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Abstract

We review the ensemble-Hartree-Fock (eHF) scheme for excited
states. The single-particle eHF equations contain different potentials
for the various orbitals, leading to off-diagonal Lagrange multipliers
that cannot be transformed away as in the ground state case. Using
the Optimized Effective Potential method we are able to construct a
common local potential and the resulting theory is seen to describe
accurately atomic excitation energies.

A comparison of the eHF theory with the ensemble-Kohn-Sham
(eKS) scheme suggests a correction for the ensemble exchange and
correlation energy functional, that helps improve greatly the numerical
results of the eKS scheme.

1 Introduction

Ground state Hartree Fock (HF) theory not only has proven a valuable tool
to calculate the ground state properties of electronic systems, but has also
served as a starting point for more sophisticated approaches which deal with
correlation, like configuration interaction methods and density functional
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theory (DFT). Ground state HF theory is based on the Rayleigh-Ritz varia-
tional principle, which states that the expectation value of the Hamiltonian
of the N−electron system (atomic units)

H =
∑

i



−∇
2
i

2
+ Uext(ri) +

1

2

∑

j

′ 1

|ri − rj |



 (1)

attains its minimum value for the true ground state energy E0:

〈Ψ|H|Ψ〉 ≥ E0 (2)

where, Ψ is any normalized N−electron antisymmetric state. Let us take N ↑

and N↓ the number of spin up and spin down electrons in the ground state,
N = N↑ + N↓. In the (unrestricted) HF approximation, one substitutes a
trial N−particle Slater determinant

Φ0 =
1√
N !

det
[

φ↑1, . . . , φ
↑

N↑ ;φ
↓
1, . . . , φ

↓

N↓

]

(3)

for Ψ and minimizes the expectation value 〈Φ0|H|Φ0〉 with respect to the
spin-orbitals φσj of Φ0. The minimization results in single particle Schrödinger-
like equations which determine φσj :

hΦ0
φσj (r) = εσj φ

σ
j (r) (4)

where,

hΦ0
φσj (r) =



−∇
2

2
+ Uext(r) +

∑

s=↑,↓
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∫

d3r′
|φsn(r′)|2
|r− r′|



 φσj (r)

−
∑

φσ
n
∈Φ0

∫

d3r′
ρσn(r, r

′)

|r− r′| φ
σ
j (r

′) (5)

and
ρσn(r, r

′) ≡ φσn(r) φ
σ∗
n (r′) (6)

In HF theory, one assigns the physical meaning of an independent electron
to each occupied spin-orbital φσj .

The extension of the HF scheme to excited states is more subtle. For
example, if one wants to obtain information about the first excited state,
the Rayleigh-Ritz variational principle dictates that the trial Slater deter-
minant to approximate the first excited state must be orthogonal to the
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exact (unknown) ground state. If, instead, one imposes the orthogonality
constraint on the Slater determinant Φ0 which approximately represents the
ground state, then the initial error will multiply. Nevertheless, the physical
meaning of excited electrons, is often assigned to the eigen-orbitals of hΦ0

which are not occupied in Φ0. To ascertain that his is clearly problematic,
consider that each unoccupied orbital lies in the field of N rather than N−1
electrons, causing the virtual orbitals of hΦ0

to be too diffuse. Various meth-
ods to overcome the problem have appeared [1, 2, 3], within ground state
HF theory.

An elegant method to study low excitations in HF theory is to aban-
don the Rayleigh-Ritz variational principle and use the ensemble variational
principle (or subspace, or trace variational principle), first used in the foun-
dation of DFT for excited states by Theophilou [4] and later by Gross,
Oliveira and Kohn [5, 6]. Considering for simplicity only the ground state
and the first excited state Ψ0, Ψ1 of H, the minimum principle states that
the trace Eω[Ψ,Ψ

′]

Eω[Ψ,Ψ
′] = (1− ω) 〈Ψ|H|Ψ〉+ ω 〈Ψ′|H|Ψ′〉 (7)

with Ψ,Ψ′ orthonormal and 0 < ω ≤ 1/2, attains its minimum value when
Ψ = Ψ0 and Ψ′ = Ψ1. This statement holds true for any value of ω in the
interval 0 < ω ≤ 1/2. Theophilou’s subspace or equi-ensemble theory was
restricted to the value ω = 1/2, where the weight of the excited state is
maximized.

2 Ensemble Hartree-Fock equations

Consider for simplicity only the ground state and the lowest single particle
excitation of an N−electron system described by H. We may take the
highest occupied orbital spin up and non degenerate. The Slater determinant
representing the lowest excitation will be

Φ1 =
1√
N !

det
[

φ↑1, . . . , φ
↑

N↑−1
, φ↑

N↑+1
;φ↓1, . . . , φ

↓

N↓

]

(8)

Next, form the trace, with 0 < ω ≤ 1/2:

Eω = (1− ω)〈Φ0|H|Φ0〉+ ω 〈Φ1|H|Φ1〉 (9)
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The trace Eω can be written in terms of the spin orbitals:

Eω = −1

2
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∣
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∣

∣

∣

2

|r− r′|

where, g↑(r, r′) = ρ↑
N↑+1

(r, r′) − ρ↑
N↑(r, r

′), g↑(r) = g↑(r, r), ρ↓(r, r′) =
∑

φ
↓
n
∈Φ0

ρ↓n(r, r
′), ρ↑(r, r′) =

∑

φ
↑
n
∈Φ0

ρ↑n(r, r
′) + ω g↑(r, r′), ρ(r) =

∑

σ=↑,↓

ρσ(r, r).
Based on the ensemble minimum principle, the ensemble-Hartree-Fock

(eHF) equations for the ground and the lowest excited states are obtained
by minimizing the trace with respect to the spin-orbitals [7, 8]. Observe
that not all spin-orbitals appear symmetrically in Eω. This implies that
the single particle equations for the various orbitals of the same spin are
inhomogeneous i.e., the equations have different potentials, and consequently
nondiagonal Lagrange multipliers appear that cannot be chosen to vanish
with a suitable unitary transformation of the minimizing orbitals [8].

2.1 The Optimized Effective Potential Method

Obviously, it would be desirable to overcome the difficulties associated with
a scheme which involves different Hamiltonians for the various orbitals. To
this end, we chose to minimize the trace Eω, requiring that the orbitals of
the same spin form the lowest N ↑ + 1 and N↓ single-particle eigenstates of
some common (for each spin) local potential V ↑ and V ↓ to be determined.
This constitutes the Optimized Effective Potential (OEP) method [9, 10] for
the eHF scheme which introduces an additional approximation to eHF.

In the following, we shall derive the equations determining V ↑, V ↓.
In the OEP picture, Eω is a functional of the local potentials, Eω =

Eω[V
↑, V ↓]. The functional derivative δEω/δV

σ(r) is defined by the limit

lim
λ→0

Eω[V
σ + λδV σ, V σ′

]− Eω[V
σ, V σ′

]

λ
=

∫

d3r
δEω

δV σ(r)
δV σ(r), (11)
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where, σ =↑, ↓, σ′ =↓, ↑.
In order to be well defined, the functional derivative in (11) must be

independent of the choice of δV σ. Denote here too by {φσn} the single-
particle eigenstates of V σ.

[

−∇
2

2
+ V σ(r)

]

φσn(r) = εσn φ
σ
n(r) (12)

Then, for 0 < λ¿ 1, the eigenstates of V σ + λδV σ will be given by

φσn,λ(r) = φσn(r)− λ

∫

d3r′ δV σ(r′) Gσ
n(r, r

′) φσn(r
′)

where

Gσ
n(r, r

′) =
∞
∑

m=1m6=n

ρσm(r, r
′)

εσm − εσn

Substituting the above in (11) and using Eq. (12) we can calculate the
functional derivatives:

δEω

δV σ(r)
=

∫

d3r′F σ(r; r′, r′)

[

V σ(r′)− Uext(r
′)−

∫

d3r′′ρ(r′′)

|r′ − r′′|

]

+

∫ ∫

d3r′d3r′′
F σ(r; r′, r′′)ρσ(r′′, r′)

|r′ − r′′|

−δσ,↑ ω(1− ω)

∫

d3r′B↑(r; r′, r′)

∫

d3r′′g↑(r′′)

|r′ − r′′|

+δσ,↑ ω(1− ω)

∫ ∫

d3r′d3r′′
B↑(r; r′, r′′)g↑(r′′, r′)

|r′ − r′′|

where, δσ,↑ = 1 if σ =↑, δσ,↑ = 0 if σ =↓ and

B↑(r; r′, r′′) = G↑

N↑+1
(r′, r)ρ↑

N↑+1
(r, r′′) +G↑

N↑+1
(r, r′′)ρ↑

N↑+1
(r′, r)

−G↑

N↑(r
′, r)ρ↑

N↑(r, r
′′)−G↑

N↑(r, r
′′)ρ↑

N↑(r
′, r)

F ↓(r; r′, r′′) =
N↓
∑

n=1

[

G↓
n(r

′, r)ρ↓n(r, r
′′) +G↓

n(r, r
′′)ρ↓n(r

′, r)
]

F ↑(r; r′, r′′) =
N↑
∑

n=1

[

G↑
n(r

′, r)ρ↑n(r, r
′′) +G↑

n(r, r
′′)ρ↑n(r

′, r)
]

+ ω B↑(r; r′, r′′)

5



B↑(r; r′, r′′) and F σ(r; r′, r′′) are Hermitian with respect to the second pair of
arguments: [B↑(r; r′, r′′)]∗ = B↑(r; r′′, r′) and [F σ(r; r′, r′′)]∗ = F σ(r; r′′, r′).
Consequently B↑(r; r′, r′) and F σ(r; r′, r′) are real.

The minimizing potentials of Eω are determined by the OEP integral
equations

δEω

δV σ(r)
= 0 , σ =↑, ↓ (13)

Applying the popular mean field approximation by Krieger Li and Iafrate
[11, 12] to simplify (13), we have calculated the total ensemble energies of
various atoms and present the results in Table 1. An equi-ensemble (ω =
1/2) has been chosen. The states in each ensemble are proper eigenfunctions
of the total spin [13] and consequently we had to use a different potential
for each ensemble. These potentials were derived in a similar way to Eqs.
(13) and details of the derivation will be published elsewhere.

The experimental data in the last column are taken from the NIST
database for Atomic Spectroscopy [14]. The eHF results give upper bounds
to the experimental values as expected.

The ensemble-Kohn-Sham (eKS) scheme proposed by Theophilou [4] and
later by Gross, Oliveira and Kohn [5, 6] was also based on the ensemble
variational principle. The basic quantity in the formulation of the theory is
the ensemble (average) density ρ(r) and in the eKS scheme, the interacting
system with ensemble density ρ(r) and energy Eω is mapped to a non-
interacting one with the same ensemble density, and energy.

A comparison of the eHF and the eKS theories reveals that the definition
of the ensemble Hartree energy

1

2

∫ ∫

d3rd3r′
ρ(r)ρ(r′)

|r− r′| (14)

contains an unphysical interaction between the orbitals φ↑
N↑ and φ↑

N↑+1
,

which, in the non-interacting picture, are never occupied in the same con-
figuration. We called this unphysical interaction the ghost-interaction and
clearly the ensemble exchange and correlation energy functional must cor-
rect for it [15]. The reader is also referred to the recent reformulation of the
the OEP method for ensembles of excited states by Nagy [16].

Neglecting correlation but including exchange, the ground state (gs) KS
scheme reduces to the gs exchange-only (x-only) KS scheme. When ex-
change is included exactly, through the Fock expression, the solution of the
(gs) x-only KS scheme coincides with solution of OEP integral equations to
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Atom Ensemble
Noof
states

eHF eKS Exper.

He
{1s2}1S ;
{1s2s}1S 2 −67.456 −68.463 −68.708

He
{1s2s}3S ;
{1s3s}3S 2 −57.606 −57.606 −57.769

He
{1s2s}3S ;
{1s2p}3P 2 −58.613 −58.613 −58.640

He
{1s2s}3S ;
{1s2p}3P 4 −58.313 −58.313 −58.340

Li
{1s22s}2S ;
{1s22p}2P 4 −200.953 −202.287 −202.096

Li
{1s22s}2S ;
{1s23s}2S 2 −200.382 −201.661 −201.797

C2+
{1s22s2}1S ;
{1s22s2p}3P 4 −986.616 −989.31 −989.256

Table 1: Equiensemble total energies for various atoms in eV units. The
ensemble configuration and dimensionality are shown in the second and third
columns. In the last column the total energy of the ensemble is shown. In
the case of an n-dimensional subspace with Ei, 1 ≤ i ≤ n, the n lowest
eigenvalues, the total energy is equal to 1

n

∑n
i=1Ei.

minimize the (gs) HF energy expression. We can say rather loosely that
the (gs) exact x-only KS scheme coincides with the (gs) HF-OEP method.
In the case of excited states, the eHF-OEP method we just presented, is
found to coincide with the exact x-only eKS scheme, only when the spurious
ghost interaction is corrected properly [15]. This is actually how we were
led to discover the presence of the ghost interaction in the eKS formulation.
Comparing the two theories, the eHF-OEP method and the eKS scheme, the
latter in principle, may account for correlation effects, provided an appropri-
ate ensemble correlation functional is available. In the absence however of
any approximation, we chose to employ for our calculation the approximate
gs correlation functional of Colle and Salvetti [17].

In the fifth column in Table 1, we give the results of the eKS calculation,
with the ghost interaction corrected and using the approximate gs Colle-
Salvetti correlation functional.
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