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Abstract: In potential-functional theory the total electronic energy is expressed as a functional
of the external potential. We discuss how approximations, T s

app[v], of the noninteracting kinetic
energy functional can be exploited for interacting systems. Two possibilities are discussed: (a)
Via an adiabatic connection formula, T s

app[v0] can be used directly with the external potential v0

of the interacting system, and (b) by employing the variational principle of density functional
theory, the kinetic energy functional T s

app[vs] is evaluated at the Kohn-Sham potential vs, which,
in turn, is determined by an iterative procedure. Advantages and disadvantages of the two
approaches are discussed.

The Kohn-Sham equations of density functional theory
(DFT) are the method of choice to calculate medium to large
electronic systems of up to 10000-100000 electrons. The
basic strategy of the Kohn-Sham method is to map the
interacting electronic system of interest onto a system of
noninteracting particles such that the latter has the same
ground-state density as the interacting system. Solving the
Kohn-Sham single-particle Schrödinger equations rather
than the interacting many-body Schrödinger equation makes
the problem numerically tractable. However, for larger
systems, even the solution of the Kohn-Sham equations
becomes too costly. Here, orbital-free DFT,1 that is, the
representation of the total energy as an explicit functional
of the density, is the ultimate method. Alternatively, one may
express the total energy as a functional of the external
potential.2 This alternative approach, called potential-
functional theory (PFT), will be addressed in this com-
munication. The approach has its roots in semiclassical
Wigner-Kirkwood-type expansions.3-5 The design of more
refined semiclassical approximations was outlined in the
1960s by Kohn and Sham6 in one-dimensional systems.
Three-dimensional generalizations have also been formu-
lated.7 On the basis of the work of Kohn and Sham, highly

accurate potential functionals in 1D have recently been
developed by Elliot et al.8

We start from the many-body Hamiltonian

where T̂ is the kinetic energy and Ŵee is the Coulomb
repulsion of the electrons. Restricting ourselves to potentials
V(r) having a nondegenerate ground state, the Schrödinger
equation

implies that the ground-state wave function Ψ[V] is uniquely
determined by the potential V(r). Consequently, the ground-
state density

is a unique functional of the potential, and so is the total
energy

with
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Ĥ[V] ) ∑
i)1

N

V(ri) + T̂ + Ŵee (1)

Ĥ[V]Ψ[V] ) E[V]Ψ[V] (2)

F[V](r) ) ∫ d3r2...∫ d3rN|Ψ[V](r, r2, ..., rN)|2 (3)

E[V] ) T[V] + W[V] + ∫ F[V](r)·V(r)d3r (4)

T[V] ) 〈Ψ[V]|T̂|Ψ[V]〉 (5)
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The basic idea of PFT is to find good approximations for
T[V] and W[V] so that the total energy of a given system,
characterized by the external potential V0(r), is obtained
directly by plugging V0(r) in the functional (eq 4).

Most potential functionals known to date have been
obtained by semiclassical considerations.3-6 Highly accurate
approximations have recently been constructed8 for the
kinetic energy and the density of noninteracting particles in
one spatial dimension (1D). To use these approximations as
part of the total energy functional of interacting systems, it
appears desirable to have a coupling constant integration
formula (or adiabatic connection) in PFT. We will deduce
such a formula in the following. Consider the λ-dependent
Hamiltonian

where λ with 0 e λ e 1 allows us to switch off the
electron-electron interaction. The V(r) is an external po-
tential which, in contrast to the adiabatic connection of DFT,
is independent of λ. For the time being, we restrict ourselves
to systems where for each λ, the ground-state solution Ψλ[V]
of the Schrödinger equation

is nondegenerate. Evidently, the fully interacting (λ ) 1)
total energy can then be written as

Let us first evaluate the total energy functional of noninter-
acting particles Eλ)0[V]. The (nondegenerate) ground-state
wave function of noninteracting particles is the determinant

with orbitals satisfying the single-particle Schrödinger equa-
tion (atomic units are used)

The total energy of the noninteracting system then reads

with

The integrand of the coupling constant integral can be
evaluated using the Hellmann-Feynman theorem

Defining

the total energy at full interaction can then be written as

This is the adiabatic connection formula of PFT. Ts[V] and
Fs[V] are exactly the functionals for which highly accurate
approximations have recently become available.8 Wλ[V], on
the one hand, can be approximated using standard many-
body perturbation theory, that is, Feynman diagrams with

representing the unperturbed Hamiltonian. This leads to
approximations of the form

where Gs[V](x,x′) is the Green’s function associated with the
noninteracting Hamiltonian (eq 18). The functional Gs[V],
on the other hand, can be approximated very accurately, at
least in 1D, using the semiclassical approach described in
refs 6 and 8. Hence, the adiabatic connection formula of PFT
can readily be used to evaluate the total energy of interacting
systems without ever solving any interacting or noninter-
acting Schrödinger equation. Despite this attractive feature,
the approach described so far has some drawbacks:

(i) In practice, evaluation of the functional Wλ[Gs[V]] in
eq 19 may be rather costly.

(ii) In the context of DFT, the noninteracting kinetic energy
functional, T s

D[Fint], evaluated at the interacting ground-state
density Fint, represents a major contribution to the total
energy. In PFT, an analogous role is played by the functional
Ts[V] (cf. eqs 13 and 17). The latter, however, has to be
evaluated at the external potential, V0(r), that is, the bare
nuclear Coulomb potential in the case of atoms, molecules,
and solids. The density of noninteracting particles moving
in the bare nuclear Coulomb potential is much more localized
than the interacting density, Fint(r), and consequently, Ts[V0]
will be much larger than T s

D[Fint]. It is expected that, in terms
of numbers, T s

D[Fint] is much closer to the fully interacting
kinetic energy, TD[Fint], than Ts[V0] is to T[V0]. The difference,
T [V0] - Ts[V0], is of course accounted for by the coupling
constant integral ∫0

1 Wλ[V]dλ. However, since T [V0] - Ts[V0]
is expected to be larger than TD[Fint] - T s

D[Fint], one has to
work harder to construct sufficiently accurate approximations
for the potential functional Wλ[V] than for the corresponding
density functional Wλ

D[F].
(iii) The approach described so far is not variational. In

fact, a variational principle has been formulated as well.2,9

Employing the Rayleigh-Ritz principle, one simply mini-
mizes the total energy functional

W[V] ) 〈Ψ[V]|Ŵee|Ψ[V]〉 (6)

Hλ[V] ) T̂ + λŴee + ∑
i)1

N

V(ri) (7)

Hλ[V]Ψλ[V] ) Eλ[V]Ψλ[V] (8)

Eλ)1[V] ) Eλ)0[V] + ∫0

1 dEλ[V]

dλ
dλ (9)

Ψs[V](r1...rN) ) 1

√N!
det{�j[V](rk)} (10)

(- ∇ 2

2
+ V(r))�j[V](r) ) εj[V]�j[V](r) (11)

Eλ)0[V] ) Ts[V] + ∫ Fs[V](r)V(r)d3r (12)

Ts[V] ) ∑
j)1

N ∫ d3r�*j [V](r)(- ∇ 2

2 )�j[V](r) (13)

Fs[V](r) ) ∑
j)1

N

|�j[V](r)|2 (14)

dEλ[V]

dλ
) 〈Ψλ[V]|∂Ĥλ[V]

∂λ |Ψλ[V]〉
) 〈Ψλ[V]|Ŵee|Ψλ[V]〉

(15)

Wλ[V] :) 〈Ψλ[V]|Ŵee|Ψλ[V]〉 (16)

Eλ)1[V] ) Ts[V] + ∫ Fs[V](r)V(r)d3r + ∫0

1
Wλ[V]dλ

(17)

Ĥs[V] ) T̂ + ∑
i)1

N

V(ri) (18)

Wλ[V] ) Wλ[Gs[V]] (19)
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with respect to V(r). Hence, for the exact functional, the
following Euler-Lagrange equation is satisfied

In practice, however, this variational principle is not very
useful. For an approximate functional, EV0

app[V], the stationary
point will generally be achieved at an approximate external
potential, V0

app(r), which is the solution of the Euler equation

The variationally optimized external potential V0
app(r),

however, is not really of interest because, after all, the true
external potential, V0(r), is known. Furthermore, at the true
external potential, EV0

app[V0] will usually not be stationary,
which may cause difficulties, for example, in the calculation
of vibrational spectra. However, the variational eq 22 may
be useful as a quality check for the approximate functional
EV0

app[V]. One may either compare V0(r) and V0
app(r) directly,

or one may assess the difference EV0
app[V0] - EV0

app[V0
app].

The three difficulties mentioned above can all be overcome
by another flavor of PFT, namely, by representing the total
energy as a functional of the Kohn-Sham potential, Vs(r),
rather than the external potential. This idea was recently
proposed by Yang and co-workers.2 The crucial point is to
exploit the standard variational principle of DFT

where the total energy functional is given by

where V0(r) is the fixed external potential of the system at
hand and EH[F] and Exc[F] are the usual Hartree and
exchange-correlation energy functionals of DFT. Assuming
noninteracting V representability, the ground-state density
F(r) of an interacting system with external potential V(r) can
be represented as the ground-state density of noninteracting
particles moving in the Kohn-Sham potential Vs(r). The
uniqueness of Vs(r) follows from the Hohenberg-Kohn
theorem, while the existence of Vs(r) (i.e., V representability)
has been demonstrated10 in the ensemble sense for systems
on an arbitrarily fine but discrete real-space grid. Hence, we
can represent the densities F(r) as Fs[Vs](r) with the functional
Fs[V] given by eq 14. Consequently, substituting Fs[Vs](r) for
F(r) in eq 24, the variational principle (eq 23) of DFT can
be recast in the form

with

where Vs,0 is the Kohn-Sham potential corresponding to the
interacting ground-state density F0(r) of the external potential
V0(r)

It is easy to see that

with the potential functional Ts[V] defined in eq 13. Hence,
the total energy functional (eq 26) can be written as

As opposed to the external potential functional (eq 17),
eq 29 has to be evaluated at the Kohn-Sham potential Vs,0(r).
The latter is determined from the variational principle (eq
25); using the exact definition (eq 13) of the functional Ts[V],
one immediately verifies that

and the variational principle (eq 25) yields the desired
potential as

where, as usual

In ref 2, the above variational approach was employed
with the exact functional Ts[Vs] to put the optimized effective
potential method on a firm variational basis. Here, we exploit
the variational approach with approximate functionals Ts

app[Vs]
and Fs

app[Vs]. We propose to determine the desired potential
Vs,0(r) by the following iteration

Clearly, eqs 34 and 35 would represent the usual Kohn-Sham
self-consistency loop if the new density Fn+1 had to be
evaluated from the exact functional (eq 14), that is, by solving
the one-body Schrödinger equation with the potential Vs

(n)(r).
By using the approximate (but explicit) functional Fs

app[Vs
(n)]

EV0
[V] ) 〈Ψ[V]|T̂ + Ŵee + ∑

i)1

N

V0(ri)|Ψ[V]〉

) T [V] + W [V] + ∫ F[V](r)V0(r)d3r

(20)

δEV0
[V]

δV(r) |
V0

) 0 (21)

δEV0

app[V]

δV(r) |
V

0
app

) 0 (22)

δEV0
[F]

δF(r) |
F0

) 0 (23)

EV0
[F] ) Ts

D[F] + ∫ F(r)V0(r)d3r + EH[F] + Exc[F]

(24)

δEV0
[Vs]

δVs(r) |
Vs,0

) 0 (25)

EV0
[Vs]: ) Ts

D[Fs[Vs]] + ∫ Fs[Vs](r)V0(r)d3r +

EH[Fs[Vs]] + Exc[Fs[Vs]] (26)

Vs,0(r) ) Vs[F0](r) (27)

Ts
D[Fs[Vs]] ) Ts[Vs] (28)

EV0
[Vs] ) Ts[Vs] + ∫ Fs[Vs](r)V0(r)d3r + EH[Fs[Vs]] +

Exc[Fs[Vs]] (29)

δTs[Vs]

δVs(r)
) -∫ d3r′Vs(r′)

δFs[Vs](r′)
δVs(r)

(30)

Vs,0(r) ) V0(r) + VH[Fs[Vs,0]] + Vxc[Fs[Vs,0]] (31)

VH[F](r) :)
δEH[F]

δF(r)
) ∫ F(r′)

|r - r′ | d
3r′ (32)

Vxc[F](r) :)
δExc[F]

δF(r)
(33)

Fn+1(r) ) Fs
app[Vs

(n)](r) (34)

Vs
(n+1)(r) ) V0(r) + VH[Fn+1](r) + Vxc[F

n+1](r) (35)
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in eq 34, the costly step of solving the Schrödinger equation
is avoided. The charm of this procedure is that it only relies
on the well-established time-proven approximations for the
density functional Vxc[F] and on the noninteracting potential
functionals Fs

app[V] and Ts
app[V], both of which are accurately

known within the recent semiclassical approximations.8

It should be noted that the above derivation of the
variational eq 31 relies on the exact noninteracting func-
tionals Ts[Vs] and Fs[Vs]. For approximate functionals, Ts

app[Vs]
and Fs

app[Vs], the Euler eq 25 takes the form

This general variational equation is, of course, much more
complicated than eq 31. As a consequence, in each iterative
step, the following nonlinear equation

has to be solved to obtain the new potential Vs
n+1. This raises

the question whether, for certain approximations, the varia-
tional eq 36 still takes the simple form of eq 31. This is
expected, if Ts

app[Vs] and Fs
app[Vs] come from the same

semiclassical expansion for the one-body Green’s function,
Gapp[Vs](r). In the Appendix, we show explicitly that this is
the case for two specific varieties of semiclassical Green’s
functions.

Employing the iteration (eqs 34 and 35) and plugging the
resulting Vs,0(r) in the functional of eq 29, the total energy
of the interacting system is evaluated without ever solving
the interacting or noninteracting Schrödinger equation. This
procedure is clearly a very efficient way to exploit PFT for
interacting particles. We expect the approach to become the
method of choice for very large interacting many-body
systems.
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Appendix

Semiclassical Approximations in PFT. An alternative
expression for the noninteracting kinetic energy functional
as given by eq 13 is the following

with

The integration in eq A2 is in the complex ε-plane, along
any closed contour C which encloses the occupied energy
levels.6 Gs[V](x,ε) is the diagonal of the noninteracting one-
body Green function, which is the solution of

Throughout this appendix, we use the shorthand notation
Gs[V](x,ε) ≡ Gs[V](x,x,ε). The density can be expressed as a
contour integral as well

Taking the functional derivative of eq A1 with respect to
V(y), we obtain the identity

Equation A5 is valid both for the exact, Gs[V](x,ε), and for
approximate, Gs

app[V](x,ε), Green’s functions. In the former
case, comparison with the result of eq 30 reveals that for
consistency between both expressions, the first and second
terms on the right-hand side of eq A5 should cancel each
other. In the following, we will show that this cancellation
also holds for approximate Green’s functions, provided that
Gs

app[V](x,ε) satisfies two conditions. The first one

requires that Gs
app[V](x,ε) depends on V and ε exclusively

through its functional dependence on k(V(x),ε) ) [2(ε -
V(x))]1/2 ≡ k(x). This condition is obviously satisfied for all
semiclassical approximations.

The second condition

requires symmetry under exchange of coordinates. This
condition is obviously satisfied for local Thomas-Fermi-von-
Weizsäcker-type approximations

It is straightforward to verify that the symmetry condition
(eq A7) also holds for the exact Green’s function. To prove

δTs
app[Vs]

δVs(r) |
Vs,0

) -∫ d3r′(V0(r′) + VH[Fs
app[Vs,0]](r′) +

Vxc[Fs
app[Vs,0]](r′))

δFs
app[Vs](r′)
δVs(r) |

Vs,0
(36)

δTs
app[Vs]

δVs(r) |
Vs

(n+1)
) -∫ d3r′(V0(r′) + VH[F(n+1)](r′) +

Vxc[F
(n+1)](r′))

δFs
app[Vs](r′)
δVs(r) |

Vs
(n+1)

(37)

Ts[V] ) ∫ d3xts[V](x) (A1)

ts[V](x) ) 1
2πi IC dε[ε - V(x)]Gs[V](x, ε) (A2)

[-1
2

∇ 2 + V(x) - ε]Gs(x, x′, ε) ) δ(x - x′) (A3)

Fs[V](x) ) 1
2πi IC dεGs[V](x, ε) (A4)

δTs[V]

δV(y)
) -Fs[V](y) + ∫ d3xIC

ε dε
2πi

δGs[V](x, ε)

δV(y)
-

∫ d3xV(x)
δFs[V](x)

δV(y)
(A5)

Gs
app[V](x, ε) ) Gs

app[k(V(x), ε)] (A6)

δGs
app[V](x, ε)

δV(y)
)

δGs
app[V](y, ε)

δV(x)
(A7)

Gs
app[k(x)] ) g(k(x), ∇ k(x), ∇ 2k(x), ...) (A8)
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the cancellation of the first two terms on the right-hand side
of eq A5 under these conditions, we first realize that

In the first equality above, we have used the condition in eq
A7. In the second equality, eq A6 was used. In the third
line, we have used δk(z)/δV(x) )-δ(x - z)/k(z). Proceeding
from eq A9 and noting now that 1/k(z) ) ∂k(z)/∂ε, we obtain

Inserting this into the second term on the right-hand side of
eq A5, we obtain

The second equality above follows from partial integration
in the complex plane, with the “boundary” contribution of
the contour integral being zero. Through this cancellation,
eq A5 reduces to eq 30, with Ts[V] replaced by Ts

app[V] and
Fs[V](x) by Fs

app[V](x). In turn, this implies that the general
variational eq 36 reduces to

provided that the approximate functionals Ts
app[V] and Fs

app[V]
come from approximate Green’s functions Gs

app[V] satisfying
the conditions in eqs A7 and A8.

As a further example for the validity of the variational
result of eq 31 for approximate functionals of Ts[V] and Fs[V],
we now discuss the recently developed semiclassical ap-
proximations of Elliot et al.8 Adding and subtracting NEF,
eqs A1 and A2 can be written in the more convenient form

where, in order to make contact with the work of Elliot et
al., we restrict ourselves to the 1D case. Taking again the
functional derivative with respect to δV(y), we obtain

The particular model studied by Elliot et al.8 consists of a
one-dimensional box with potential V(x), 0 e x e L, and EF

> V(x) everywhere. Hard-wall boundary conditions were
imposed at x ) 0 and L. The corresponding Gs

semi[V](x,ε) is
given by

with f(Θ) ) {cos Θ(L) - cos[2Θ(x) - Θ(L)]}/sin Θ(L),
k(x) ) [2(ε - V(x))]1/2, and Θ(x) ) ∫0

x dx′k(x′). One easily
verifies that Gs

semi[V](0,ε) ) Gs
semi[V](L,ε) ) 0. Inserting

Gs
semi[V](x,ε) from eq A15 into the 1D version of eq A4, the

semiclassical expression for the density is8

where R(x) ) πτF(x)/TF, τF(x) ) ∫0
x dx′/kF(x′), and TF ) τF(L);

also, kF(x) ) [2(EF - V(x))]1/2. The first term on the right-
hand side of eq A16 is the 1D analogue of the 3D
Thomas-Fermi density; the second term, which is of the
same order in p as the first, ensures satisfaction of the hard-
wall boundary condition Fs

semi[V](0) ) Fs
semi[V](L) ) 0.

Considering that, from eq A15

and inserting the first term on the right-hand side of eq A17
in the last term on the right-hand side of eq A14, we obtain

Following the same steps as those in ref 8, the last
contribution in eq A18 is found to be another half of
Fs

semi[V](x). As the contribution from the second term in the
right-hand side of eq A17 to eq A14 can be proved to be
null, we obtain again the desired result

which translates also in this case to a variational equation
of the type of eq A12, with the label “app” replaced by
“semi”.
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