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INTRODUCTION

Density functional theory (DFT) is among the most powerful quantum mechanical
methods for calculating the electronic structure of atoms, molecules and solids [1, 2, 3].
In this introduction we present a brief overview of DFT, putting particular emphasis
on the appearance of orbital functionals. To describe the electronic many-body system,
we have to deal with the Hamiltonian

H=T+ W, +V (1)
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denotes the kinetic-energy operator,
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represents the Coulomb interaction between the electrons, and
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contains all external potentials acting on the electrons, typically the Coulomb potentials
of the nuclei.
Modern DFT is based on the celebrated theorem of Hohenberg and Kohn (HK)
[4] which, for systems with nondegenerate ground states, may be summarized by the
following three statements:



1. The ground-state density n uniquely determines the ground-state wave function
U[n] as well as the external potential v = v[n] (up to within an irrelevant additive
constant). As a consequence, any observable of a static many-particle system is
a functional of its ground-state density.

2. The total-energy functional
Eyy[n] = (¥[n]|T + Wan, + Vol ¥[n]) (5)

of a particular physical system characterized by the external potential v, is equal
to the exact ground-state energy Ej if and only if the exact ground-state density
ng is inserted. For all other densities n # ng, the inequality

E() < Evo [n] (6)

holds. Consequently, the exact ground-state density ny and the exact ground-
state energy Ey can be determined by solving the Euler-Lagrange equation

0
W(I')EUO [n] = 0. (7)
3. The functional
Fn] := (¥[n]|T + We|¥[n]) (8)

is universal in the sense that it is independent of the external potential vy of the
particular system considered, i.e. it has the same functional form for all systems
with a fixed particle-particle interaction (Wgy, in our case).

The Hohenberg-Kohn theorem can be viewed as an ezact reformulation of quan-
tum mechanics, only using the one-particle electronic density instead of the much more
complicated many-body wave function. In practice, however, one has to resort to ap-
proximations for the functional F[n|. A systematic way for constructing such approxi-
mations arises from an expansion of F[n] in powers of the Coulomb-coupling constant

e’

Fln] = FOln] + FO[n] + ' FP[n] + ... ()
Here, the zeroth-order term is given by the kinetic energy of non-interacting particles,
FO [n] = Ti[n] . (10)

In first order one obtains the Hartree- and exchange-energy functionals,

2 '
e FWVp) = c /d3r/d3r' n(r)n(r’) + Ex[n], (11)
2 lr — 1|
and the remaining terms define the correlation-energy functional,
> () FOn] =: Een]. (12)
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Using this decomposition, the HK total-energy functional (5) can be written as

Ey[n] = Ti[n] +/d37" n(r)ve(r) + 62—2/d37"/d37"' % + Eyc[n], (13)



where F, and F. have been merged, yielding the so-called exchange-correlation func-
tional F...

Eq. (13) contains two non-trivial density functionals: the non-interacting kinetic-
energy functional T[n] and the exchange-correlation-energy functional Ey.[n|. In his-
torical retrospective we may identify three generations of density functional schemes
which may be classified according to the level of approximations used for the universal
functionals Ti[n] and Ey.[n].

In the first generation of DF'T, explicitly density-dependent functionals were used
to approximate both Ti[n] and Ey.[n]. The simplest approximation of this kind is the
Thomas-Fermi model, where E,.[n] is neglected completely and Ti[n| is approximated
by

2
T."¥[n] = % (3%2)2/3 %/d?’r n(r)*3. (14)

For functionals of this type the HK variational principle (7) can be used directly, leading
to equations of the Thomas-Fermi type. As these equations only contain one basic
variable, namely the density n(r) of the system, they are readily solved numerically.
The results obtained in this way, however, are generally of only moderate accuracy.

The major advance of the second generation of DFT which was introduced by
Kohn and Sham [5] lies in the use of the ezact functional for the kinetic energy of
non-interacting particles:

Tt ] = Z [ ®reii (——vﬂ) oiln](r) (15)
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where {¢;} are suitably chosen single-particle orbitals (see below).

Although the expression (15) depends explicitly on single-particle orbitals, it is
indeed a functional of the density. This can be seen by applying the HK theorem to
a system of non-interacting particles: Since the proof of the HK theorem does not
depend on the particular form of the particle-particle interaction, it is valid for any
given interaction W, in particular also for W = 0, i.e. for non-interacting systems
described by Hamiltonians of the form

H =T+V.. (16)
Hence the potential vs(r) is uniquely determined by the ground-state density:
vs(r) = vg[n|(r). (17)

As a consequence, all single-particle orbitals satisfying the Schrédinger equation

(=5 7" () 1) = 250500 (15)

are functionals of the density as well:

0;(r) = @j[n](r). (19)

Therefore, any functional depending explicitly on the set of single-particle orbitals —
like the expression (15) for the kinetic energy —is an (implicit) functional of the density,
provided the orbitals come from a local (i.e. multiplicative) potential.



Treating the kinetic-energy functional exactly, the total-energy functional em-
ployed in the second generation of DFT becomes:

B = 7]+ [ roa(e)n) + - [ [ar %  Beln],  (20)

where only the xc energy has to be approximated.

In order to calculate the minimizing density of the energy functional (20), we now
determine the potential v of the non-interacting system (16) in such a way that it
yields the correct ground-state density of the interacting many-body system:

N
n(m) = Y la@P, (21)
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where the orbitals satisfy the single-particle Schrodinger equation (18). If such a system
exists, the local effective potential vg[n] is uniquely determined and can be obtained
from the HK variational principle: Plugging Eq. (20) into Euler equation (7) and using
Eq. (18), we obtain

/
waln)(r) = vp(r) + €2 / i ‘:ff 3,| + o] (r) (22)
where we have defined the xc potential as
dEyc[n]
= . 2
ch[n](r) (5n(r) ( 3)

The single-particle Schrodinger equation (18), together with the effective potential (22)
and the prescription for calculating the density (21) are known as Kohn-Sham equa-
tions. In practice, these equations have to be solved self-consistently employing ap-
proximate but explicitly density-dependent functionals for Fy.[n]. The simplest and
surprisingly successful approximation is the well-known local-density approximation
(LDA):

ELPA[] = / & () exe (1)) (24)

where €..(n) is the known xc energy per particle of the homogeneous electron gas of
constant density m. More recently, density-gradient-dependent approximations — the
so-called generalized gradient approximations (GGAs),

ESCGAIp] = /d?’r n(r)exc(n(r), Va(r),...), (25)

have become increasingly popular and give excellent results for a wide range of atomic,
molecular and solid-state systems.

Finally, in the third generation of DFT, one employs, in addition to the ezact
expression for 7, also the exact expression for the exchange energy, given by

Bl = -5 S 3 [ [ 23 (ke (o so) o
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Only the correlation part of Ey.[n] needs to be approximated in this approach. In
contrast to the conventional second-generation KS scheme, the third generation al-
lows for the treatment of explicitly orbital-dependent functionals for E. as well, giving
more flexibility in the construction of such approximations. Therefore, this scheme
naturally lends itself for the use of correlation-energy functionals derived from many-
body-perturbation theory. There the correlation energy is given as the sum of all
higher-order diagrams in terms of the non-interacting Greens function, which itself is
a simple functional of single-particle orbitals.

The central equation in the third generation of DFT is still the KS equation (18).
The difference between the second and the third generation lies in the level of approx-
imation to the xc energy. As a consequence of the orbital dependence of F,. in the
third generation of DFT the calculation of vy [n](r) from Eq. (23) is somewhat more
complicated. It has to be determined from an integral equation, known as the opti-
mized effective potential (OEP) equation [6, 7]. The OEP integral equation as well as
a semi-analytical method of approximately solving it will be discussed in the following
section, along with a selection of numerical results.

THE OEP METHOD
Derivation of the OEP integral equation

We are going to derive the OEP equations for the spin-dependent version of DFT
[8, 9], where the basic variables are the spin-up and spin-down densities n4(r) and

ny(r), respectively. They are obtained by self-consistently solving the single-particle
Schrodinger equations (atomic units are used from now on)
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where
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The Kohn-Sham potentials vs,(r) may be written in the usual way as

vsa<r) = ’U()(I') +/d3lrl |:E[.2/| + vxca(r)’ (29)
where
n(r) = Z ny(r), (30)
o="14
and
Vxeo (T) 1= % (31)

If the xc-energy functional is now given as an explicit (approximate) functional of
spin orbitals and therefore only an implicit functional of the spin densities n4+ and ny,

B = B {eir} (32)
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the evaluation of the functional derivative in Eq. (31) is somewhat more complicated.
In order to calculate the xc potentials, we use the chain rule for functional derivatives
to obtain

OEP _ 5E2:EP H‘Pjr}]
Vyeo (T) = T(r)
_ > [ [ (SES Lo Spialr) - Susp(x”)
=2 ZZ/d /d ( 0pia(r’) <5vs,a(r”)Jr ) ong(r)

o=t} B=t) i=1

(33)

The last term on the right-hand side is the inverse x;! of the static density response
function of a system of non-interacting particles

, dna(r)
Xsap (1) = dvs 5(r")”

This quantity is diagonal with respect to the spin variables so that Eq. (33) reduces to

vOEP (r) = Z %/d‘q’r'/d‘%r” (6E%Zl[£[r‘rlo)jf}] ;519)0:5:/’,)) + c.c.) Xaa (x",1). (35)

a=t, i=1

(34)

Acting with the response operator (34) on both sides of Eq. (35) one obtains

/d3r' Vg (t')Xs0 (', 1) = Z Za/d3r' OBy~ {esr}] 0¢ialr) + c.c. (36)

a=1,] i=1 0ia(r’) dvs, (1)

To further evaluate this equation, we note that the first functional derivative on the
right-hand side of Eq. (36) is readily computed once an explicit expression for FOEP
in terms of single-particle orbitals is given. The remaining functional derivative on the
right-hand side of Eq. (36) can be exactly calculated by first-order perturbation theory.
This yields

5pia (1) = ko (T) 0}, (x)
— Oq,o g 10 . 37
oy = b 22 22 E (37)

Using this equation, the response function

o (.8) = 52 (Z w?a(r)%(r)> (38)

is readily expressed in terms of the orbitals as

No o0 * * ! !
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Inserting (37) and (39) in Eq. (36), we obtain the standard form of the OEP integral
equation:



where
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This integral equation has to be solved simultaneously with the KS equation (27).

The derivation of the OEP integral equation (40) described here was given by
Shaginyan [10] and by Goérling and Levy [11]. It is important to note that the same
expression results [6, 7, 12, 13, 14, 15] if one demands that the local single-particle
potential appearing in Eq. (27) be the optimized one yielding orbitals minimizing the
total-energy functional, i.e., that

520 () |, _omr 0. (43)
This equation is the historical origin [6] of the name optimized effective potential. The
name might be somewhat misleading, since no additional optimization for the potential
is used. Indeed, as was first pointed out by Perdew and co-workers [16, 17], Eq. (43)
is equivalent to the HK variational principle. This is most easily seen by applying the
functional chain rule to Eq. (43) yielding

0= Z/d3 ' Evo g:saa(( ,;_ (44)

Once again, the last term on the right-hand side of Eq. (44) can be identified with the
static KS response function (34). Hence, acting with the inverse response operator on
Eq. (44) leads to the HK variational principle

_ 5 EOEP
on,(r)

Approximation of Krieger, Li, and Iafrate

(45)

The OEP method discussed in the preceding paragraph opens up a way for using
orbital-dependent functionals within the KS scheme. However, as a price to pay, one has
to solve an integral equation self-consistently with the KS equation. Due to the rather
large computational effort involved in this scheme, it has not been used extensively.
Indeed, full solutions of the OEP integral equation have been achieved so far only for
systems of high symmetry such as spherical atoms [13, 7, 18, 19, 20]. For solids, further
numerical simplifications have been employed, such as the atomic sphere approximation
[21, 22, 23, 24] or the use of pseudopotentials for the core electrons [25]. Clearly,
practical applications of the OEP scheme to a greater variety of systems require some
simplification.

Krieger, Li, and Tafrate (KLI) have suggested an approximation leading to a highly
accurate but numerically tractable scheme preserving many important properties of
the exact OEP method [13, 26, 21, 27, 28, 18, 19, 12, 29]. It is most easily derived by
replacing the energy denominator of the Greens function (42) by a single constant, i.e.

Guio0'.1) & - (6 =) = 1o (1) 05, 1) (46)



Substituting this into the OEP integral equation (40) leads to an approximate equation,
known as the KLI approximation:

U:IchaI 277,(, Z [pis(T) uxcza( ) + (@fcl;j— - ﬂxcio—ﬂ +c.c. (47)

5 KLI
xcio

where v is defined as

@ﬁ&=/d%¢xﬂﬁ5@wwa» (48)

In contrast to the full OEP equation (40), the KLI equation, still being an integral
equation, can be solved explicitly in terms of the orbitals {¢;,}: Multiplying Eq. (47)

by |¢;o(r)|* and integrating over space yields
_ L .
o = o5, + Z Wi (055 = § (1o + 12 (19
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The term corresponding to the highest occupied orbital ¢y, , has been excluded from

the sum in Eq. (49) because tfen , = Uxcn,o [13]. The remaining unknown constants

(vEH — 4. ir) are determined by the linear equation
= 1 1
Z (5.71 - NjiU) (U)I;I;g - 5 (?j’XCiU + uicio‘)) = (vicja - 5 (,H’XCJ'U + uicja)) (52)
i1

with j = 1,...N, — 1. Solving Eq. (52) and substituting the result into Eq. (47),
we obtain an explicitly orbital dependent functional. The approximation (46) might
appear rather crude. However, it can be justified by a much more rigorous derivation,
showing that the KLI equation can be interpreted as a mean-field type approximation
[13, 12].

We finally mention that the OEP and KLI methods have recently been generalized
to relativistic situations [30, 31, 32], which arise e.g. in the treatment of heavier systems.

Rigorous properties of the OEP and KLI methods

To conclude this section, we summarize some exact properties of the OEP and
KLI methods.

1. No spurious self-interactions

Since both the OEP and the KLI method are constructed to deal with orbital-
dependent functionals, one can employ xc-energy functionals — like the expression
for the exact exchange-energy functional — which exactly cancel the spurious self-
interaction contained in the Hartree term.



Table 1. Various self-consistently calculated x-only results
for the Ar atom. All values in atomic units.

OEP KLI B88 xPW91 xLDA
FElot -526.8122 -526.8105 -526.7998 -526.7710 -524.5174
€1s -114.4524 -114.4279 -114.1890 -114.1887 -113.7159
€25 -11.1534  -11.1820  -10.7911  -10.7932  -10.7299
g2p -8.7339 -8.7911 -8.4107 -8.4141 -8.3782
€35 -1.0993 -1.0942 -0.8459 -0.8481 -0.8328
£3p -0.5908 -0.5893 -0.3418 -0.3441 -0.3338
E4s -0.1607 -0.1616 -0.0102 -0.0122 -0.0014
<r’> 1.4465 1.4467 1.4791 1.4876 1.4889
<r7t> 3.8736 3.8738 3.8731 3.8729 3.8648
n(0) 3839.7 3832.6 3847.3 3847.0 3818.7

2. Asymptotics

If the exact expression for the exchange energy is used, both the OEP and the
KLI potential fall of as —1/r as r — oo (for finite systems) [13, 33], thus reflecting
the proper cancelation of self-interaction errors. One has to emphasize that this
holds true for all orbitals (i.e. for the occupied as well as the unoccupied orbitals)
because the KS potential is the same for all orbitals. In contrast, the Hartree-
Fock (HF) potential falls off like —1/r only for the occupied, but not for the
unoccupied orbitals, leading to much too weakly bound virtual HF orbitals. As
a consequence, the OEP orbitals and orbital energies can serve as a much better
starting point for the calculation of excited state properties.

3. Derivative discontinuities

If one considers the exact xc potential as a function of the particle number N,
it exhibits discontinuities at integer values of N [34]. This has important conse-
quences for the values of band gaps in insulators of semi-conductors (for a detailed
description see e.g. [2]). Neither the LDA nor the GGAs can reproduce these
discontinuities. To date, the OEP and the KLI potential are the only known
approximations of vy.(r) reproducing this feature.

Selected results

We begin with a comparison of x-only results. The x-only limit of the xc-energy
functional is given by the exact Fock term, Eq. (26). As explained in the preceding
section, the OEP method then provides the corresponding exchange potential v (r)
and therefore represents the exact implementation of x-only DFT. Consequently it
provides a benchmark for testing approximate exchange-energy functionals employed
within the Kohn-Sham scheme. In Table 1 we show, as a typical example, various
results for the argon atom obtained with different x-only methods. Besides the OEP
and KLI methods employing the exact exchange-energy functional (26) described above,
we also list results from conventional KS-DFT obtained with the approximations due
to Becke (B88) [35], Perdew and Wang (PW91) [36], and from the well-known x-only
LDA approximation. The KLI results given in the second column of Table 1 clearly
demonstrate the high quality of the KLI approximation as all results differ only slightly
from the exact OEP ones. For all standard DFT methods, the disagreement is much
more pronounced, especially for the highest occupied orbital energies and even more
so for the unoccupied ones. As already mentioned, the reason for this lies in the
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Figure 1. Exchange potentials vx(r) for Ar from various self-consistent x-only calculations in the
valence region.

asymptotic behavior of the corresponding exchange potentials: While both the OEP
and the KLI potential yield the correct —1/r decay for large r and therefore become
indistinguishable in this region, the potentials derived from the conventional density-
dependent approximations fall off much too rapidly as can be seen from Figure 1.

If one aims at the description of heavier elements one should take relativistic effects
into account. As shown in Ref. [37, 31, 32|, the derivation based on relativistic DFT
(for the case of vanishing external magnetic fields) leads to the same expressions for
the OEP integral equation (40) and the KLI approximation (47), only with the KS
spin orbitals replaced by relativistic KS spinors. Fully relativistic calculations then
yield results similar to the non-relativistic case: The data obtained from the relativistic
x-only OEP and KLI methods agree closely with each other, while the relativistic
LDA [38, 39] and GGA [40] approximations yield larger errors. This becomes evident
from Table 2, where we list the relativistic contribution to the total energy, i.e. the
difference between the total energy obtained from fully relativistic and non-relativistic
calculations: The second column of Table 2 shows that the relativistic version of the
KLI method introduces almost no additional errors, thus maintaining the quality of the
non-relativistic KLI approximation. In contrast, the conventional density-dependent
approximations — in addition to the deviations already known from the non-relativistic
case — are not able to reproduce the effects induced by relativity with the same degree
of accuracy.

The inclusion of correlation effects into the OEP scheme is straightforward, as
already indicated in the introduction. As we will demonstrate in this section, the
correlation-energy functional developed by Colle and Salvetti (CS) [41, 42] is well suited
for atomic systems. This functional has been obtained through a series of approxima-
tions starting from a Jastrow-type ansatz for the correlated total wave function . It

10



Table 2. Relativistic Contribution to the
total energy calculated from various
self-consistent x-only approximations. A
denotes the mean absolute deviation and &
the average relative deviation (in 0.1
percent) from the exact ROEP values. All
numbers in atomic units. Taken from [31].

ROEP RKLI RBS8 xRLDA
He 0.000 0.000 0.000 0.000
Be 0.003 0.003 0.003 0.002
Ne 0.145 0.145 0.145 0.138
Mg 0.320 0.320 0.321 0.308
Ar 1.867 1.867 1.867 1.821
Ca 2.953 2.953 2.952 2.888
7n 16.770 16.770 16.779 16.555
Kr 36.820 36.820 36.822 36.432
Sr 46.553 46.553 46.552 46.092
Pd  106.526  106.526  106.526  105.715
Cd 128243 128.243 128.243  127.323
Xe  214.858 214.858 214.825 213.522
Ba  252.222 252221  252.176  250.725
Yb  676.551 676.549  676.590  673.785
Hg 1240.513 1240.511 1240.543 1236.349
Rn 1736.144 1736.142 1736.151 1730.890
Ra 1934.770 1934.768 1934.781 1929.116
No 3953.155 3953.151 3953.979 3944.569
A 0.001 0.056 1.788
5 0.009 1.14 33.7

Table 3. Total absolute ground-state energies for first-row
atoms from various self-consistent calculations. Quantum

chemistry (QC) values from [45]. A denotes the mean absolute

deviation from the exact non-relativistic values [46]. All
numbers in Hartrees. Taken from [15] and modified.

KLICS xcLDA BLYP PW9I1 QC exact
He 2.9033 2.8346 2.9071 2.9000 2.9049  2.9037
Li 7.4829 7.3433 7.4827 7.4742 74743  7.4781
Be 14.6651  14.4465 14.6615  14.6479  14.6657 14.6674
B 24.6564  24.3525  24.6458  24.6299  24.6515 24.6539
C 37.8490  37.4683  37.8430  37.8265  37.8421 37.8450
N 54.5905  54.1344  54.5932  54.5787  54.5854 54.5893
(0] 75.0717  74.5248  75.0786  75.0543  75.0613  75.067
F 99.7302  99.1112  99.7581  99.7316  99.7268  99.734
Ne 128.9202 128.2299 1289730 128.9466 128.9277 128.939
A 0.0047 0.3813 0.0108 0.0114 0.0045
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may be written in spin-polarized form as [43]

ES[{pl = - ab [ d*r a(e)et [Zna<r>Z\V¢ia<r)\2 - 1 Val)

—g/d%~mﬂ§92, (53)

n(r)
where
)= L, (54
n(r) =1+dn(r)s, (55)
n(r)_%e en(r)~3
€)= " (56)

The constants a, b, ¢, and d are given by

a=0.04918, b=0.132,
c=0.2533, d=0.349.

In Table 3 we compare total ground state energies of first-row atoms calculated
self-consistently with various approximations. The first column, headed KLICS, shows
the results from the KLI method employing the exact exchange-energy functional (26)
plus the CS correlation-energy functional, while the next columns show conventional
KS results. The latter were obtained with an LDA functional using the parametrization
of the correlation energy of a homogeneous electron gas by Perdew and Wang [44]; the
x-energy functional due to Becke [35] combined with the c-energy functional of Lee,
Yang, and Parr [43], denoted as BLYP; and the generalized gradient approximation
due to Perdew and Wang [36], referred to as PW91. The quantum chemistry values,
headed QC, are from a highly accurate complete basis set quadratic CI calculation
using atomic pair natural orbitals [45]. The exact non-relativistic energies, i.e. the
experimental values with relativistic effects subtracted, have been taken from [46]. The
mean absolute deviations of the calculated from the exact values, denoted by A, clearly
show that the KLICS approach is significantly more accurate than the conventional KS
methods and almost as accurate as the traditional QC scheme. We emphasize that the
numerical effort involved in the KLICS scheme for atoms is only slightly higher than
in the LDA and GGA schemes.

Apart from total energies, the highest occupied orbital energies, which should
be equal to the exact ionization potential in an exact implementation of DFT, are
much closer to the experimental ionization potentials in the KLICS scheme than in
the conventional KS approaches. This is shown in Table 4: All the numbers of the
conventional KS calculations are off by about 100%, which can be traced back to the
wrong asymptotic behavior of the xc-potentials in these approximations. Again, only
the KLICS approximation provides the correct —1/r decay for r — oo, which results
in much more reliable predictions for quantities depending strongly on this region of
space. As shown here, this is of crucial importance for the ionization potential, but it
also becomes important, when excitation energies are calculated from DFT, as we will
show later.

12



Table 4. Ionization potentials from the highest
occupied orbital energy of neutral atoms. A
denotes the mean absolute deviation from the
experimental values, taken from [49]. All values
in Hartrees. Taken from [15] and modified.

KLICS =xcLDA BLYP PW91 experiment

He 0.945 0.570  0.585  0.583 0.903
Li 0.200 0.116 0.111  0.119 0.198
Be 0.329 0.206  0.201  0.207 0.343
B 0.328 0.151  0.143 0.149 0.305
C 0.448 0.228 0.218 0.226 0.414
N 0.579 0.309  0.297 0.308 0.534
(0] 0.559 0.272  0.266  0.267 0.500
F 0.714 0.384 0.376  0.379 0.640
Ne 0.884 0.498 0.491 0.494 0.792
Na 0.189 0.113 0.106 0.113 0.189
Mg 0.273 0.175 0.168 0.174 0.281
Al 0.222 0.111  0.102 0.112 0.220
Si 0.306 0.170  0.160 0.171 0.300
P 0.399 0.231 0.219 0.233 0.385
S 0.404 0.228 0.219 0.222 0.381
Cl 0.506 0.305 0.295 0.301 0.477
Ar 0.619 0.382 0.373 0.380 0.579

A 0.030 0.176  0.183 0.177

Table 5. Calculated bond lengths of the
closed-shell-first-row dimers and hydrides. HF
values taken from [50]. Experimental values from
[61] except where noted. All values in atomic
units. Taken from [48].

KLICS PW91 xcLDA HF  experiment

H, 1.378 1.414 1.446 1.379 1.4012
Li,  5.086 5.153  5.120 5.304 5.051

Be, -P 4.588  4.522 - 4.63°¢

Cy  2.306 2367 2.354 - 2.3481
N,  1.998 2.079  2.068 2.037 2.074

F» 2.465 2.669 2.615 2.542  2.6682
LiH 20971 3.030  3.030 3.092 3.0154
BH 2.274 2.356  2.373 - 2.3289
FH 1.684 1.756 1.761 1.722 1.7325

2 Exact value from [52].

b There is no local minimum in the electronic potential
curve.

¢From [53].

The feasibility of the KLI approximation for more complex systems has been shown
recently [47, 48, 32] by x-only and KLICS calculations for diatomic molecules. To this
end, we have implemented these approaches in our fully numerical basis-set-free code
for diatomic molecules. For comparison, we have also performed calculations employing
the conventional LDA [44] and the PW91 functional for E.

In Table 5 we display results for the bond lengths. It is apparent that the KLICS
scheme leads to equilibrium distances which are generally too short, an effect present
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Table 6. Absolute total ground-state energies
of the closed-shell-first-row dimers and
hydrides calculated at the bond lengths given
in Table 5. Estimates for exact values
calculated using dissociation energies from
Table 7 and nonrelativistic, infinite nuclear
mass atomic ground-state energies from [54].
All numbers in atomic units. Taken from [48].

KLICS PWI1 xcLDA exact
H, 1.171444 1.170693 1.137692 1.1744482
Lis 14.9982 14.9819 14.7245 14.9954
Be, 29.3197° 29.3118  28.9136 29.3385
Cs 75.7736  75.8922  75.2041 75.922
Ny,  109.4683 109.5449 108.6959 109.5424
F, 199.4377 199.5699 198.3486  199.5299
LiH 8.0723 8.0625 7.9189 8.0705
BH 252857 25.2688  24.9770 25.29
FH 100.4241 100.4715 99.8490 100.4596

2 Exact value from [52].
b Calculated at the experimental bond length 4.63 a.u.

in the HF approximation as well. Most notable is the fact that the potential energy
curve of Be, displays no local minimum in this approximation. Good agreement with
experiment is found only for Liy. Except for this molecule, the PW91 values are clearly
superior.

Total absolute ground-state energies calculated at the bond lengths given in Table
5 are shown in Table 6. For the lighter molecules Hs, Liy, Bey, LiH, and BH the KLICS
and PWO91 results are of the same good quality, yielding errors of a few mHartrees.
For the heavier molecules, however, the KLICS results are worse. Being the simplest
approximation, it is not surprising that the LDA gives values for the total energies
which show the largest errors.

Apart from Hs and LiH, the dissociation energies obtained within the KLICS
approach are disappointing, as may be seen in Table 7. In most cases, the magnitude
is underestimated considerably and for Be; and Fs even the wrong sign is obtained.
Since the corresponding atomic ground-state energies given in the previous section are
of excellent quality, the error must be due to correlation effects present in molecules
only. In particular, the left-right correlation error [56] well-known in HF theory also
occurs in DFT when the exact Fock expression (26) for E, is employed. Apparently,
this error is not sufficiently corrected for by the CS functional. The LDA and PW91
results are clearly much better, the latter reducing the over-binding tendencies of the
former.

In the asymptotic region, however, the KLICS xc potential is of better quality
than the conventional xc potentials: In Table 8 we list the absolute values of the
highest occupied molecular orbital energies, which, in ezact DFT, should be identical
with the ionization potentials of the systems under consideration. It is evident that
the conventional KS approaches represented by the LDA and PW91 functionals yield
results which are typically 40 percent too high, while the KLICS values are much closer
to the experimental results. As for atomic systems, this fact may be traced back to the
correct asymptotic behavior of the KLICS xc potential for large 7.
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Table 7. Dissociation energies of the
closed-shell-first-row dimers and hydrides
calculated at the bond lengths given in Table 5.
HF values taken from [50]. All numbers in
mHartrees. Taken from [48].

KLICS PW91 xcLDA HF  experiment

H- 171.444 167.665 180.270 121.0 174.475P
Lis 32.4 33.5 37.9 3.5 39.3¢
Be, -10.52 15.9 20.6 - 3.8¢

Csy 75.6 239.2 267.5 - 2324

N, 287.3 387.5 427.1  167.5 364.0¢
Fs -22.7 106.7 126.2  -54.7 62.14
LiH 89.4 86.8 96.9 48.4 92.44
BH 129.3 137.4 145.8 - 135¢
FH 193.9 238.4 259.1 130.8 225.7¢

& Calculated at the experimental bond length 4.63 a.u.
b Exact value from [52].
¢ From [53].
4 From [51].
€ From [55].

Table 8. Absolute values for the highest

occupied orbital energies of the

closed-shell-first-row dimers and hydrides
calculated at the bond lengths given in Table 5.
Experimental values are the ionization
potentials taken from [51]. All numbers in

atomic units. Taken from [48].

KLICS PWo1 xcLDA  experiment
H, 0.621563 0.382656 0.373092 0.5669
Li, 0.1974 0.1187 0.1187 0.18
Bey,  0.2560? 0.1678 0.1660 -
Cs 0.4844 0.2942 0.2987 0.4465
No 0.6643 0.3804 0.3826 0.5726
Fo 0.6790 0.3512 0.3497 0.5764
LiH  0.3237  0.1621  0.1612 0.283°
BH 0.3692 0.2058 0.2041 0.359
FH 0.6803 0.3567 0.3594 0.5894
& Calculated at the experimental bond length 4.63 a.u.
b From [57].
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TIME-DEPENDENT SYSTEMS

Density functional theory can be generalized to allow for the description of time-
dependent many-particle systems [58, 59, 60, 61]. An atom being placed in the focus of
a laser field constitutes an example of such a time-dependent system. Owing to rapid
experimental progress in the field of laser physics, femto-second laser pulses of very
high intensity have become available in recent years. The electric field produced in
such pulses can reach or even exceed the strength of the static nuclear Coulomb field
as experienced by an electron on the lowest Bohr orbit. If an atomic system is placed
in the focus of such a pulse, one observes a wealth of new phenomena [62, 63, 64| which
cannot be explained by traditional perturbation theory. In principle, the solution of
the fully interacting time-dependent Schrodinger equation is required. The aim of a
density-functional description in this intensity regime is to “replace” the solution of
the full time-dependent Schrodinger equation by the solution of time-dependent Kohn-
Sham equations.

Traditional spectroscopy, on the other hand, mainly aims at the interaction of
low-intensity laser fields with matter, in order to probe properties of the undisturbed
system. Theoretical descriptions in this intensity regime are typically based on the
calculation of the linear density response n(r,t) to a weak external perturbation

v1(r,t) = Ez cos(wt) (57)

describing an electric dipole field of amplitude £ and frequency w, linearly polarized
along the z-direction. The dynamical polarizability then follows from

a(w) = —% /d37“zn1(r,w). (58)

This quantity is directly related to the photo-absorption cross section o(w) via

o(w) = —4%‘*’%@(&;) | (59)

Time-dependent Hohenberg-Kohn-Sham formalism
In contrast to the ground-state formalism [4], where the existence proof relies on

the Rayleigh-Ritz principle for the energy, the proof for time-dependent systems [58] is
based directly on the Schrédinger equation

.0 ~
iz U(t) = AV () (60)
where
Ht) =T+ Wen + V(). (61)

We shall investigate the densities n(r, t) of electronic systems evolving from an arbitrary
but fized initial (many-particle) state

U(to) = Po (62)

under the influence of different external potentials of the form

N

V()= v(rit). (63)

=1
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Following the proof first given by Runge and Gross [58], one can formulate the fol-
lowing Hohenberg-Kohn-type theorem: The densities n(r,t) and n'(r,t) evolving from
a common initial state Uy = W(ty) under the influence of two potentials v(r,¢) and
v'(r,t) are always different provided that the potentials differ by more than a purely
time-dependent (r-independent) function:

v(r,t) #'(x,t) + c(t) .* (64)

To prove this theorem, the potentials v and v’ are required to be expandable in Taylor
series about the initial time ¢y. The condition (64) then guarantees that there exists
some (lowest-order) k where the Taylor coefficients vy(r) = 0% /dt*v(r, )| o and vj(r) =

ok Jot*'(x, t)| ,, differ by more than a constant. Using the equation of motion for the
expectation value of the paramagnetic current density operator and the continuity
equation, one arrives at the central equation of the proof:

<%) (n(r,t) —n'(rt)) =V - (n(r,t)V(vi(r) — vi(r)) - (65)

t=to

It can be shown that the right-hand side of (65) cannot vanish identically. Hence the
densities n(r,t) and n'(r,t) will become different infinitesimally later than ¢,. The
detailed proof and the formulation of precise conditions for the external potentials can
be found in [59]. An extension of the Runge-Gross proof to the spin-dependent situation
was formulated by Liu and Vosko [65].

Note that the right-hand side of Eq. (65) is linear in vy, (r)—v}(r). Consequently, the
difference between n(r,t) and n'(r,t) is non-vanishing already in first order of v(r,t) —
v'(r,t). This ensures the invertibility of time-dependent linear response operators.

The uniqueness of the external potential reproducing a v-representable density (i.e.
a density evolving out of a given initial state under the influence of an external potential
v) can be established for any fized particle-particle interaction, in particular also for
Wen = 0 (this can be seen from Equation (65), in which the the particle-particle
interaction does not occur). Hence, given a non-interacting v-representable density
n(r,t), the potential vg[n](r,t) leading to this density in a non-interacting system is
uniquely determined. Assuming that the density of the interacting system of interest
is simultaneously non-interacting v-representable, it can be obtained from

N
n(rat) = Z |¢j(rat)|2 (66)
j=1
with orbitals ¢;,(r, ) satisfying the time-dependent Kohn-Sham equation

i%qﬁj(r,t) _ (—% + ugfn(r, t)) bi(n.t) . (67)

Usually, the single-particle potential vs is written as

n(r',t)

v — |

weln](r, £) = v(r, 1) + / & uefn](n. 1), (68)

where v(r,t) is the external time-dependent field. Equation (68) defines the time-
dependent xc potential. In practice, this quantity has to be approximated.

*In analogy to the ground-state formalism, where the potentials are required to differ by more than a
constant, the condition (64) ensures that the resulting wave functions ¥(¢) and ¥’(t) differ by more
than just a purely time-dependent phase factor.
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One has to emphasize that the time-dependent Kohn-Sham (TDKS) scheme does
not follow from a variational principle, but rather from the basic 1-1 mapping (applied
to non-interacting particles) and the assumption of non-interacting v-representability.

Like in static DFT, the great advantage of the time-dependent Kohn Sham scheme
lies in its computational simplicity compared to other methods such as time-dependent
Hartree-Fock or time-dependent configuration interaction [66-73]. In contrast to time-
dependent Hartree-Fock, the effective single-particle potential v is a local potential,
i.e., a multiplicative operator in configuration space.

It is important to keep in mind that in the time-dependent case the 1-1 corre-
spondence between potentials and densities can be established only for a fized initial
many-body state Uy. Consequently, v[n] and vy[n] implicitly depend on the initial
many-body wave function and on the initial Kohn-Sham Slater determinant. However,
for a large class of systems, namely those where both W, and the initial KS Slater
determinant are non-degenerate ground states, the Kohn-Sham potential is indeed a
functional of the density alone. This is because any non-degenerate ground state Wq
is a unique functional of its density ngy(r) by virtue of the traditional HK theorem. In
particular, the initial KS orbitals are uniquely determined as well in this case.

Approximations of the time-dependent exchange-correlation potential

Adiabatic Local Density Approximation The simplest possible approxima-
tion of the time-dependent xc potential is the so-called time-dependent or “adiabatic”
local density approzimation (ALDA) [59]. It was first introduced in semiconductor
physics by T. Ando [74] and later, for finite systems, by Zangwill and Soven [75]. The
ALDA employs the functional form of the static LDA with a time-dependent density:

U}I{XCLDA[n] (r,t) = 1),1(1(?rr‘(71(r7 t)) = -

(0 (0) - (69)

Here €19™ is the xc energy per particle of the homogeneous electron gas. Parameteri-
zations of this quantity can be found in [76, 44]. By its very definition, the ALDA can
be expected to be a good approximation only for nearly homogeneous densities, i.e.,
for functions n(r,t) that are slowly varying both spatially and temporally. It will turn
out, however, that the ALDA gives rather accurate results even for rapidly varying
densities.

Time-Dependent Optimized Effective Potential Like in the stationary case,
the optimized effective potential method offers a viable route to go beyond the local den-
sity approximation. In particular, it offers a clear cut way to construct self-interaction-
free functionals. In order to derive a time-dependent generalization [77] of the OEP we
consider an N-electron system subject to a potential of the form

_ /UOO'(I.) » b <t
vexta(rat) - { ’U()g(r) + 'Ula(ra t) 7t >t (70)

For all times until £y, the system has been in the ground state associated with the
static external potential vy, (r). We assume that the corresponding stationary OEP
problem has been solved for that system, i. e. a local effective potential for each spin
orientation and a set of N spin orbitals {¢;,} (with energy eigenvalues ¢;,) minimizing
a given energy functional E[yj,] are assumed to be known. Our goal is to determine
the time evolution of the system under the influence of the total external potential
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Vext o (Tt) = Voo (T) + v14(rt) from ¢y until an arbitrary later time ¢;. The construction
of the optimized local effective potential starts with the quantum mechanical action

Alpjo] = Zza/tl dt/d3r % (rt) (10/0t + V?/2) ¢jo(rt)

—Z/ dt/d?’?“ng (rt) Vet o (1) / dt/d3 /d‘“ ’Lt) — Ase[¢;71)

written as a functional of N = ) N, time-dependent spin orbitals {¢;,(rt)}. In the
following we will not refer to any specific approximation for the exchange-correlation
functional Ayc[¢;,]. We mention however, that in an exchange-only theory Ay, would
be replaced by the time-dependent Hartree-Fock expression [78]

Ng t1
Ax:_%;; / L [ [ @ 6@ 00 @008, w0 /o7 . (72

The orbitals are solutions of the spin-dependent TDKS equation
2

S osar) = (= walilie) dslrt) (73)

with the initial condition ¢;,(rt) = @;,(r)exp[—ie;,(t — to)] for —oco < t < ¢;. The
local effective potential vg,(rt) has to be determined in such a way that the {¢;,(rt)},
resulting from Eq. (67), render the total action functional A[¢;,| stationary. Therefore,
we have to solve the following variational problem:

5[] N GAls) i (0) | GAl) 80
5o, (xt) Z / dt / ar Z(a@ 1) D00 (xl) | 307, (0] d0ae) ) "

(74)
The functional derivative of A with respect to the orbitals is given by
5A[¢ '0'] *
W = [Vxeo (T'1) = e jo (x't)] 5, (x'1") O(t1 — 1), (75)
with the abbreviation
1 (SAXC jo
e o () = e (76)

$jo(rt) 0¢j0(xt)

6(x) denotes the usual step function (1 for z > 0, 0 for z < 0). The functional derivative
dA/é¢%, is just the complex conjugate of expression (75). From first-order perturbation
theory, we can read off the functional derivative

6(]5ng (I‘It )

Svso(rt) 500'2%0 (r)Bjo (Tt) Pro (x't) O(t1 — t) O(t — 1) (77)

and the complex conjugate expression for 4¢3, /0vs,. Insertion of Egs. (75) and (77)
in the variational equation (74) results in the time-dependent OEP (TDOEP) integral
equation for the local exchange-correlation potential vy, (rt):

/ dt /d3 '( - (rt, T't") Zgﬁw (rt) @5, (r't) [Uxe o (') = Uge jo (r't)] + c.c.) =0.

(78)
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The kernel K,(rt,v't') = Y 7, &, (rt)dpo(r't’) (t — t') is identical with the Green’s
function of the system.

The TDOEP scheme is now complete: the integral equation (78) has to be solved
for vy, (rt) simultaneously with the Kohn-Sham equation (73).

Clearly, the full TDOEP scheme is computationally extremely demanding. It is
therefore highly desirable to construct approximations of vy.,(rt) which are explicit
functionals of the orbitals {¢;,}. Similar manipulations to those developed by KLI for
the stationary case [79, 12], lead to the so-called TDKLI expression [77]

cha I‘t Zn]o' I‘t uxcjo(rt) + xcga(rt))

1 _ 1, .
+ no’(rt) ang(l't) |:'chjg(t) - 5 (uxcja(t) + chja(t))

ZV%JJ (rt) / At (Te jo(t') — We ;o (1)) - (79)

4n(,

The tilde indicates that this is only an approximate solution of the TDOEP equation
(78) and the over-bar is a shorthand notation for the orbital average, i.e. Uxcjo(t) =
J @1 njo(r,t)xc o (r,t). The last term of Eq. (79) vanishes identically for a large class
of exchange-correlation functionals Ay.. This includes all functionals which depend
on {@jo} only through the combinations ¢;,(r,t)#7,(r',#) (such as the exact x-only
functional, Eq. (72)). Eq. (79) is still an integral equation for #y.,. In contrast to the
full TDOEP equation it can be solved analytically [80]: Multiplying Eq. (79) by ng.(rt)
and integrating over all space yields

No

5xck:a (t) = Wxc ko (t) + Z Nkja(t)axcja(t) 3 (80)
where
Wye o (TE) = Znﬁ, (rt) % (txe jo (Tt) + Ul ;5 (xt))
- Zn]a (1) [ (o) + T (0)
+ 4?%"(”) z;jvznja@t) |t so) =) D)
and
B s Nk (Tt)nj,(rt)
Nijo () = / iy TP (82)

The solution of Eq. (80) for O j,(t) requires inversion of the N, x N, matrix A, (t) =
Okj — Nijo(t) and leads to

No

5xcjo(t) = Z (A;l(t))jk Wicko(t) - (83)

k
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Figure 2. Harmonic spectra of helium resulting from a one—color calculation and from two
two—color calculations. One of the latter includes the second and the other includes the third
harmonic in addition to the fundamental frequency. The laser parameters used are A = 616 nm and
I=7.0x10" W/cm?.

By substitution of Eq. (83) into Eq. (79), ¥, (rt) is obtained as an explicit functional
of the orbitals {¢;,(rt)}.

The TDOEP scheme has been successfully applied to the non-perturbative de-
scription of atoms [81, 82, 83| and clusters [84, 85, 86] in strong laser pulses. In Fig. 2
we show the harmonic generation spectrum of the He atom in a two-color laser pulse

[87].
Time-dependent Kohn-Sham equations in the linear-response regime

If the external field intensity is low, it is sufficient to consider only changes of the
time-dependent density which are linear in the applied field. Within the framework of
time-dependent density-functional theory, a formally exact representation of the linear

spin-density response ni,(r,t) of interacting electrons can be derived [88] in terms of
the response function xs of the corresponding (non-interacting) Kohn-Sham system:

n1o(r Z/dt /d?’?"'xso.o. A ) vg 10 (21 (84)

g1 is the linearized time-dependent KS potential

a’ )1
Vs10(T, 1) =v1,(r +Z/d3 , g (T, 8) (85)

et r'\
+ Z/dsr' /dt' freoor (T, 8,1 8) My (2, 1) .

It contains the external perturbation vy, and the Hartree- and exchange-correlation con-
tributions to first order in the perturbing potential v;,. The so-called time-dependent
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xc kernel

Vxeo[nt, My (1, 1)
57101 (I", t')

Jxcoo (v, 8,08 = (86)

To1,M0)

is a functional of the initial ground-state densities. Combining Eqs. (84) and (85) and
taking the Fourier transform with respect to time, the ezact frequency-dependent linear
density response is seen to be

N1, (T, w) /d Y Xsov (T, ¥ w)v1, (¥, w) (87)

+ Z/d?’ /d"‘y Xsov (T, ;W )<|y 1y ] + Frew [0 (Y, ¥'; w)) n1 (Y, w).

v’

The Kohn-Sham response function y; is readily expressed in terms of the static unper-
turbed Kohn-Sham orbitals ¢y, :

Pjo (T) P ()75 (r) 1o (r')
w — (€jo — €xo) + 11 ’

Xsoo! (I‘, I‘,; CJ) - (500’ (fka - fja) (88)

ok
Here, (fio, fjo) are the occupation numbers (0 or 1) of the KS orbitals. The summation
in (88) ranges over both occupied and unoccupied orbitals, including the continuum
states.

The exchange-correlation kernel fy., given by Eq. (86), comprises all dynamical
exchange and correlation effects to first order in the perturbing potential. For spin-
unpolarized ground states, the spin-dependent exchange-correlation kernel has the form

Frett = frer = fro + 15Gxe (89)
fxcﬂ, = fxci,T = fxc - Mngc (90)

(1o denotes the Bohr magneton). In practice, fyesor is of course only approximately
known. Again, the simplest possible approximation is the spin-dependent version of
the adiabatic local density approximation (69). For spin-unpolarized ground states,
this leads to

@ om
f;:;LDA(I‘, I"; CU) = 5(1' — T ) d,O (pel);c (p’ C = 0)) |p:n0(1‘) (91)
= (S(I' - rl) hom(pa (=0,g=0,w= O)‘p:no(r)
and
G;“CLDA(I', I',; w) _ 5(1_ _ I‘I) axcz(p) , (92)
I’LOp p:no(r)
where
2 .

_ om 93
Oxc 5C2 ( €xc (p7 C)) ‘(—0 ( )

is the exchange-correlation contribution to the spin-stiffness (¢ stands for the relative
spin polarization). Most notably, the Fourier transforms (91) and (92) of the time-
dependent response kernels in the ALDA have no frequency dependence at all. Beyond
this adiabatic limit, frequency-dependent approximations of the xc kernel have been
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obtained [89, 90, 91, 92]. We finally mention an explicitly orbital-dependent approxi-
mation of the xc kernel,

PGG ' 1 | Zk fro Pro(r) 0, (x')

fxc oo’ (I‘, r ) - _50U’ ‘I' — I"| na(r)na(r’)

which Petersilka, Gossmann, and Gross (PGG) have obtained from a linearization of
the TDOEP equation [88, 93] using the x-only functional (72).

‘ 2

(94)

Calculation of excitation energies

The traditional Hohenberg-Kohn theorem guarantees that every observable of a
stationary physical system can be expressed in terms of its ground-state density. In
principle, this is also true for the set of excited-state energies: Knowledge of the external
potential, which is a unique functional of the ground-state density, allows the calculation
of any excited state and its energy. In practice, however, the description of excited states
within stationary density-functional theory is a notoriously difficult subject [94-105]. In
particular, the Kohn-Sham eigenvalues, introduced as purely mathematical constructs
into density-functional theory, cannot simply be interpreted as excited-state energies.

In this chapter a different approach [88, 106] to the calculation of excitation en-
ergies is presented which is based on time-dependent density functional theory in the
linear response regime. The formalism has been successfully applied to the calculation
of molecular excitation spectra [107-114].

In the standard linear response formalism, the full response function

Xoo! (I‘, rl; (.d) -
((d)olﬁa(r)|¢m><¢m|ﬁaf(r')|1/)o> _ <1/Jo|ﬁa'(r')|¢m><¢m|ﬁa(r)|¢o>) (95)
w—(Em—E0)+i5 w+(Em—E0)+Z(5 )

lim
6—0t
m

is formally constructed from the exact many-body eigenfunctions and energies
H{(to)|Ym) = Em|Wrm) (96)

of the full static many-body Hamiltonian H (to) at to. It is obvious from Eq. (95)
that the frequency-dependent linear density response has poles at the exact excitation
energies () = E,, — Fj.

The key idea of a density functional calculation of excitation energies is to start
from a particular KS excitation energy €;, — €, (which are the poles of the Kohn-Sham
response function (88)) and to use the formally exact representation (87) of the linear
density response to calculate the shifts of the Kohn-Sham excitation energies towards
the true excitation energies (2.

To calculate these shifts, we rewrite Eq. (87) as a linear integral equation for the
frequency dependent linear density response:

Z/d?’ ! [ wd(r—y Z/d YXsov (T, ¥; W )(|y—1y| + feew (¥, Y50 ))]nw(y',w)
= Z/d3y Xsou(r’y;w)vll/(y’w) . (97)

In general, the true excitation energies {2 are not identical with the Kohn-Sham exci-
tation energies €;, — €x,. Therefore, the right-hand side of Eq. (97) remains finite for
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w — €). Since, on the other hand, the exact spin-density response ni,, has poles at the
true excitation energies €2, the integral operator acting on ny, on the left-hand side of
Eq. (97) cannot be invertible for w — Q.

Consequently, the true excitation energies {2 are characterized as those frequencies
where the integral operator acting on the spin-density vector in Eq. (97) becomes non-
invertible, i.e. has vanishing eigenvalues. Hence, the true excitation energies €2 are those
frequencies where the eigenvalues \(w) of

Z/tf ’Z/d Y Xsov (T, Y5 w) <|y_1y i e (1, w)) Yo (¥, w) =
= Aw) 7o (r,w) (98)

satisfy
A(Q)=1. (99)

This condition rigorously determines the true excitation spectrum of the interacting
system at hand.

To facilitate the notation, we introduce double indices ¢ = (j, k) so that w,, =
€jo — €ko denotes the excitation energy of the single-particle transition (ko — jo).
Moreover, we define oy, := fir — fjr and

Dy (r) = @1 (1) jo (r) (100)

and set

gqa Z/d3 '/d?’yq)qa (%‘*’fxcau’(Yayl;w)) 'YV’(ylaw)' (101)

ly —y'|

Using these definitions, we arrive at [106]

ZZ Moo ) ) = M@)o (w), (102)

W — Wy +11m

where we have introduced the matrix elements
1
My gror (0) = argor / dr / a4 7 ( <| o+ beor (1% w)) Byo(r).  (103)
r—

So far, no approximations have been made.

In order to actually calculate the excitation spectrum, the eigenvalue problem (102)
has to be truncated in one way or another. For finite systems, where we encounter well
separated poles of the linear density response due to the discrete level structure, one
possibility is to expand all quantities in Eq. (102) about one particular KS-orbital
energy difference w,, [88, 106]. The true excitation energies ) are then determined by
the solution of

A(pr)
Q — wp,

Q) = + B(wpr) +...=1 (104)

For non-degenerate single-particle poles w,,, the coefficients in Eq. (??) are given by

Alwpr) = Mpr pr(wpr) (105)
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and

AM,r 1 My g0 (@) Myt r (60
B(w,,) = pTPp n prqto (Wpr) My r (wpr) _ (106)
dw Wpr MprT (pr) q’a’#;m' pr - wq’a’ + 7','7
If the pole w,, is p-fold degenerate, wp,;, = Wpyr, = ... = Wy, 7, = wo, the lowest-order
coefficient A in Eq. (104) is determined by a p-dimensional matrix equation
P
Z Mpmpm Wo 51()2)7,6 = An(wo)é}(;:l% ’ 1=1... £ (107)

k=1

leading to p different coefficients A; ... A,. For excitation energies (2 close to wy, the
lowest-order term of the above Laurent expansion will dominate the series. In this
single-pole approximation (SPA), Eq. (??) reduces to

~ An(‘UO)
Q- Wy

=1. (108)

The condition (99) and its complex conjugate, A*(2) = 1, finally lead to to a simple
(approximate) expression for the excitation energies.

O, &~ wo + RAL(wo) - (109)

For closed-shell systems, every Kohn-Sham orbital eigenvalue is degenerate with
respect to spin, i.e. the spin multiplet structure is absent in the bare Kohn-Sham
eigenvalue spectrum. Within the SPA, the dominant terms in the corrections to the
Kohn-Sham eigenvalues towards the true multiplet energies naturally emerge from the
solution of the (2 x 2) eigenvalue problem

D Mpgpor (w0)épor (wo) = Abpo(wo) - (110)
o'=t}

Then, the resulting excitation energies are:
Do =wo + R{Mpppy = Mpyp, } - (111)

Using the explicit form of the matrix elements (103) one findsf

Q1 = wo +2§R/d3 /d3r'@ ( ! m + fre(r, 1'; w0)> P, (r") (112)
Qs = wy +23‘E/d3r/d3r' B (1) g Gxe (1, 15 w0 ) @,y (1) - (113)

The latter kernel, Gy, is responsible for the exchange and correlation effects in the
Kohn-Sham equation for the linear response of the frequency-dependent magnetization
density m(r,w) [65]. The fact that the magnetization density response naturally in-
volves spin-flip processes suggests that {25 can be attributed to spin triplet excitation
energies of many-electron systems. The corresponding spin singlet excitation energies,
on the other hand, are given by ;. Hence the spin-multiplet structure, originally
absent in the bare Kohn-Sham eigenvalue spectrum, is recovered.

tSince we are dealing with spin saturated systems, we have dropped the spin-index of ®,, for simplicity.
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Apart from the explicit calculation of the dominant contributions to the shifts of
the Kohn-Sham eigenvalue differences towards the true excitation energies, one can also
solve Eq. (102) directly. At the frequencies w = 2, Eq. (102) can be written as

Z <Mqo*q’rf’(9) + 5qaq’rf’wqa) ﬁq’rf’(Q) = Qﬁqtf(Q) ) (114)

ql o!

where we have introduced

Bao (2) = &40 (2) /(2 — wgo) - (115)

Hence, the exact excitation energies ) are the exact solutions of the nonlinear matrix-
equation (114). Truncation of the infinite-dimensional matrix in Eq. (114) amounts to
the approximation of y(©) by a finite sum

Q ,
O rw) ~ 3 Zaqw _ (116)

w—w
o=t g o

Thus, instead of expanding about a single pole, we explicitly take into account several
poles of the noninteracting response function. Using the ALDA for the xc kernels, the
matrix elements My, , become real and frequency independent, and the excitation
energies ) are then given as the eigenvalues of the (Q x Q) matrix My, s (2 = 0) +
(sqg,qlglwqa.

The scheme developed above involves three different types of approximations:

1. In the calculation of the Kohn-Sham orbitals ¢ (r) and their eigenvalues ¢, one
employs some approximation of the static xc potential vy..

2. Given the stationary Kohn-Sham orbitals and the ground state density, the func-
tional form of the xc kernel f,.,,» needs to be approximated in order to calculate
the matrix elements defined in Eq. (103).

3. Once the matrix elements are obtained, the infinite-dimensional eigenvalue prob-
lem (102) (or, equivalently, (114)) must be truncated in one way or another.

Results for atoms and molecules As a first application of the method, we
have calculated the lowest excitation energies of the alkaline earth elements and the
zinc series. The values listed in Table 9 are from a calculation using the KLI-x-only ap-
proximation for the static xc potential and the adiabatic local density approximation for
the xc kernels. Apparently, the KS-eigenvalue differences alone do not resolve singlet-
triplet splittings, but are always located in between the experimentally measured singlet
and triplet excitation energies. The multiplet structure, however, is already obtained
within the SPA, i.e. by adding the lowest order correction terms given by Egs. (112)
and (113). The experimentally measured excitations are quite well reproduced.

In addition to spin-multiplet splittings, large splittings of spatial multiplets are
observed in molecules. In Table 10, the excitation energies of the CO molecule are
given. The stationary KS orbitals and eigenvalues were calculated using the LDA for
exchange and correlation. For the functional form of the xc kernels the ALDA was used.
Again, the single-pole approximation gives the dominant corrections of the Kohn-Sham
eigenvalue differences towards the experimentally measured energies. The results from
a solution of Eq. (114) are listed in the column headed “full”. Here we have coupled
all occupied and the lowest 9 unoccupied molecular orbitals. In general, this leads to a
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Table 9. The lowest S—P excitation energies of the alkaline earths, calculated from
the x-only KLI potential. The experimental values (first column) [115] are compared
with results calculated in SPA from Eq. (112) for the singlet and from Eq. (113) for
the triplet using the ALDA (91, 92) for the xc kernel. For comparison, the ordinary
LDA-Agcr values are given in the third column. The Kohn-Sham orbital-energy

differences wis are shown in the last column (All values in atomic units).

Atom State Expt. SPA  Ascr WKS Atom State Expt. SPA Agcr WKS

Be 2 0.194 0.199 0.166 0.130 Zn 2 0.213 0.209 0.202 0.157
3Py 0.100 3Py 0.147

3p 0.100 0.098 0.091 0.130 3p 0.148 0.140 0.158 0.157
3p, 0.100 3P, 0.150

Mg Ip 0.160 0.165 0.150 0.117 Sr TP 0.099 0.106 0.096 0.071
3Py 0.100 3Py 0.065

3p 0.100 0.098 0.103 0.117 3p 0.066 0.059 0.068 0.071
3p, 0.100 3P, 0.068

Ca ', 0108 0.118 0.106 0.079 Cd ' 0199 0.185 0.173 0.135
3Py 0.069 3Py 0.137

3p 0.070 0.065 0.072 0.079 3p 0.140 0.120 0.136 0.135
3P, 0.070 3p, 0.145

Table 10. Excitation energies for CO from
an xcLDA-calculation at R = 2.1322 a.u. The
LDA was employed for v,. and the ALDA for
the xc kernels. wkg denotes the KS orbital

energy difference. All numbers in mHartrees.

State wgs SPA  full®  expP
AT 3268 3102 3127
Al 00 T2 2523 9039 9914 2323
BIST 3389 3380 3962
pag+ 00 700 3332 400 9316 3829
TS5 362.6 3626 3631
e 3%~ 362.6 362.6 363.1
a/ 3%t 1r - 27 3626 3181 3149 3127
DA 381.2 380.7 375.9
d3A 340.4 339.6 344.0
¢S 4o — 27 4388 4204 4202 4245
ETIl 17 — 60 4436 4435 4435 4237

8 Neglecting continuum states.
b From [116].
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more refined approximation of the spectrum, since more configurations are taken into
account. However, the differences with respect to the SPA are usually small, especially
for the triplet states.

Considering the computational simplicity of the approach, the quality of the results
is very promising. This opens up the road towards a reliable calculation of spectra for
larger systems, like clusters and large molecules. Since the present scheme is mainly
concerned with the calculation of corrections to the Kohn-Sham eigenvalue spectrum,
it has to be stressed, however, that a quantitative calculation of excitation energies
substantially depends on the accuracy of the ground state xc potential employed. In
the LDA and in the popular GGAs for instance, which are not free of spurious self-
interaction effects, the highest occupied orbital eigenvalues are in error by about a
factor of two. Cancellation of self-interaction errors has been observed for lower excited
states [111, 112, 114], but, in general, a resulting excitation spectrum which is accurate
for all states can only be expected if self-interaction free xc potentials are used. The
development of orbital functionals should offer a viable route in this direction.

VAN DER WAALS INTERACTIONS

Van der Waals (vdW) forces are caused by correlations between distant electronic
fluctuations. In an intuitive picture, the origin of the vdW energy can be understood
as follows: Consider a system consisting of two neutral subsystems A and B at a
distance R and suppose an electric dipole moment is spontaneously created in one of
the subsystems. As a consequence, a second dipole is induced in the other subsystem.
The interaction between the two dipole moments creates the vdW energy. According
to this argument, the R=3 decay of dipole fields enters twice so that the asymptotic
behavior of the vdW energy is

C
Eoaw =~ —R—‘; for R— oo (117)
with the vdW coefficient Cgs. (The R~° behavior only applies to finite subsystems; for
extended subsystems such as metal surfaces one obtains different power laws.)
The subject can be treated rigorously by applying second-order perturbation the-
ory. This leads to the Zaremba-Kohn formula [117]

oo

1 A ., B .y
E.aw = —2_/d3a: d3x'/d3r d3r'/dux 6, X du) x (. s ) (118)
™
A B

x—1] -7
0

which expresses the vdW energy in terms of the imaginary-frequency response functions

x* and x? of the isolated and unperturbed subsystems A and B. Through a multipole

expansion of Eq. (118) one recovers the asymptotic behavior (117) with the vdW

coefficient now given by

3 o0
1 )
Co = ﬁzj (1= 8a)(1 — 38 / du oB(iu) (119)
i,j= 0

where the 3-axis is chosen to point from A to B and, for each subsystem, «;; is the
polarizability tensor (i.e. the tensorial generalization of Eq. (58)):

1
a;i(w) = /d3 &' vy x (v, v w) = —E/d?’r ring(r,w); . (120)
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Here n4(r,w); is the linear density response to the perturbation v;(rt) = £r; cos(wt).

TDDFT provides a very efficient way of calculating the Cy coefficients: Given
an approximation for the xc kernel, Eqs. (87) and (88) can be used to determine the
density responses n4(r,w); which, by Egs. (119) and (120) give the vdW coefficients.
With this method, van Gisbergen et al [118, 119] have obtained vdW coefficients for a
large variety of molecules in rather good agreement with experiment.

In the present section, however, we want to go beyond the asymptotic limit: Our
goal is to construct a functional for the xc energy that yields accurate total energies
and has the correct asymptotic behavior (117). In other words, we want a “seamless”
scheme which gives reliable results at any subsystem separation and is still applicable
in the case of overlapping subsystems.

Static DFT, as a matter of principle, yields the exact ground-state energy, including
long-range vdW contributions. The commonly used approximate functionals such as
the LDA and the GGAs, however, are not able to reproduce vdW forces, at least not
the asymptotic R=¢ behavior.

Several suggestions have been made for the treatment of vdW interactions in DFT
[120, 121, 122, 123, 124]. Yet, there has been only one seamless calculation so far,
performed by Dobson and Wang [125]. It follows the concept of [123] and deals with a
jellium slab situation. In the case of atoms and molecules there is no functional that has
been shown to provide both vdW coeflicients and total correlation energies accurately.
The scheme proposed by Kohn, Meir, and Makarov [124] should in principle be capable
of this, but its computational implementation appears to be rather demanding.

Here, we suggest an approximation for the correlation-energy functional which
will prove to describe the vdW limit correctly. The derivation is based on the adia-
batic connection formula and on TDDFT. Numerical results will be presented for total
correlation energies as well as vdW coeflicients.

Construction of a correlation-energy functional containing the vdW energy

Since the HK theorem is valid for any particle-particle interaction, we can apply
it to a system with arbitrary Coulomb coupling constant A. Thus for each value of A
between 0 and 1 there exists a uniquely determined external potential that reproduces
the spin densities of the fully interacting system. (In the special case A\ = 0 this
potential is equal to the KS potential.) The adiabatic connection formula expresses the
xc energy as an integral over the coupling constant (see e.g. [122]):

1 00

1 1 1
Eye = _i/dA/d3Td3TIW E/d“ > X0 (s | +n(r)d(r—r)

0 0 oo’

(121)

Here, Xf,i), (r,r';4u) denotes the spin-density response function at coupling strength A

and imaginary frequency su. The exact exchange energy is obtained from Eq. (121)
if X((,—/}T)f is replaced by the KS reponse function yg,.,». Hence, the correlation energy

E. = FE,. — E, is given by

1
v —r'|

1 o0
_ 1 3. 3.1 N I ; I ;
E.= —5 d)\/drdr /du Z [XW,(r,r,zu)—xsaaf(r,r,W) . (122)
O 0 g0
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X[(:;), is related to the KS reponse function ys. by a Dyson-type equation involving

the A-dependent xc kernel f}gé‘ );

Xf,’},),(r riw) = Xsoor (T, T ;w) + (123)

A
+Z/d % Xsow (T, X; W) [\x— <] fXCW,(x, x5 w) Xl(,7\0),(x’,r’;w)~

vv!

Substituting (123) into (122) leads to

1 o0
1 1
E.=—— /d)\ /dsr &' d* ' /du (124)
27 v — /|
0 0
: A : :
Z Xsov (T, X; 0u) [|x - + O x,x i) | XU (i)

Eq.(124) is the starting point for our construction of an approximate correlation-
energy functional. To this end, the xc kernel is approximated by the simple orbital-
dependent formula suggested by Petersilka, Gossmann, and Gross [88, 93], given in
Eq. (94). The A-dependent version of it is linear in A. Further, we approximate the
interacting response function on the right-hand side of Eq. (124) by the non-interacting
response function:

X (1,7;0) 2 Xeoor (1,73 0) - (125)

Then the integrations over A and u in Eq. (124) can be done analytically. The resulting
orbital functional reads as follows:

1
BY =3 Z Fiko Framo? / &% d%' d% d*' (126)
]km;n
1 s Zrno (X, 1
fhxc oo’ (Xa XI) ]ka(r’ X) e (X L ) .
‘I‘ - rl‘ Wjo ko + Wme' no’
Here
Ziko (1, 1) = @50 (1) 00 () 1o (v) 5, (1) (127)
Wjoks = €jo — €ko (128)
fjka = fk:(r(]- - fja) ) (129)
and
1 PGG
fhxcaa' (X, XI) = ‘X _ XI| + xcoo’ (X’ XI) : (130)

Apparently, Eq. (126) is similar to second-order perturbation theory. This means that
we can expect reasonable results for finite systems. On the other hand, the functional
will diverge if it is applied to the uniform electron gas; i.e., it will fail for bulk metals.

In the case of two non-overlapping subsystems A and B at distance R — oo, the
correlation energy (126) consists of a constant part (equal to the correlation energies of
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Table 11.

VAW coefficients Cg.?

Atoms x-KLI KLICS LDA-SIC-KLI empirical
He-He 1.664 1.639 1.594 1.458

He-Ne 3.490 3.424 3.495 3.029

Ne-Ne 7.447 7.284 7.761 6.383

Ar-Ar 128.5 124.4 133.2 64.30

Kr-Kr 282.4 271.3 290.0 129.6

Xe-Xe 730.7 697.1 734.6 285.9

Li-Li 1460 1313 1423 1390

Li-Na 1689 1453 1485 1450

Na-Na 1957 1614 1560 1510

K-K 6665 5265 4662 3890 + 20
Rb-Rb 9624 7505 6347 4870 + 70
H-He 3.022 2.995 2.948 2.82 + 0.02
H-Ne 6.060 5.976 6.227 571 + 0.07
H-Li 67.99 64.96 67.22 664 =+ 0.5
H-Na 81.14 75.43 74.50 71.8 + 0.3

aCoefficients calculated from Eq. (131), first three rows, are compared with empirical numbers.
Hydrogen wave functions were calculated from the exact potential, all other wave functions from
x-only-KLI, KLICS, or LDA-SIC-KLI potentials as indicated. Empirical Cg values from [127] and
[128]. Empirical values of the alkali atoms are accurate to 3 digits if no uncertainty is indicated. All
numbers in atomic units.

the isolated subsystems) and a vdW part. A multipole expansion of the latter shows
that it exhibits the correct R~ dependence with the vdW coefficient

2 |(kalr;|jo) D || (no' r;|ma"yB)|*

Cécs = Z(l + 353%) Z fjkafmna’ s (131)

Wjo ko + Wmo'no'

i=1 jkm%n
a0

which, in the numerator, involves dipole-operator matrix elements of the isolated sub-

systems. We note that the xc kernel has dropped out. This is due to the fact that

fxcoor (v, 1’5 w) goes to zero much faster than the Coulomb interaction for |r' —r| — oc.

Gorling and Levy have derived Eq. (131) by applying perturbation theory to the

vdW energy directly [126]. This shows that, as far as the Cy coefficients are concerned,
our approximation is exactly equivalent to second-order perturbation theory.

Results

Table 11 shows the resulting vdW coefficients for combinations of rare-gas atoms,
alkali atoms, and hydrogen. The hydrogen wave functions were calculated from the
exact potential. For the rare-gas and alkali atoms we used x-only-KLI, Colle-Salvetti-
KLI (KLICS), and LDA-SIC-KLI orbitals, as indicated. (LDA-SIC is LDA with self-
interaction correction [129].) We conclude that the agreement with the empirical values
is very good for light atoms (H, He, Li, Ne, Na), but becomes worse for heavier elements.
Compared to the rare gases, the alkali atoms are more sensitive to what kind of KS
orbitals we insert.

The response of a hydrogen atom is given by the non-interacting response func-
tion without approximation. Therefore, Eq. (131) is ezact in the case of two vdW-
interacting hydrogen atoms. Indeed, the calculated Cs(H-H) of 6.499 a.u. (not shown
in Table 11) equals the empirical value [128] of (6.49 + 0.02) a.u.
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Table 12. Atomic correlation energies from various approximations.?

Atom EXs LDA LDA-SIC-KLI KLICS PW91 exact/empirical
He -0.048 -0.111 -0.0582 -0.0416 -0.0450 -0.0421
Be -0.13 -0.224 -0.1169 -0.0934 -0.0942 -0.0962
Ne -0.41 -0.739 -0.4283 -0.3757 -0.3784 -0.394
Ar -0.67 -1.423 -0.8330 -0.7435 -0.7687 -0.72

@The s approximation (126) using the PGG xc kernel (94), first row, is compared with self-consistent
DFT results and with exact DFT correlation energies for He, Be, Ne [130, 131] and the conventional
quantum-chemical correlation energy for Ar [54]. All numbers in Hartrees.

Table 13. Total atomic ground-state energies from various approximations.®

Atom EXxe LDA LDA-SIC-KLI KLICS PW91 exact/empirical
He -2.910 -2.835 -2.920 -2.903 -2.900 -2.9037
Be -14.71 -14.446 -14.695 -14.665 -14.648 -14.6674
Ne -128.96 -128.230  -129.287 -128.920  -128.947  -128.939
Ar -527.48 -525.940  -528.432 -527.553  -527.539  -527.604
5(%) 0.14 1.19 0.29 0.016 0.070

#Total energies obtained from the xs approximation using the PGG xc kernel are compared with
self-consistent DFT results and exact/empirical values [46, 2]. ¢ denotes the mean relative deviation
from the exact/empirical values. All energies in Hartrees.

In Table 12 we present correlation energies for He, Be, Ne, and Ar. Here, we have
evaluated Eq. (126) with x-only-KLI wave functions. We compare our results with self-
consistent DFT correlation energies following from well-known functionals (LDA, LDA-
SIC, KLICS, PW91). Further we compare with the exact DFT correlation energies of
He, Be, and Ne [130, 131] and with a semi-empirical value [54] for the quantum-chemical
correlation energy of Ar. (This quantity is defined by E2¢ = F — EHF and should be
very close to the DFT correlation energy; cf. [132].)

By adding the “ys correlation energy” to the x-only-KLI energy we obtain the
total ground-state energies shown in Table 13. Again we compare with self-consistent,
DFT calculations and with exact/empirical reference values.

From Tables 12 and 13 we infer that our approximation is performing better than
LDA and LDA-SIC. Especially the correlation energies of the rare-gas atoms are de-
scribed accurately. However, the energies produced by the Colle-Salvetti and the PW91
functionals are still closer to the reference values.

To summarize, we have introduced a correlation-energy functional which repro-
duces the correct asymptotic R ¢ behavior of the vdW interaction. This functional
was then used to calculate atomic correlation energies and vdW coefficients. The nu-
merical results for the vdW coefficients of light atoms and the energies of noble-gas
atoms are quite satisfactory. In view of this, the present approach appears to be a
promising starting point for further refinement.
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