Calculating the Critical Temperature of
Superconductors from First Principles

E. K. U. Gross, M. Marques, M. Liiders' and Lars Fast

Institut fiir Theoretische Physik, Universitdt Wirzburg, Am Hubland, D-97074 Wiirzburg,
Germany
t Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Abstract. We present a novel approach to the theory of superconductivity based on
a formally exact density functional formulation. Within this framework, we perform
first-principles calculations of the critical temperatures of conventional superconductors
with strong and weak electron-phonon coupling.

Within the theory of Bardeen, Cooper and Schrieffer (BCS) [1], some quantities,
such as the ratio Ay/2kgT,. or the temperature dependence of the critical mag-
netic field, are remarkably well reproduced. However, the so-called strong-coupling
superconductors like Nb or Pb are not properly described. In these systems re-
tardation effects play a very important role, and must be included in any realistic
description of the superconducting phase. This was achieved by Eliashberg in 1960
[2], using a generalization of Migdal’s treatment of the electron-phonon interaction
[3]. Eliashberg’s theory allows accurate predictions of material dependent quan-
tities of strong-coupling superconductors [4], but its formulation has a weakness:
The Coulomb interaction between the electrons is effectively replaced by a single
number, p*. This quantity is quite hard to calculate from first-principles, so it is
usually treated as a material-dependent adjustable parameter chosen, for example,
to reproduce the experimental transition temperatures. Even if other quantities
can then be calculated without further approximations, and found to be close to
their experimental values, the whole procedure is, in fact, semi-phenomenological.
Furthermore, in other systems where a more detailed description of the Coulomb in-
teraction is necessary, Eliashberg theory yields sometimes unphysical answers: For
example, in the extreme case of the uniform electron-gas, treating the Coulomb
interaction at the level of an RPA, the gas is predicted to be superconducting at
unreasonable densities [5].

In 1986, Bednorz and Miiller found superconductivity in an oxide material. Their
discovery of the high-T, compounds revitalised research in the field of supercon-
ductivity, and raised may fundamental (and yet unanswered) questions. Although
a consensus has not been reached, it is reasonable to assume that, in these mate-



rials, both strong-coupling electron-phonon and electron-electron interactions play
an important role. Other superconducting systems recently discovered, like the
heavy-fermions and the organic superconductors, also exhibit a wealth of phenom-
ena that cannot easily be accommodated within the standard theory. Therefore, a
new treatment of the superconducting phase appears highly desirable.

Shortly after the discovery of the high-7, materials, Oliveira, Gross and Kohn [6]
proposed a density functional theory (DFT) for the superconducting state. Their
theory was an extension of the very successful normal-state DFT [7], and aimed
at a unified treatment of correlation and inhomogeneity effects in superconductors.
In the original article, only the Coulomb part of the interaction was handled at
an exact level, while the electron-phonon term was approximated by an effective
electron-electron interaction, like the ones studied by BCS [1], or by Bardeen and
Pines [8]. Such a description, although sufficient for weak-coupling or electronically
driven superconductors, does not incorporate retardation effects, and is therefore
inadequate to study strong-coupling systems. In this communication we present an
approach that incorporates exactly both electronic and phononic correlations. It
starts from the full Hamiltonian describing the complete system of electrons and
ions.

Traditional DFT is based on two statements: The Hohenberg-Kohn theorem
[9] establishes a one-to-one correspondence between the external potential and the
electronic density; and the Kohn-Sham construction [10], which uses an auxiliary
non-interacting system to obtain the density of the interacting system. In our
treatment we use a set of three densities consisting of the usual electronic den-
sity n(r), an anomalous electronic density (the superconducting order parameter),
x(r,r"), and the diagonal part of the nuclear N-body density matrix, ['(R; - - - Ry, )-
With this set of densities, it is easy to prove a Hohenberg-Kohn theorem, and to
construct a Kohn-Sham system, which in this case comprises three coupled differ-
ential equations: A system of two electronic equations, with the same form as the
Bogoliubov-de Gennes equations [11]; and a nuclear equation, featuring an N-body
interaction, similar to the familiar Born-Oppenheimer equation for the nuclei [12].
One should stress that no approximation is involved in the derivation of these equa-
tions, and that all many-body and beyond-Born-Oppenheimer effects are included
through the exchange and correlation (xc) potentials. As usual, these are function-
als of all densities, implying that the Kohn-Sham equations have to be solved in a
self-consistent way. Starting, for example, with an approximation to the densities,
we first calculate the xc potentials; with these potentials we then solve our cou-
pled set of equations and obtain the Kohn-Sham states; these, in turn, are used to
recalculate the densities, etc., until self-consistency is reached.

To perform the self-consistency cycle just described is a formidable task, even for
present-day computers. We therefore make a number of approximations that reduce
dramatically the complexity of the problem. First we note that, in a solid well be-
low the melting point, the nuclei describe small amplitude oscillations around their
equilibrium positions. It is then sufficient to make a harmonic expansion of the nu-
clear KS equation around those positions and diagonalise the nuclear Hamiltonian



by introducing collective (phonon) coordinates. We emphasize again that the nu-
clear Kohn-sham equation is a Schrodinger equation with an N,-body-interaction.
This N,-body potential is expected to be very close to the ground state Born-
Oppenheimer surface. We therefore approximate the DF'T phonon eigenspectrum
and electron-phonon coupling constants by the Born-Oppenheimer ones, calculated
within linear-response theory. Here we used results by Savrasov [13,14]. Of course,
changes in the phonon-spectrum caused by superconductivity, which were recently
observed near T, [15-17] cannot be described within this approximation. To deal
with such effects the functional dependence of the nuclear N,-body Kohn-Sham
potential on the superconducting order parameter x(r,r') need to be taken into
account.

Next, by applying the so-called decoupling approximation [18], we separate the
problem of solving the electronic Kohn-Sham Bogoliubov-de Gennes equations into
two independent parts: First, the solution of the ordinary Kohn-Sham equation,
Eq.(1) (which can be achieved using standard band-structure methods)
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and second, the solution of a gap equation. This approximation achieves a sep-
aration of the two energy scales present in the system: the one-particle energies,
of the order of the Fermi energy, are determined by the normal-state Kohn-Sham
equation, while the superconducting gap, usually two or three orders of magnitude
smaller, is given by the gap equation. At temperatures close to the superconduct-
ing transition temperature, 7., the order parameter (and the gap function) will be
small. If we are only interested in calculating 7., we are allowed to solve the much
simpler linearised form of the gap equation:
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The effective interaction appearing in the gap Eq.(2) consists of three contribu-
tions: an unscreened Coulomb part, wey, given by Eq.(4), a purely electronic
xc part, we, and an xc contribution, w,_,p,, due to the electron-phonon interac-
tion. Eq.(3) shows how these xc kernels are related to the purely electronic and



TABLE 1. Transition temperatures from numerical solutions of
the linearised DFT gap equation and phonon-only Eliashberg cal-
culations. The experimental T,s are also shown. T¢s are in Kelvin.

| AL [ Nb| Mo | Ta | Pb | Cu | Pd

DFT ph. only | 9.47 | 27.3 | 6.97 | 144 | 14.9 | 0.055 | 2.64

Eliashberg 9.75 | 24.7 | 7.31 | 14.0 | 12.2 | 0.065 | 2.74

Rel. diff. (%) | -2.9 | 10.5 | 46 | 2.8 | 22.1 | -15.4 | -3.6

DFT 1.31 | 123 | 0.64 | 5.35 | 8.26 - 0.12
Experimental | 1.18 | 9.5 | 0.92 | 448 | 7.2 - -
Error (%) 11.0 | 29.5 | -304 | 194 | 14.7 - -

the electron-phonon part of the xc free energy functional F¢¢/¢Ph. We empha-
size that the DFT gap equation is an integral equation in momentum space only.
The frequency-dependence associated with the electron-phonon retardation effects
is entirely contained in the xc potentials appearing in the DF'T gap-equation.

Although the DFT presented above is an exact reformulation of the original
many-body problem, practical applications of the theory depend on the availability
of approximations for the exchange-correlation potentials. While a wealth of ap-
proximations exist for normal-state DF'T, the situation is quite different for the case
of superconductors. The first DF'T calculations for superconductors were performed
for Niobium [19] and YBCO [20,21]. These calculations used a phenomenological
model for the xc potential. Only in 1999, the first universal xc functional was pre-
sented [22]: The superconducting counterpart of the successful normal-conducting
local spin density approximation. This functional, however, is an approximation of
F?¢, i.e. it deals with electronic correlations only. To include the electron-phonon
coupling we have developed a diagrammatic perturbation theory for the inhomo-
geneous system where the unperturbed Hamiltonian is given by the Kohn-Sham
Hamiltonian discussed above. The diagrammatics involves the normal and the
anomalous electron propagators as well as the phonon propagator corresponding to
the Kohn-Sham phonons. In terms of these quantities, the exact functional F¢ P"
is given by the sum of all diagrams containing at least one phonon propagator while
Fe¢ consists of all other diagrams. In the present context we approximate F¢, P"
by the sum of the two 1st-order diagrams in the phonon propagator. From the xc
energy functional calculated in this way, the xc kernels entering the linearised gap
equation are obtained from Eq.(3).

The DFT transition temperatures were obtained by solving numerically the lin-
earised DFT gap equation. In order to assess the quality of our approximation
for F¢.~ Ph we first performed phonon-only calculations by setting wep = wee = 0
in Eq.(2). The resulting values for the critical temperature are compared by nu-
merically solving the linearised Eliashberg equations in imaginary frequency space
with p* = 0. As can be seen from Table(1), the DFT results agree rather closely
with the Eliashberg results. The mean relative deviation of 8.8% demonstrates
that the electron-phonon part of the xc energy functional, at the present level of



approximation, leads to results essentially equivalent to Eliashberg phonon-only
calculations. To obtain critical temperatures that can be compared with experi-
ment, purely electronic interactions have to be taken into account as well. As a
first estimate, we have approximated (wcp + wee) in Eq.(2) by the simplest pos-
sible density functional, namely a Thomas-Fermi-screened Coulomb interaction,
where the Thomas-Fermi screening length is obtained from the average density of
the respective material. The resulting DF'T transition temperatures are quite en-
couraging: Table(1) shows that the mean relative deviation from experimental T,
values is 23%. In view of these results we expect that the density functional theory
presented here will become a useful tool to calculate properties of superconductors
from first-principles.
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