/r behavior for large r and the resulting highest occupied orbital energies
are much closer to the experimental ionization potentials. Nevertheless, the KLICS values
obtained from ground-state-energy differences (see Tables 29 and 30) are considerably more
accurate.

For electron affinities, the situation is much worse, as may be seen from Tables 32 and
33. First of all, because of the wrong asymptotic behavior of the xc potential for large
r, there is no convergence for negative ions within the self-consistent BLYP and PW91
schemes. This is not the case for the KLICS and LDA-SICKLI approaches. However, the
resulting electron affinities obtained either from ground-state-energy differences or from the
highest orbital energies of negative ions are far less accurate than the ionization energies.
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Table 31: Ionization potentials from the highest occupied orbital energy of neutral atoms.
A denotes the mean absolute deviation from the experimental (exp) values, taken from
[103]. All values in atomic units.

KLICS LDA-SICKLI BLYP PW91 exp

He 0.945 0.948 0.585 0.583 0.903
Li 0.200 0.197 0.111 0.119 0.198
Be 0.329 0.329 0.201 0.207 0.343
B 0.328 0.306 0.143 0.149 0.305
C 0.448 0.427 0.218 0.226 0.414
N 0.579 0.550 0.297 0.308 0.534
0 0.559 0.527 0.266 0.267 0.500
F 0.714 0.686 0.376 0.379 0.640
Ne 0.884 0.843 0.491 0.494 0.792
Na 0.189 0.190 0.106 0.113 0.189
Mg 0.273 0.275 0.168 0.174 0.281
Al 0.222 0.205 0.102 0.112 0.220
Si 0.306 0.287 0.160 0.171 0.300

0.399 0.371 0.219 0.233 0.385
S 0.404 0.383 0.219 0.222 0.381
Cl 0.506 0.481 0.295 0.301 0.477
Ar 0.619 0.580 0.373 0.380 0.579
A 0.030 0.016 0.183 0.177

The KLICS method even gives the wrong sign for the Boron atom if the electron affinity
is calculated from the ground-state-energy differences. On average, the values obtained
from ground-state-energy differences are more accurate than the results obtained from the
highest occupied orbital energies. Comparing the KLICS with the LDA-SICKLI results, the
latter are slightly better on average. The fact that the KLICS and LDA-SICKLI approaches
allow for a fully self-consistent calculation of electron affinities is encouraging, but the poor
accuracy of the results clearly shows that the xc potentials need further improvement.
Here, quantum-chemical approaches are definitely superior.

Two-electron systems The CS and LDA-SIC correlation functionals may be studied
more thoroughly in two-electron atoms. There are two reasons for this: First of all, as
pointed out above, the solution of the full OEP integral equation for these systems is
identical to the one obtained from the KLI-scheme. Furthermore, the exact exchange-
energy functional (27) is identical with ELPA—SIC for spin-saturated two-electron systems,
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Table 32: Self-consistent electron affinities for first-row atoms. QC values are from [101]
and experimental (exp) values from [103]. § denotes the mean value of | ADFT — Aexpl /| Aexp |-
All values in atomic units.

KLICS® KLICS? LDA-SICKLI* LDA-SICKLI® QC exp
Li 0.016 0.024 0.021 0.025 0.023 0.023
B -0.002 0.033 0.025 0.028 0.008 0.010
C 0.028 0.083 0.062 0.073 0.045 0.046
0 0.017 0.110 0.065 0.100 0.052 0.054
F 0.082 0.208 0.138 0.189 0.125 0.125
) 50.5 97.0 44.8 76.8 5.2

¢ from ground-state-energy differences
b from the highest occupied orbital energies of the negative ions.

Table 33: Self-consistent electron affinities for second-row atoms. Experimental (exp)
values are from [103]. & denotes the mean value of |Appr — Aexp|/|Aexp|- All values in

atomic units.

KLICS® KLICS? LDA-SICKLI® LDA-SICKLI? exp

Na 0.015 0.022 0.021 0.024 0.020
Al 0.007 0.024 0.023 0.020 0.016
Si 0.040 0.065 0.058 0.054 0.051
P 0.022 0.048 0.038 0.041 0.027
S 0.065 0.106 0.092 0.095 0.076
Cl 0.122 0.174 0.147 0.151 0.133
) 24.0 39.3 22.5 23.5

¢ from ground-state-energy differences
b from the highest occupied orbital energies of the negative ions.

so that the only error made is due to the approximation for F.. Secondly there exist
practically exact solutions [7] of the two-particle Schrodinger equation. Hence the various
DFT-related quantities of interest can be compared with exact results.

In Table 34 we show total absolute ground-state energies of the atoms isoelectronic with
helium. The exact nonrelativistic results in the last column are taken from [102]. Note
that there is no convergence for negative ions in the conventional Kohn Sham method.
In Figure 10, we have plotted the errors ERi + — E&2° corresponding to the numbers in

Table 34. It is obvious that the KLICS scheme gives superior results, the mean absolute
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Table 34: Total absolute ground-state energies for the Helium-isoelectronic series from
various self-consistent calculations. A\ denotes the mean absolute deviation from the exact
values from [102] . All numbers in atomic units.

KLICS LDA-SICKLI BLYP PWI1 exact

H™ 0.5189 0.5263 0.5278
He 2.9033 2.9198 2.9071 2.9000 2.9037
Lit 7.2803 7.3057 7.2794 7.2676 7.2799
Be?t 13.6556 13.6886 13.6500 13.6340 13.6556
B3t 22.0301 22.0698 22.0200 21.9996 22.0310
cHt 32.4045 32.4499 32.3896 32.3649 32.4062
N>+ 44.7788 44.8293 44.7592 44.7299 44.7814
0%+ 59.1531 59.2081 59.1286 59.0948 59.1566
F7t 75.5274 75.5864 75.4981 75.4595 75.5317
Ne8+ 93.9017 93.9644 93.8675 93.8241 93.9068
Na®* 114.2761 114.3422 114.2369 114.1886 114.2819
Mgl0+ 136.6505 136.7197 136.6064 136.5531 136.6569
AL 161.0250 161.0970 160.9758 160.9175 161.0320
Qjl2+ 187.3995 187.4742 187.3453 187.2819 187.4070
pis+ 215.7740 215.8512 215.7147 215.6462 215.7821
gla+ 246.1485 246.2281 246.0842 246.0105 246.1571
Cl1i5+ 278.5231 278.6049 278.4536 278.3748 278.5322
Arlté+ 312.8977 312.9816 312.8231 312.7390 312.9072
K17+ 349.2723 349.3582 349.1926 349.1032 349.2822
Calst 387.6470 387.7347 387.5620 387.4674 387.6572
A 0.0053 0.0533 0.0450 0.0943

error A being smaller by an order of magnitude compared to the LDA-SICKLI and the
two conventional Kohn-Sham approaches.

In Table 35 we have listed the highest occupied orbital energies for the two-electron
series as obtained from various self-consistent calculations. Comparing the results with
the exact values it is obvious that the KLICS and LDA-SICKLI schemes perform much
better than the conventional Kohn-Sham approaches. The difference is less pronounced for
the highly charged ions as the nuclear potential becomes more and more dominant as Z
increases. A glance at the second column, in which we give the corresponding values from an
z-only KLI calculation employing the exact functional (27), shows that the superior quality
is due to the inclusion of the exact exchange in the KLI scheme leading to the correct
asymptotic behavior of the KS potential. In fact, adding the CS correlation potential
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Table 35: Absolute highest occupied orbital energies from various self consistent calcula-
tions. Exact values calculated from [102]. All values in atomic units.

KLI KLICS LDA-SICKLI BLYP PW91 exact
x-only xc xC XC
He 0.9180 0.9446 0.9481 0.5849 0.5833 0.9037
Lit 2.7924 2.8227 2.8293 2.2312 2.2269 2.7799
Be?t 5.6671 5.6992 5.6556 4.8760 4.8701 5.6556
B3+t 9.5420 9.5751 9.5871 8.5201 8.5129 9.5310
o4t 14.4169 14.4507 14.4648 13.1638 13.1554 14.4062
N+ 20.2918 20.3261 20.3421 18.8072 18.7978 20.2814
0%+ 27.1668 27.2014 27.2191 25.4504 25.4401 27.1566
F7+ 35.0418 35.0766 35.0959 33.0935 33.0823 35.0317
Neft  43.9167 43.9517 43.9725 41.7366 41.7245 43.9068
Na’t  53.7917 53.8269 53.8489 51.3796 51.3666 53.7819
Mg+  64.6667 64.7020 64.7252 62.0225 62.0086 64.6569
At 76.5417 76.5770 76.6015 73.6654 73.6506 76.5320
Sil2+  89.4167 89.4521 89.4776 86.3083 86.2926 89.4071
P13+ 103.2917  103.3272 103.3536 99.9511 99.9345  103.2821
S+ 118.1666  118.2022 118.2296  114.5939  114.5764  118.1571
CIt  134.0416 134.0773 134.1055 130.2367 130.2183 134.0322
Ar'®t  150.9166  150.9523 150.9814  146.8795  146.8602  150.9072
K7+  168.7916  168.8273 168.8572  164.5223  164.5021 168.7822
Cal®t 187.6666  187.7024 187.7330  183.1650  183.1439  187.6572

worsens the results, as may be seen by comparing the second and third columns: The
correlation contribution lowers the already too small values from the x-only calculations
for the highest occupied orbital energy even more. This indicates that the CS correlation
potential has the wrong sign in the physically relevant regions of space. As the x-only LDA-
SICKLI is identical with the x-only KLI scheme for these systems, the same conclusion can
be drawn for the LDA-SICKLI correlation potential.

These findings are confirmed by Figure 11 where we plot the exact [7] and various
self-consistent correlation potentials. It is evident that the approximate potentials show
very large deviations from the exact one. In the region where most of the charge density
is located, the approximate correlation potentials have the wrong sign. Furthermore, the
potentials obtained with the CS functional within the KLICS scheme and the two conven-
tional Kohn-Sham approximations exhibit spurious divergences at the origin. These may
be traced back to gradients of the density and of the one-particle orbitals occurring in these
correlation energy functionals. As the LDA-SICKLI functional does not contain any den-
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sity gradients, these divergences are not found for the LDA-SICKLI potential. The need
for further improvement of the correlation energy functionals in these respects is obvious.

Beryllium and Neon isoelectronic series For further analysis we have calculated the
total ground state energies of positive ions isoelectronic with Beryllium (shown in Table 36)
and Neon (shown in Table 37). Again, we compare various self-consistent DFT methods
with exact data from Ref. [91] and plot the errors in Figures 12 and 13, respectively. The
data for both series show the same trends: The overall best results are obtained with the
KLICS scheme, where the absolute total and relative mean deviations from the exact values
are smallest. The BLYP scheme is only slightly worse, but the PW91 functional gives errors
almost twice as large as the other DFT approaches. From the plots in Figures 12 and 13
it is obvious that these statements hold for most ions individually.

There are two other trends worth noting: (a) While the absolute errors rise within the
isoelectronic series as the atomic number increases, the percentage errors remain almost
constant. (b) The mean absolute error is smaller by almost an order of magnitude for the
ten-electron series compared to the four-electron series.

The ionization potentials from the various approaches as calculated from the highest
occupied orbital energies are shown in Tables 38 and 39 for the four- and ten-electron
series, respectively. The exact nonrelativistic values have been calculated from the data
given in [91]. Owing to the correct asymptotic behavior of the KLICS potential it comes as
no surprise that the KLICS data are superior to the ones obtained from the conventional
Kohn-Sham approaches. The effect of the correlation potential within the OEP scheme is
— like in the two-electron case — a lowering of the energy eigenvalue of the highest occupied
orbital. This is seen by comparing the second and third columns showing the OEP results in
x-only approximation and with inclusion of CS correlation in the KLI scheme, respectively.
In contrast to the Helium and Neon isoelectronic series, this effect improves the quality of
the results in the Beryllium isoelectronic series. We mention that the ionization potentials
are in much better agreement with the exact results when calculated as ground-state energy
differences.

4.3.2 Diatomic molecules

To examine the effect of correlation contributions, we have implemented the CS correlation-
energy functional (279) in our fully numerical basis-set-free code for diatomic molecules
[104]. For comparison, we have also performed calculations employing the conventional
LDA [100] and the PW91 functional for Ex..

To demonstrate the accuracy of our implementation, we compare results for the Neon
atom obtained with our molecular code with the ones from our one-dimensional atomic
structure program in table 40. The deviation from the exact results obtained with the
atomic code is a few pyHartrees at most.

Ground-state properties of the closed-shell-first-row dimers and hydrides were calcu-
lated using the approximations mentioned above in a fully self-consistent fashion. As our
program uses no basis functions, the results are free of basis-set truncation and basis-set
superposition errors. Where available, we have also included HF results obtained with
conventional codes using basis-set expansions. Therefore, the comparisons between DFT
and HF results in Tables 41, 43 and 44 have to be interpreted with due care.
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Figure 11: Comparison of the exact and self consistently calculated correlation potentials
of helium. Exact potential from [7].

In Table 41 we display results for the bond lengths. It is apparent that the KLICS
scheme leads to equilibrium distances which are generally too short, an effect present in
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Table 36: Total absolute ground-state energies for the Beryllium-isoelectronic series from
various self-consistent calculations. A denotes the mean absolute deviation from the exact
values from [91] and § denotes |ERET — ES5act| /| EeXact| - All numbers in atomic units.

KLICS BLYP PWI1 exact

Be 14.6651 14.6615 14.6479 14.6674
Bt 24.3427 24.3366 24.3160 24.3489
c2+ 36.5224 36.5143 36.4881 36.5349
N3+ 51.2025 51.1927 51.1618 51.2228
o4t 68.3825 68.3713 68.3362 68.4117
Fot 88.0624 88.0499 88.0110 88.1011
Nebt 110.2420 110.2285 110.1859 110.2909
Na™t 134.9216 134.9071 134.8610 134.9809
Mg8+ 162.1010 162.0857 162.0361 162.1710
A9t 191.7803 191.7642 191.7113 191.8613
Silo+ 223.9595 223.9427 223.8864 224.0516
pii+ 258.6387 258.6212 258.5616 258.7420
g2+ 205.8178 295.7996 295.7367 295.9324
113+ 335.4968 335.4781 335.4119 335.6229
Arl4t 377.6758 377.6566 377.5870 377.8134
K15+ 422.3548 422.3350 422.2621 422.5040
Calbt 469.5338 469.5134 469.4372 469.6946
Scl7+ 519.2127 519.1919 519.1122 519.3851
Tilé+ 571.3917 571.3703 571.2873 571.5757
vio+ 626.0708 626.0487 625.9623 626.2663
Cr20+ 683.2497 683.2271 683.1373 683.4570
Mn2l+ 742.9286 742.9056 742.8123 743.1476
Fe22+ 805.1074 805.0840 804.9873 805.3382
Co23+ 869.7863 869.7624 869.6623 870.0289
Ni24+ 936.9652 936.9408 936.8373 937.2195
A 0.1183 0.1352 0.1973

5 0.0351 0.0443 0.0755

the HF approximation as well. Most notable is the fact that the potential energy curve of
Bes displays no local minimum in this approximation. Good agreement with experiment
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Table 37: Total absolute ground-state energies for the Neon-isoelectronic series from various
self-consistent calculations. A denotes the mean absolute deviation from the exact values
from [91] and § denotes |[ERET — ESat| /| EE2°t|. All numbers in atomic units.

KLICS BLYP PWo91 exact

Ne 128.9202 128.9730 128.9466 128.9376
Nat 162.0645 162.0956 162.0668 162.0659
Mg2+t 199.2291 199.2448 199.2136 199.2204
A3t 240.4071 240.4102 240.3768 240.3914
Sit4 285.5945 285.5867 285.5509 285.5738
pot 334.7888 334.7712 334.7331 334.7642
g6+ 387.9885 387.9616 387.9212 387.9608
Cl’+ 445.1922 445.1567 445.1138 445.1622
Ard¥t 506.3993 506.3554 506.3101 506.3673
K9+ 571.6091 571.5570 571.5092 571.5754
Callt 640.8211 640.7610 640.7107 640.7861
Sctl+ 714.0350 713.9671 713.9141 713.9988
Til2+ 791.2504 791.1748 791.1191 791.2132
yis+ 872.4671 872.3839 872.3255 872.4291
Cpld+ 957.6850 957.5942 957.5331 957.6463
Mn!o+ 1046.9039 1046.8056 1046.7417 1046.8646
Felb+ 1140.1237 1140.0179 1139.9511 1140.0838
Col™ 1237.3440 1237.2309 1237.1613 1237.3039
Njl8+ 1338.5652 1338.4447 1338.3722 1338.5247
A 0.0293 0.0334 0.0694

) 0.0054 0.0067 0.0097

is found only for Lis. Except for this molecule, the PW91 values are clearly superior. In
most cases even the LDA results are better than the KLICS values. With the exception of
Lis and Cs, the GGA reduces the error of the LDA significantly.

Total absolute ground-state energies calculated at the bond lengths given in Table 41
are shown in Table 42. The exact values for the dimers are from [90], for the hydrides
they are calculated by the same method using the exact nonrelativistic atomic ground-
state energies in [91] and the experimental dissociation energies in [106]. For the lighter
molecules Hy, Lis, Bey, LiH and BH the KLICS and PW91 results are of the same good
quality, yielding errors of a few mHartrees. For the heavier molecules, however, the KLICS
results are worse. Being the simplest approximation, it is not surprising that the LDA
gives values for the total energies which show the largest errors.
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Figure 13: Energy differences correspond-

ing to Table 37.

Figure 12: Energy differences correspond-
ing to Table 36.

Apart from Hs and LiH, the dissociation energies obtained within the KLICS approach
are disappointing, as may be seen in Table 43. In most cases, the magnitude is under-
estimated considerably and for Bes and Fs even the wrong sign is obtained. Since the
corresponding atomic ground-state energies given in the previous section are of excellent
quality, the error must be due to correlation effects present in molecules only. In particular,
the left-right correlation error [110] well-known in HF theory also occurs in DFT when the
exact Fock expression (27) for Fy is employed. Apparently, the error is not sufficiently
corrected for by the CS functional. The LDA and PW91 results are clearly much better,
the latter reducing the over-binding tendencies of the former.

Despite these shortcomings, the KLICS xc potential is of better quality than the con-
ventional xc potentials. In Table 44 we list the absolute values of the highest occupied
molecular orbital energies. In an exact implementation their values should be equal to the
ionization potentials of the systems under consideration. It is evident that the conventional
KS approaches represented by the LDA and PW91 functionals yield results which are typ-
ically 40 percent too high, while the KLICS values are much closer to the experimental
results. As for atomic systems, this fact may be traced back to the correct asymptotic be-
havior of the KLICS xc potential for large . In order to examine the quality of the KLICS
potential in the region closer to the nuclei, we compare the orbital energies of FH obtained
using the various DFT approximations with results from the Zhao-Parr (ZP) method [5]
in Table 45. This scheme allows for the calculation of the Kohn-Sham potential which
uniquely corresponds to a given density. Ingamells et. al. [10] have used accurate densities
obtained within the coupled cluster approach and determined the orbital energies of FH
shown in the last column of Table 45. Although these values are expected to be close to the
exact ones, they still contain some errors. For example, the energy of the highest molecular
orbital, —0.5996 Hartrees, is not equal to the experimentally observed ionization potential
of —0.5894 Hartrees. Nevertheless, it is evident from the table that the KLICS results are
much closer to the ZP values than the ones from the conventional DFT approaches. We
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Table 38: Ionization potentials from highest occupied Kohn-Sham orbital energies for the
Beryllium-isoelectronic series from various self-consistent calculations. Exact nonrelativis-
tic values calculated from [91] . All numbers in atomic units.

KLI KLICS BLYP PW91 exact
x-only xc xC XC
Be 0.3089 0.3294 0.2009 0.2072 0.3426
B+ 0.8732 0.8992 0.7129 0.7185 0.9243
o2t 1.6933 1.7226 1.4804 1.4856 1.7594
N3+ 2.7659 2.7975 2.5000 2.5049 2.8459
0%t 4.0898 4.1231 3.7706 3.7754 4.1832
Fo+ 5.6644 5.6991 5.2918 5.2964 5.7708
Neb+ 7.4896 7.5253 7.0633 7.0678 7.6087
Na™t 9.5652 9.6017 9.0850 9.0894 9.6967
Mg8+ 11.8910 11.9281 11.3569 11.3611 12.0348
At 14.4669 14.5047 13.8788 13.8829 14.6230
Sito+ 17.2930 17.3312 16.6508 16.6548 17.4613
piit 20.3692 20.4078 19.6729 19.6768 20.5496
Si2+ 23.6955 23.7345 22.9450 22.9487 23.8880
C1i3+ 27.2718 27.3111 26.4671 26.4707 27.4763
Arldt 31.0982 31.1378 30.2393 30.2427 31.3147
K15+ 35.1747 35.2145 34.2615 34.2647 35.4031
Calé+ 39.5012 39.5412 38.5336 38.5367 39.7416
Scl™ 44.0777 44.1179 43.0558 43.0587 44.3300
Tjl8+ 48.9043 48.9447 47.8280 47.8307 49.1684
Viot 53.9808 54.0214 52.8502 52.8527 54.2569
Cr20+ 59.3074 59.3481 58.1224 58.1247 59.5954
Mn2l+ 64.8840 64.9249 63.6447 63.6467 65.1838
Fe?? ™t 70.7107 70.7516 69.4169 69.4187 71.0223
Co®+ 76.7873 76.8284 75.4391 75.4408 77.1108
Ni24+ 83.1140 83.1551 81.7113 81.7128 83.4493

conclude that the KLICS potential is a better approximation to the exact KS potential
than any of the conventional approximations.
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Table 39: Ionization potentials from highest occupied Kohn-Sham orbital energies for the
Neon-isoelectronic series from various self-consistent calculations. Exact nonrelativistic
values calculated from [91]. All numbers in atomic units.

KLI KLICS BLYP PW91 exact
x-only xC xc xC
Ne 0.8494 0.8841 0.4914 0.4942 0.7945
Nat 1.7959 1.8340 1.3377 1.3416 1.7410
Mg+ 3.0047 3.0450 2.4531 2.4579 2.9499
AP 4.4706 4.5125 3.8285 3.8339 4.4161
Sitt 6.1912 6.2343 5.4601 5.4661 6.1371
p5t 8.1651 8.2091 7.3458 7.3524 8.1112
So+ 10.3914 10.4362 9.4846 9.4917 10.3378
'+ 12.8696 12.9150 11.8757 11.8832 12.8162
Ar®t 15.5992 15.6451 14.5185 14.5264 15.5460
Kot 18.5800 18.6263 17.4126 17.4209 18.5270
Callt 21.8118 21.8585 20.5579 20.5665 21.7589
Sctit 25.2943 25.3413 23.9541 23.9630 25.2416
Til2+ 29.0274 29.0747 27.6010 27.6102 28.9748
Vi3t 33.0112 33.0587 31.4986 31.5080 32.9586
Crli4+ 37.2453 37.2931 35.6467 35.6563 37.1929
Mnls+ 41.7299 41.7779 40.0453 40.0551 41.6776
Fel®+ 46.4649 46.5130 44.6943 44.7042 46.4126
Col T+ 51.4501 51.4984 49.5936 49.6037 51.3979
Nils+ 56.6856 56.7341 54.7432 54.7535 56.6335

4.4 Solids

Few calculations applying OEP or KLI methods to solids have been reported in the litera-
ture [39, 40, 111, 112, 113, 114, 115, 116, 117, 118]. In this section we concentrate on mate-
rials for which more than one calculation has been reported, i.e. on Si, Ge and diamond. In
Table 46 we show the energy gaps for Si at various high-symmetry points in the Brillouin
zone. The results have been obtained with different computational techniques for the band
structure calculation but they all make use of the exact, orbital-dependent exchange energy
functional combined with the correlation energy functional in LDA. KKR-ASA denotes the
Korringa-Kohn-Rostoker method in the atomic sphere approximation (ASA), LMTO-ASA
is a linear-muffin-tin-orbital calculation in the same (ASA) approximation. Furthermore
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Table 41: Calculated bond lengths of the closed-shell-first-row dimers and hydrides. HF
values taken from [105]. Experimental values from [106] except where noted. All values in
atomic units. Taken from [104].

KLICS PWOI1 xcLDA HF experiment

H, 1.378 1.414 1.446 1.379 1.4012
Lis 5.086 5.153 5.120 5.304 5.051

Bey -b 4.588 4.522 - 4.63¢

Cs 2.306 2.367 2.354 - 2.3481
Ny 1.998 2.079 2.068 2.037 2.074

Fy 2.465 2.669 2.615 2.542 2.6682
LiH 2.971 3.030 3.030 3.092 3.0154
BH 2.274 2.356 2.373 - 2.3289
FH 1.684 1.756 1.761 1.722 1.7325

@ Exact value from [107]
b There is no local minimum in the electronic potential curve.
¢ From [90]

Table 42: Absolute total ground-state energies of the closed-shell-first-row dimers and
hydrides calculated at the bond lengths given in Table 41. Estimates for exact values
calculated using dissociation energies from Table 43 and nonrelativistic, infinite nuclear
mass atomic ground-state energies from [91]. All numbers in atomic units. Taken from
[104].

KLICS PWI1 xcLDA exact
H, 1.171444 1.170693 1.137692 1.1744482
Lis 14.9982 14.9819 14.7245 14.9954
Bes 29.3197P 29.3118 28.9136 29.3385
Cs 75.7736 75.8922 75.2041 75.922
No 109.4683 109.5449 108.6959 109.5424
Fa 199.4377 199.5699 198.3486 199.5299
LiH 8.0723 8.0625 7.9189 8.0705
BH 25.2857 25.2688 24.9770 25.29
FH 100.4241 100.4715 99.8490 100.4596

@ Exact value from [107]
b Calculated at the experimental bond length of 4.63 a.u.
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Table 43: Dissociation energies of the closed-shell-first-row dimers and hydrides calculated
at the bond lengths given in Table 41. HF values taken from [105]. All numbers in
mHartrees. Taken from [104].

KLICS PWI1 xcLDA HF experiment

H, 171.444 167.665 180.270 121.0 174.475P
Lis 32.4 33.5 37.9 3.5 39.3¢
Bes -10.52 15.9 20.6 - 3.8¢

Cs 75.6 239.2 267.5 - 2324

No 287.3 387.5 427.1 167.5 364.04
Fo -22.7 106.7 126.2 -54.7 62.14
LiH 89.4 86.8 96.9 48.4 92.44
BH 129.3 137.4 145.8 - 135¢
FH 193.9 238.4 259.1 130.8 225.7¢

2 Calculated at the experimental bond length 4.63 a.u.
b BExact value from [107]

¢ From [90]

4 From [106]

¢ From [108]

Table 44: Absolute values for the highest occupied orbital energies of the closed-shell-first-
row dimers and hydrides calculated at the bond lengths given in Table 41. Experimental
values are the ionization potentials taken from [106]. All numbers in atomic units. Taken
from [104].

KLICS PWI1 xcLDA experiment

Hy 0.621563 0.382656 0.373092 0.5669
Lis 0.1974 0.1187 0.1187 0.18
Bey 0.25602 0.1678 0.1660 -

Co 0.4844 0.2942 0.2987 0.4465
No 0.6643 0.3804 0.3826 0.5726
Fo 0.6790 0.3512 0.3497 0.5764
LiH 0.3237 0.1621 0.1612 0.283P
BH 0.3692 0.2058 0.2041 0.359
FH 0.6803 0.3567 0.3594 0.5894

2 Calculated at the experimental bond length 4.63 a.u.
> From [109]
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Table 45: Kohn-Sham orbital energies for FH using a bond length of 1.6373 a.u. ZP
denotes results from the Zhao-Parr method using accurate densities from coupled cluster
calculations, taken from [10]. These numbers are close to the exact ones. All values in
atomic units.

KLICS PWI1 xcLDA 7P
€1g -24.5479 -24.2671 -24.0863 -24.6209
€24 -1.4492 -1.1234 -1.1114 -1.3732
€3¢ -0.8220 -0.5080 -0.5085 -0.7418
Einx -0.6835 -0.3622 -0.3655 -0.5996

we report several calculations using pseudopotentials (PP). The abbreviations EXX and
KLI stand for exact exchange and KLI exchange, both combined with LDA correlation.

For comparison, we show in Table 47 the LDA gaps obtained with the same computa-
tional methods. This comparison serves two purposes: first it can be seen that the LDA
band gaps from the different methods agree pretty well. In contrast, the corresponding EXX
(and KLI) band gaps show somewhat larger discrepancies among each other, although the
agreement is still reasonable. Second we recognize the general trend of the EXX and KLI
calculations to enhance the gaps significantly over the LDA values, thus achieving consid-
erably better agreement with the experimental results. This can be attributed to the fact
that EXX and KLI calculations have no self-interaction errors in the exchange potentials.
Comparison of the results of the KLI calculation (column 5 of Table 46) with the exact ex-
change calculations obtained by also employing a local pseudopotential (column 3 of Table
46) suggests that the KLI approximation yields somewhat smaller band gaps than exact
exchange.

In Tables 48 and 49 we report band gaps for Ge and diamond, respectively. The general
findings from the calculations on Si are preserved in both cases: compared to LDA the band
gaps obtained with exact exchange are significantly enhanced, but not as much as for Si.

Stéadele et.al. [118] also studied the x-only derivative discontinuity which should be
taken into account in a rigorous calculation of the band gap (see Eq. (179)). They found
that this discontinuity is roughly twice as large as the Kohn-Sham band gap obtained
by simply taking the difference of the KS eigenvalues. This leads to total gaps close to
the Hartree-Fock band gaps. The discontinuity in the correlation potential must therefore
cancel a large part of the exchange discontinuity to reproduce the experimentally observed
gaps. This demonstrates the importance of finding a good, orbital-dependent correlation
energy functional. LDA correlation has no discontinuity and is therefore not able to do
this job.

All the calculations discussed so far employed the exact exchange energy functional
combined with LDA correlation. Stadele et.al. [118] also performed a self-consistent
exchange-only calculation, i.e. employing the exact exchange potential without adding
any correlation potential. The resulting exchange potential, being the exact exchange po-
tential of x-only DFT, was compared for silicon with approximate exchange functionals.
Their results are shown in Fig. 14. In the physically important bonding region between the
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Si atoms the LDA potential significantly underestimates the spatial variations of the exact
exchange. In this region the GGA exchange potential of Becke [75] is clearly superior to
the LDA, while in the low-density regions the GGA potential is far too large.

In this self-consistent x-only calculation for Si, Stadele et.al. [118] determined the total
energy per atom as well as the exchange energy per atom to be -104.75 eV and -29.40 eV,
respectively. Similar to the results reported for atoms and molecules in the previous sec-
tions, these total-energy results agree very closely with the corresponding Hartree-Fock
values [118] of -104.87 eV and 29.61 V.

Table 46: Kohn-Sham energy gaps for Si (in eV) from various calculations using the exact

exchange functional

KKR-ASA LMTO-ASA local PP nonlocal PP KLI-PP ¢

EXX 2 EXX 2 EXX b EXX b KLI ¢ expt.
E, 1.12 1.25 1.43 1.44 - 1174
L 1.98 2.09 2.36 2.30 1.82 2.4 ¢
r 2.87 2.95 3.46 3.29 2.87 3.05 f
X 1.24 1.38 - 1.58 0.94

2 from reference [111]
b from reference [118]
¢ from reference [117]
4 from reference [119]
¢ from reference [120]
£ from reference [121]

Table 47: Kohn-Sham energy gaps for Si (in eV) from various LDA calculations

KKR-ASA LMTO-ASA local PP nonlocal PP PP
LDA @ LDA 2 LDA P LDA P LDA © expt.
Ey 0.54 0.55 0.52 0.49 - 1174
L 1.43 1.43 1.54 1.45 1.43 2.4 ¢
r 2.57 2.57 2.79 2.55 2.57 3.05 f
X 0.66 0.66 - - 0.60

2 from reference [111]
b from reference [118]
¢ from reference [116]
4 from reference [119]
¢ from reference [120]
£ from reference [121]
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Table 48: Kohn-Sham energy gaps for Ge (in eV) from various calculations

KKR-ASA LMTO-ASA KKR- or LMTO-ASA PP PP
EXX & EXX @ LDA 2 KLI® LDAP®  expt.S
L(E,) 1.03 1.12 0.40 0.77 0.42 0.84
r 1.57 1.67 0.60 1.26 0.82 1.00
X 1.24 1.34 0.78 0.87 057 1.3+0.2

2 from reference [111]
b from reference [117]
¢ from reference [119]

Table 49: Kohn-Sham energy gaps for diamond (in eV) from various calculations

KKR-ASA LMTO-ASA PP PP
EXX 2 EXX 2 EXX P LDA P expt. ¢
E, 4.58 4.65 5.06 4.16 5.47
L 8.63 8.68 9.19 8.42 -
r 5.87 5.92 6.28 5.57 7.3

2 from reference [111]
b from reference [118]
b from reference [122]
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Figure 14: (a) Comparison of the calculated exact exchange potential (open circles), in
eV, along the [111] direction in Si with the approximate LDA (dashed line) and GGA
(solid line) [75] exchange potentials. The filled black circles correspond to the positions of
the Si atoms. The LDA and GGA potentials were evaluated at the exchange-only EXX
density and the local ionic pseudopotential was employed. The mean values of all exchange
potentials have been set equal to zero. (b) Self-consistent charge densities computed with
the indicated exchange-only functionals; taken from [118].

For metals the exact exchange functional is not expected to give good results. Kotani
and Akai [112] found for transition metals such as Fe that the exact exchange plus LDA
correlation potential yields the occupied bands too deep relative to the s bands and leads to
magnetizations too large compared with experiment. In order to rectify this problem Kotani
[113] has recently combined the exact exchange potential with a full (inhomogeneous) RPA
for the correlation potential. It was found for the transition metals that the RPA correlation
potential has a large contribution opposite in sign to the exchange potential. The resulting
band structures and magnetizations are rather close to LDA results and to the experimental
numbers. The magnetization of Fe, for example, is found to be 2.02 pp in the EXX+RPA
calculation in contrast to 3.27 pup in the EXX+LDA calculation. The corresponding LDA
and experimental values are 2.13 pp and 2.12 up, respectively.

5 Beyond the OEP - a connection with Many-Body Pertur-
bation Theory

We have discussed in detail the connection between the OEP method and the conven-
tional density functional approach. The OEP method, where the xc energy is expressed
as a functional of the orbitals, allows for more flexibility in approximating the xc energy,
while preserving important properties of the exact KS potential such as the derivative
discontinuities and the absence of spurious self-interactions. Apart from the use of the
Colle-Salvetti functional in the OEP procedure as described in previous chapters, several
approaches have been reported in the literature to derive approximations to the correlation-
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energy functional suitable for the OEP method. Gorling and Levy [123, 32] proposed a
scheme to derive a correlation-energy functional from a coupling-constant perturbation ex-
pansion. Casida [124] on the other hand, used an approximate perturbative expression for
the ground-state energy to include correlation in the OEP scheme.

The purpose of the present chapter is to establish a connection between the OEP
method and many-body perturbation theory which may serve to construct correlation
energy functionals in a systematic way. We first derive exact equations for the xc potential
and the xc energy in terms of the Green function and self-energy of the system by using
a particular perturbative expansion of the interacting Hamiltonian. Then we demonstrate
that the x-only OEP method is equivalent to the first-order approximation of this expansion.
On the basis of this observation we then propose an iterative scheme to include correlation
which relies on the Kohn-Sham Green function rather than on the Kohn-Sham orbitals.

The starting point of our discussion is the Hamiltonian of the system of interacting
electrons (see Eq. (1)) written in second quantized notation:

H=T+ V() + Wcu, (304)
where
. R v2\ .
T = z(,.: /d3r zp:f,(r) (—7> Py (r) (305)
is the kinetic energy operator,

Vo=> /d3r Pl (r)vo (r) Yo (r) (306)

is the operator of the external (nuclear) potential and

- 1 - . 1 . .
W = 3 3 fatr [t G 3L () b (0)oo) (307)
o,0!
is the Coulomb interaction of the electrons.
The central idea is now to formally rewrite Eq. (304) by addition and subtraction of
the exact Hartree and xc potentials in the following way:

f{:T-l—Vo+VH+VXC+(W(}1}3—VH—VXC)Z:ﬁKs—I-ﬁl ) (308)

Here Vi and Vi are the operators of the Hartree and xc potentials defined in analogy to
Eq. (306) with vy(r) replaced by

vr(r) = /d3r pr') (309)

v =]

and Vi, (r), respectively.
His =T+ Vo + Vi + Ve (310)

is the Hamiltonian of non-interacting electrons moving in the spin-dependent KS potential
Vso(r) = vo(r) + va(r) + Vico (r) (311)

and will serve as the unperturbed reference Hamiltonian while
Hy =W — Vi — Vie (312)
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will be treated as a perturbation to Hys. It has to be emphasized that the xc potential
Vieo (r) — and hence the unperturbed Hamiltonian Hys — is not known at this stage and has
to be determined by further arguments. Its uniqueness, on the other hand, is guaranteed
by the Hohenberg-Kohn theorem. We also note that the perturbative approach based on
the proposed splitting (308) of the interacting Hamiltonian is not equivalent to a Taylor
expansion in powers of e? with e being the elementary charge. This is due to the fact that
the unperturbed Hamiltonian Hg g through the exact KS potential Vi, already contains
€2 up to infinite order.

Application of the techniques of many-body perturbation theory to Hamiltonian (308)
in the described way, i.e. treating H as a perturbation to the KS Hamiltonian H ks, leads
to the Dyson equation

Go(r,r',w) = GES(r, ', w) +/d3y /d3y' GES (r,y,w)Z, (v, ¥y, w)Go(y', T/ w)  (313)

which relates the Green function G, of the interacting system to the KS Green function

GKS(I_ I_ w — llm Z(,O]o’ (p]o- (6(6,70' _EF) + G(EF —Ejo.)) . (314)

77—>0+ W—E€gjg+1in wW—Ejs—1in

Yo (r,1',w) is the irreducible self-energy corresponding to the perturbation Hj. Since this
perturbation contains the unknown xc potential one can write the self-energy as a functional
of Vieo(r):

Yo(r, v’ w) = Xg[Vieo (v, ', w) . (315)

Explicit approximations of this functional can be found, e.g., by evaluating all self-energy
diagrams up to a given order in the perturbation. An example for this strategy will be
discussed below.

In order to determine Vi, (r) we finally make use of the fact that — due to the KS
theorem — the spin density of the interacting system can be obtained both via the Green
function G, and the KS Green function GX3 by the expression

po(r) = —i d—‘” Golr,1,w) = —i g‘; GES(r,r,w) . (316)

Using Dyson’s equation (313) one is thus led to the integral equation
/g—:/dsy/d%' G (r,y,w) 0 (y, ¥, w)Go(y' 1,0) =0 (317)
Writing the self-energy as
Yo (r, v, w) = Tyeo (v, v, w) — 6(r — ') Vieo (T) (318)
one obtains
[y Vo) [ 52 GES 3,06 (31.0) =
/d3y /d?’y'/;l—: Gy (1, y,w) o (¥, ¥ w)Go (v 1, w) (319)

This exact integral equation relating the xc potential to the xc¢ part Yye,(r,r’,w) of the
irreducible self-energy was first derived by Sham and Schliter [50, 54].

87



Sham also derived an exact expression for the xc energy in terms of the Green function
and the self-energy by using the techniques of Luttinger and Ward [125]. This expression
reads

. dw
Emc[p’]‘api] = ZZ / % /d37,. ]Og (1 - Gﬁ(SEO') (raraw)
o

FiX [ [ar [ st w)Gow rw) + v ()

where the logarithm of some integral operator C'(r,r’) has to be read as

log (1 — i % (321)
n=1
with
(C(r,r'))" = /d3$1 . /d?’a:n_lc'(r, x1)C(x1,%2) ... C(xp_1,7) . (322)

The quantities V(") are defined by
Z/ /d3 /d?’r' Zadressed(r rw)G,(r',r,w) (323)

where, for n > 2, n® (r,r’',w) is the sum of all dressed skeleton diagrams of order n,

o,dressed
while for n = 1 it is given solely by the nonlocal first-order dressed skeleton diagram, i.e.,
1 dw G, (r, ', w)
Z357,()iressed (r,r') = T (324)

21 |r—r|

As a consequence of the logarithm of integral operators, Eq. (320) is rather difficult to
handle. In the following we derive a much simpler, though still exact, expression for
Ey.. We begin with the standard expression [126] for the total ground state energy of the
interacting system:

— __Z/ /d3r lim (w - %‘2” -I-Uo(l‘)) Goy(r,r',w)

r'—r

_ __Z/d“’ /d% lim (w — hES(x) + 2055 (1)) Gy (r.7' )

r'—r

) Z /d37” (vE (r) + Vgeo (T)) po(T)

= —12/ /d?’rrl,li)nr (— )G (r,r',w +/d3rv0 )p(r)
/d3 /d3 'p|r_r,| Z/dw /d3 /d3r'zm, r,r’,w)Go(r,r,w) (325)

where we used Dyson’s equation (313) and the equation of motion for the KS Green function
(w = hg* (1)) G5 (r,x',w) = é(r — '), (326)
with the KS single-particle Hamiltonian

heS(r) ——V;Jera( ) - (327)
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Figure 15: Energy diagrams of first order in Hy. Straight lines represent the KS Green
function, wavy lines represent the bare Coulomb interaction. Diagram c) originates from
the local part — Vi — Vi of the perturbation.

Comparison of Eq. (325) with the defining equation for E,.,

Egs(pt, py] =T3[p¢7p¢]+/d3rvo /d3 /d3 /PE)p( |) + Ezelpr,py] 5 (328)

leads to the desired result

Emc[pT,P¢]
= 3 X [ G [ [a Bl ¥ )Gl ) 4 T, i)~ el ) (529

where
2

Tpr,py) = —12/3—: /dsr lim (—%) Gy (r, v, w) (330)

w 2
Tylprsp] = —iZ/g—W/d?’r lim <—%) GES(r, 1, w) (331)

is the kinetic energy of the non-interacting KS system.
Sham noted that Eq. (319) reduces to the integral equation of the exchange-only OEP
method if one approximates Y., by the Fock self-energy

Pjo(r) ¢l (r)
Sseo (1,1, 0) & T7 (r,x) = = 3 S (332)
, |r — 1|

.775ja'S‘5F
and simultaneously replaces the Green function G, of the interacting system by the KS
Green function GXS. This can easily be understood within the above framework by per-
forming a perturbative analysis of the ground-state energy of the interacting system in
terms of the proposed splitting (308) of the original Hamiltonian. The energy of the un-
perturbed KS reference system is

FO = T+ 3 [#r Veo(w)oo )
— T[] _I_/d?)?n vo(r)p(r) +/d37" va(r)p(r) +Z/d3T Vieo (T)po(r) . (333)
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Figure 16: Self-energy diagrams of first order in H.

The first-order correction to the energy can be expressed in terms of the Feynman diagrams
shown in Fig. 15 where the last diagram, Fig. 15¢ originates from the local part (—Vig— Vi)
of the perturbation H;. The sum of these diagrams yields

AED — % /d3r /d3r/ p|(:)p(f’)
_%;,Z,./ ar [ar 0o (1)9i0 (1) 2jo (1) 05, ()

v —r'|

occ

=3 [ (o) + Vieo 1)) po(r), (334)
so that

!
= Ts[p]+/d3r Uo(r)p(r)+%/d3,r /d?’r' &p(l:')

v —

, r — 1|
occ
which is identical to the energy functional used in the x-only OEP case.

Returning to Eq. (317) we note that its lowest-order approximation is obtained by re-
placing the self-energy 3, by its first-order approximation 25,1) and, simultaneously, the
Green function G, by the zeroth order Green function GX5. 2,(,1) is expressed diagrammat-
ically by the three diagrams depicted in Fig. 16. But the diagram 16a, by virtue of the
KS theorem, is canceled exactly by the Hartree potential contained in the diagram 16¢, so
that

M (e, ') = S (r, ') — Vieo (r)8(r — ') (336)

with the Fock self-energy ©I" already defined in Eq. (332).

As has been already discussed (see Eq. (315)), the self-energy is an explicit functional
of Vieo and we see from Eq. (336) that an explicit approximation to this functional can be
obtained in a rather natural way by applying our perturbative approach. It is also evident
that the first-order approximation Eq. (336) and Sham’s approximation Eq. (332) for the
xc-part of the self-energy, Y.y,, are identical. The latter approximation is known to lead
to the x-only OEP integral equation and the energy functional in first order, Eq. (335), is
also identical to the energy functional of the x-only OEP method. Therefore we conclude
that the x-only OEP method and our first-order perturbative approach are equivalent in
the sense that one uses the first-order approximation to Sham’s integral equation (319) to
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determine the corresponding xc potential. It may be worth noting that while the x-only
OEP method — by the arguments given above — may be interpreted as a particular, purely
first order perturbation theory, the Hartree-Fock approach is equivalent to a self-consistent
perturbation theory of first order, i.e. an infinite sum of certain diagrams is taken into
account [126].

There are now several possible routes to go beyond the x-only case by including higher
orders in the perturbation. In view of the foregoing discussion one could evaluate Eq. (317)
up to a given order. The resulting integral equation then has to be solved self-consistently
for Vieo(r) together with the corresponding KS equation and the corresponding xc-energy
functional which could also be obtained by perturbative analysis of the energy diagrams up
to the same order. Solution of the integral equation for V., in higher orders can be expected
to be a highly non-trivial task since this equation will be non-linear in the unknown xc
potential. Moreover, not only the occupied but also the unoccupied KS orbitals and orbital
energies will enter that equation.

Instead of using Eq. (317) one could also perform a perturbative analysis of the energy
in higher orders (similar to the first-order analysis of Eqs. (334) and (335)) and use the
resulting energy functional in higher orders in the standard OEP procedure, i.e. determine
that local potential minimizing this energy functional. Again one faces the problem that
the xc energy functional depends on the occupied as well as the unoccupied KS orbitals
and on the corresponding KS energies. In addition, the xc functional in higher orders also
explicitly depends on the unknown xc potential, i.e. we have for the xc-energy functional
in n-th order

EQ) = BQ (s} {eio ) Vieo] - (337)

Due to this fact the resulting integral equation for V., will not only contain the unknown
xc potential but also the equally unknown xc kernel f;{c"' defined as functional derivative
of the xc potential:

Waeo(r) 02 Fye
por (r')  0po(r)dpyr (r') -
Although it would be very interesting to obtain information on the xc kernel, the equation

)((Tcal (I‘, rl) =

(338)

determining ,;'C", and Vi., can be expected to be extremely difficult to solve in practice.
One should note that in the x-only method (i.e. for n = 1) the xc potential as well as the
KS energies enter the energy functional only implicitly via the occupied KS orbitals and
the resulting integral equation does not contain the xc kernel.

In the following we propose a third approach which might be more practical. The central
idea of this scheme is to approximate the xc part Y., of the self-energy as a functional of
the full Green function and then solve Dyson’s equation (313) for G, together with Sham’s
integral equation (319) for Vi, in a self-consistent fashion. To achieve this we first derive
an ezact diagrammatic representation of Y., in terms of the full Green function G,. To
this end we return to the standard formulation of many-body perturbation theory and treat
the interaction WClb as a perturbation to the non-interacting Hamiltonian I:IO =T+ Vo.

In this case Dyson’s equation of course reads
Go(r,r',w) = GV (r,r',w) + /d3y &y G (r,y,w)Eo(y, ¥, w)Go(y', v w)  (339)

with the Green function G((TO) corresponding to Hy and the irreducible self-energy 3, cor-
responding to the perturbation Wgy,. Y, can exactly be expressed as the sum of the two
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a) b)

Figure 17: The two self-consistent diagrams which constitute the self-energy S, of
Eq. (339). The thick straight lines represent the Green function of the interacting system,
the thick wavy line is the screened interaction and ', is the irreducible vertex function.
The xc self-energy ¥y, can exactly be represented solely by diagram b).

diagrams shown in Fig. 17 where I'; is the irreducible vertex function and W, is the
effective screened interaction [126].

(0)

The non-interacting Green function G5’ is the solution of the equation of motion
(@ A0 @)G0 (x,v',w) = o(x — 1) (340)

with
2

RO (r) = —V? + vo(r) . (341)

Operating with (w — h{?)) on Eq. (339) yields
(w—hOT)Gy(r,r',w) =6(r — ') + [ S,(r,y',w)Go(y' T, w) . (342)

In a similar manner, by using the equation of motion (326) of the KS Green function one
obtains from Eq. (313)

(@ = KES(2) Gy (r, 7, w) = 6(x — 1) + /d3y' S (r,y ) Go (y', T w)
= 0(r—1') = Vieo(r)Gy(r, 0, w) + /d3y' Yoo (T, Y, W) G (y', 1’ W) (343)

where we used Eq. (318) in the last step. Eq. (343) can be rewritten as

(w — hO(r)Gy(r,r',w)
= §(r —r1') +vu(r)Gy(r,r',w) + /d3y' Yo (1, ¥, w)Go (¥, 1 W) . (344)

Comparison of Eqs. (344) and (342) relates the self-energy Sq to Syeo via

Yo(r, ', w) = va(r)d(r — ') + Cyeo (v, ', w) . (345)

As mentioned before, ¥, can be represented by the sum of the two diagrams of Fig. 17.
Since the diagram of Fig. 17 a) yields vg(r)d(r — r’), the xc-part of the self-energy ¥yc,
can be represented solely by diagram 17 b). Since one can express the self-energy 3, also
in terms of skeleton diagrams [126], ¥4, can alternatively be represented as the sum of
all fully dressed skeleton diagrams except the diagram of Fig. 17 a). This diagrammatic
representation of the xc-part of the self-energy can then easily be used to approximate Yy,
as a functional of the full Green function G,. One possible approximation would be to use
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only the dressed skeleton diagrams up to a certain order, e.g., by the first-order skeleton
diagram given by Eq. (324).
In the following we assume that some approximation to Y., as a functional of G, has
been specified:
Yeo (v, 0, w) & BEPX[G N(r, 1, w) (346)

XCo

Using this approximation we propose the following iterative scheme:

1. Start with an approximation to Vi¢, (e.g. the x-only V,9FF) and calculate the corre-
sponding KS Green function GX5.

2. Solve Dyson’s equation (313) for the Green function G, with ¥, approximated by

So(r, v’ w) &= TG (e, v w) — I(r — 1) Vieo () - (347)

3. With the solution G, of Dyson’s equation and the corresponding self-energy solve
Sham’s integral equation (319) for Vi.,. Use that xc-potential to calculate the corre-
sponding KS Green function GX5.

4. Return to point 2. and iterate until self-consistency is achieved.
5. Calculate the ground state energy of the interacting system via Eq. (325).

We emphasize that the only approximation in the above scheme is the approximation to
the functional ¥y.;[Gs]. Even for the simplest approximation to the xc self-energy, namely
using only the first-order dressed skeleton diagram, the converged result of the above scheme
goes far beyond the x-only OEP solution since in this case, as discussed at the beginning
of this chapter, the xc self-energy is expressed as the first-order skeleton diagram using the
bare KS Green function instead of using the dressed Green function. Therefore we hope that
the above iterative scheme might have the merit of including the important part of electron
correlation already through low-order approximations of the xc self-energy. Of course one
could in principle also use more sophisticated approximations of the xc self-energy such as
the GW approximation [127], but due to the necessity of solving the integral equation for
Vieo in each iteration cycle this would result in a very high computational effort.

Since in the x-only case of the OEP method the KLI approximation to the integral
equation for the xc potential has proven to be extremely useful, an analogous approximation
for Sham’s integral equation seems highly desirable.

The proposed iterative scheme has another desirable feature: a converged solution of
that scheme not only gives an approximate xc potential, it also yields an approximation of
the Green function of the interacting system. This Green function yields the ground-state
energy of the interacting system via Eq. (325), but it also allows for the calculation of
photoemission and inverse photoemission spectra of the interacting system.
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