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Zeros of the Frequency-Dependent Linear Density
Response

In a recent Letter, Ng and Singwi' present a theorem
stating that the linear density response,

n(r,o) =fd3r'7{(r,r';w)v(r',w),

of a many-body system in equilibrium has no zeros under
very general thermodynamical conditions. We do not
agree with this result.

Mearns and Kohn? have examined the linear density
response of the ground state of noninteracting particles
confined to a one-dimensional ring or a box with zero

ues of %, determined by

fd3r'7((r,r’;a))§‘1(r',w) =3, (0)(r,w),

were found to be zero. These are counterexamples to the
theorem of Ng and Singwi at zero temperature. At finite
temperature, the response function is defined? by

Blo —E,+uN,]

2(r,rio) =X e Zn(r,r'so),

where X, is the response function of state n. This is the
conventional® definition, in which dynamical effects of
the coupling to the bath are neglected. The eigenvalues
of the finite temperature X for the ring also exhibit zeros

external potential. At isolated frequencies, the eigenval- I at isolated frequencies:
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r(w) -1 Z fm
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Here f;, ={explp(k2:—u)1+1} 7! is the Fermi occupa-
tion for state m, and k,, =m+ . We believe this coun-
terexample is typical of finite-size systems in thermal
equilibrium.

To examine these counterexamples in more detail, we
consider a monochromatic perturbation multiplied by a
switching function f(2), i.e., v(r,t) =f(t)e ~®'{(x). We
choose {(r) as an eigenfunction of ¥ whose eigenvalue
vanishes at frequency @. With the Fourier transform f
of f, the time-dependent linear density response is then
given by

n(r,t) =f_:dw e (o — a_))[fd 3 x(r,r0)G) ] . (2)

If the perturbation is switched on with the adiabatic
switching function f(¢) =e ~"!*!, the Fourier transform
is a Lorentzian, f(o— &) =n/zl(w—&)?+n%], which
reduces to 8(w —®) in the limit n— 0. Thus, the adia-
batic density response vanishes:

n(r’t)adiabaticse —iat [fd 3rlz(1',l'l;a_))Z(l")] =), (3)
We emphasize that Eq. (3) applies only to adiabatical-
ly switched-on perturbations li.e., to perturbations whose
Fourier transform tends to (e —®)]. If the perturba-
tion is switched on at a finite time t¢ [e.g., with a sudden
switching function, f(¢)=60(—10)1, then f does not
reduce to a delta function (or a sum of delta functions),
so that vanishing of the square bracket in (2) at isolated
frequencies does not imply a vanishing density response
n(r,t). Moreover, for two potentials v;(r,z) and va(r,?)
switched on at finite to, it has been shown that the corre-
sponding linear density shifts n,(r,#) and na(r,z) are
different, provided the potentials differ by more than an
r-independent function of time. For potentials expand-
able in a Taylor series around ?¢, this follows directly
from Eq. (6) of the work of Runge and Gross.* For
more general potentials acting on the system for a short
time, this follows from the first part of Ref. 1.
The proof given by Ng and Singwi is based on the
statement that the energy transfer AW satisfies the strict
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inequality AW > 0 for nonquasistatic (w > 0) processes.
However, this does not imply that AW > 0 to second or-
der in v. In fact, Eq. (3) implies that, to second order in
the perturbation, AW =0 at =& [cf. Eq. (18) of Ng
and Singwil.

Finally, we comment on the argument given by Ng
and Singwi for the static limit (« =0): The Hohenberg-
Kohn theorem? guarantees that two ground-state densi-
ties, n(r) and n'(r), are different if the associated exter-
nal potentials, v(r) and v'(r), differ by more than a con-
stant. However, this does not imply a nonvanishing den-
sity change 6n(r) =n(r) —n'(r) to first order in 6v(r)
=p(r) —v'(r); the difference between n(r) and n'(r)
might show up only in higher perturbative orders. The
statement that the linear mapping én =2X5v has no zeros
(at @=0) requires a separate proof. Such a proof is
given in Ref. 2, where it is demonstrated that the
ground-state response function has no vanishing eigen-
values below the first resonant frequency.
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