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We examine the difference between the correlation energy as de-
fined within the conventional quantum chemistry framework and
its namesake in density-functional theory. Both correlation en-
ergies are rigorously defined concepts and satisfy the inequality
EQC > EPFT. We give numerical and analytical arguments suggest-
ing that the numerical difference between the two rigorous quan-
tities is small. Finally, approximate density functional correlation
energies resulting from some popular correlation energy functionals
are compared with the conventional quantum chemistry values.

Introduction

In quantum chemistry (QC), the exact correlation energy is traditionally de-
fined as the difference between the exact total energy and the total selfconsistent
Hartree-Fock (HF) energy:
Ege(;cact = Etot,exact - ng‘ . (1)
Within the framework of density-functional theory (DFT) [1, 2], on the other
hand, the correlation energy is a functional of the density EPF™ [p]. The exact
DFT correlation energy is then obtained by inserting the exact ground-state
density of the system considered into the functional EXF T [p], i. e.
Epnet = E(]:)FT [pexact] . (2)

c,exact



In practice, of course, neither the quantum chemical correlation energy (1) nor
the DFT correlation energy (2) are known exactly. Nevertheless, both quantities
are rigorously defined concepts.

The aim of the following section is to give a coherent overview of how the cor-
relation energy is defined in the DFT literature [3-14] and how this quantity is
related to the conventional QC correlation energy. The two exact correlation en-

ergies Eouyace and EX%ae: are generally not identical. They satisfy the inequality

Bt > Bt Furthermore we will give an analytical argument indicating

that the difference between the two exact quantities is small.

In the last section we compare the numerical values of approximate conventional
QC correlation energies with approzimate DF'T correlation energies resulting from
some popular DFT correlation energy functionals. It turns out that the difference
between DF'T correlation energies and QC correlation energies is smallest for the
correlation energy functional of Colle and Salvetti [15, 16] further indicating [17]
that the results obtained with this functional are closest to the exact ones.

Basic Formalism

We are concerned with Coulomb systems described by the Hamiltonian
I{I:T+W01b+f/ (3)

where (atomic units are used throughout)
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Vo= Yu(r) . (6)
i=1

To keep the following derivation as simple as possible, we choose to work with the
traditional Hohenberg-Kohn [18] formulation rather than the constrained-search
representation [4, 19, 20| of DFT. In particular, all ground-state wavefunctions
(interacting as well as non-interacting) are assumed to be non-degenerate. By
virtue of the Hohenberg-Kohn theorem [18] the ground-state density p uniquely
determines the external potential v = v[p] and the ground-state wave function
U [p]. If vy (r) is a given external potential characterizing a particular physical
system, the Hohenberg-Kohn total-energy functional is defined as

Ey, [p] = (¥[p]| T+ Wan + Vo Wlpl) . (7)

As an immediate consequence of the Rayleigh-Ritz principle, the total-energy
functional (7) is minimized by the exact ground-state density pexact corresponding
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to the potential vy, the minimum value being the exact ground-state energy, i. e.

Etot,exact - Evo [pexact] . (8)

In the context of the Kohn-Sham (KS) scheme [21] the total-energy functional is
usually written as

Bl =Tl + [ oot dr+ L [ % Frd® + Bl (9)

where T [p] is the kinetic-energy functional of non-interacting particles. By virtue
of the Hohenberg-Kohn theorem, applied to non-interacting systems, the density
p uniquely determines the single-particle potential vs[p] and the ground-state
Slater-determinant

e (10)

1 KS
I det {%'a [P]}

and hence T [p] is given by

T[p] = <¢>Ks[p]|TI¢KS[p]>

= Y [ () S m

o="1,} j=1

We mention in passing that the Hohenberg-Kohn theorem can also be formu-
lated for a “Hartree-Fock world” [22], implying that the HF density uniquely
determines the external potential. Consequently the HF ground-state determi-
nant is a functional of the density as well:

1
HF[ 1 _ HF
® [ﬂ]—mdet{wja[p]} : (12)
The resulting kinetic-energy functional
T[] = (‘PHF[/JHT@HF[p])

= Y Y [T () e w0

o=t j=1

is different from T[p] because the orbitals in (11) come from a local single-particle
potential vg[p] while the orbitals in (13) come from the nonlocal HF potential

HE[p]. However, the numerical difference between THF[p] and Ti[p] has been
found to be rather small [14].

The remaining term, Ey. [p], on the right hand side of equation (9) is termed the
exchange-correlation (xc) energy. Comparison of equation (9) with equation (7)
shows that the xc-energy functional is formally given by

Bl = (W[a)| T+ W (900~ Tolo] 5 [ /”|r_r,‘ drdr’ (1)



In density-functional theory the exact exchange-energy functional is defined by

B2l = (@l Wen @) - [ [OO drane  s)

This is identical with the ordinary Fock functional

EFF [p.,] = _% 3 i // Br BB 07 (1) ko () 1o (T) o (1) (16)

P v — /|

evaluated, however, with the KS Orbitals, i. e.
EX (o] = BF [0 [0l] - (17)
The DFT correlation-energy functional is then given by
BT o] = Exclp] — EX™ o] (18)

Inserting the respective definitions (14) and (17) of Ey.[p] and EPFT[p] we find

BY¥lp] = (WA + Wonl¥1a) ~ il - 5 [ (SRR dsr a3 [ ]

(19)
In terms of the Hartree-Fock total-energy functional
HF 4 - 3 3
E (o] = 5% [l (=59°) i) dr + [ plr) wolx) dor
o=1,} j=1
1 !
+§ // ,0|(I‘)p(ll'|) d37" d37"I+E£IF [@ja] (20)
r—r

and the total-energy functional (7) the DFT correlation energy (19) is readily
expressed as

EP™[p] = By lol - B [0 (0] - (21)

By equation (2), the exact DFT correlation energy is then obtained by inserting
the exact ground-state density pexac; (corresponding to the external potential vy)
into the functional (21). By virtue of equation (8) one obtains

E(]:?gcrgct = Etot,exact - EE)F [QO?US [pexact]] . (22)

The conventional quantum chemical correlation energy, on the other hand, is
given by
Ege()jcact = Etot,exact - Elql;f)F I:(p]I._IO'F [pHF]] (23)
HF

where . [pur| are the usual selfconsistent HF orbitals corresponding to the
external potential vy, i. e. pgr is that very HF density which uniquely corresponds
to the external potential vy. Of course, pgr and pexact are generally not identical.
Comparison of (22) with (23) shows that

Ei),ggct = Eggcact + (Ezl;f)F [(P?JF [pHF]] - EQI)_})F [Spiigs [pexact]]) . (24)



This is the central equation relating the DFT correlation energy to the QC cor-
relation energy. Since the HF orbitals @5 [pur| are the ones that minimize the

HF total-energy functional (20), the inequality

ETI)iF [QO?JF [PHF]] < ETI)iF [QO?JS [pexact]] (25)
must be satisfied and it follows from equation (24) that

E((:?ecjcact Z E(]::,);gct . (26)
This was first recognized by Sahni and Levy [3]. Equation (24) tells us that, as a
matter of principle, selfconsistent DFT results for the correlation energy should
not be compared directly with the conventional quantum chemical correlation
energy but rather with the right-hand side of equation (24). In practice, of course,
quantum-chemical correlation energies and ground-state densities are known only
approximately, e. g. , from configuration-interaction (CI) calculations. Hence,

Eioc1 — Bty |0} lpcil] (27)

is the quantity the selfconsistent DFT correlation energy should in principle be
compared with. The second term of (27) is readily computed by employing one
of the standard techniques [13, 23, 24, 25] of calculating the KS potential and its
orbitals from a given CI density. In the following we shall argue, however, that
the difference between EPET . and Eé?;iact can be expected to be small. To see

c,exac
this we rewrite equation (24) as

B = Bomaer = (Bt [l lowwl] = B 05 [px-omy]])
+ (B [0 onyl| — Bor [0S [pexact]]) - (28)

where pi_ony is the ground-state density of an exact exchange-only DFT cal-
culation [26, 27] and @} [px—onyy] are the corresponding KS orbitals. The first
difference on the right-hand side of equation (28) is known to be small [26, 27].
The second difference, on the other hand, is easily seen to be of second order in
(Px—only — Pexact) and is therefore expected to be small as well:

Ezlzf)F [‘P;{JS [pX—OIﬂY]] - quj-f)F [cp;{cfs[pexact]]

OBy |¢lsp)
= /d37" %)] . (Px—only(r) — Pexact (I‘)) + O(,Oxfonly - pexact)2

Px—only

- /d37” ue (pronly (I‘) — Pexact (I‘)) + O(px—only N pexact)2
= 0 + O(px_only - pexact)2

The second equality follows from the fact that px_on1y minimizes the density func-

tional E}" [(pfas [p]] Hence we conclude that EDEL, — B, should be small.

This estimate is confirmed by results of accurate variational and quantum Monte
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Carlo calculations on H™, He, Be™?, Ne™® [13] and Be and Ne [28] as can be seen
from Table 1. There, the conventional quantum chemical correlation energies of
these systems are compared with the “exact” DFT correlation energies calcu-
lated from equation (22). For all elements and ions shown, the relation (26) is
confirmed, as expected. The difference between the DFT and the conventional
QC correlation energies is found to be small compared with the total correlation
energies. However, the absolute differences, being sometimes as high as a few
mHartrees, are of the same order of magnitude as the deviations between experi-
mental total energies and total energies calculated with approzimate state-of-the
art density functionals [17].

Table 1: Comparison of exact DF'T correlation energies with conventional quan-
tum chemical correlation energies (QC) [29]. A denotes the difference between
the QC and the DFT correlation energy (in Hartree units). A% denotes the value

of \E‘Secxact — Egggct\ / \Egggct\ in percent.

DFT QC A A%
H~ —0.041995 | —0.039821 | +0.002174 | 5.2
He —0.042107 | —0.042044 | +0.000063 | 0.2
Bet? | —0.044274 | —0.044 267 | +0.000007 | 0.02
Net® | —0.045694 | —0.045693 | +0.000 001 | 0.002
Be —0.096 2 —0.094 3 +0.0019 2.0
Ne —0.394 —0.390 +0.004 1.0

To conclude this section, we mention that there exists yet another possibility of
defining a density functional for the correlation energy [4-11,13]:

Ee[p) = Eulp] — EEF [01 [p]] (29)
where go?f[p] are the HF orbitals corresponding to the density p (see equation
(12)). If the exact density pexact is inserted in (29) @5 [Pexact] are the HF orbitals
corresponding to some unknown external potential ¢y whose HF density is pexact-

The decomposition
Uo(r) =: vo(r) + e (r) (30)

makes clear that on the single-particle level the definition (29) leads to a hybrid
scheme featuring the ordinary mon-local HF exchange potential combined with
the local correlation potential ¥ (r). In the present paper, this hybrid scheme will
not be further investigated. We only mention that, with arguments similar to
the one leading to (26) E, satisfies the inequalities:

Ec [,Oexact] < Eggcact < EC[:OHF] (31)

as was first pointed out by Savin, Stoll and Preuss [8].



Correlation Energies from Various DFT Approximations

For further analysis, we compare in Tables 2, 3 and 4 the DFT correlation energies
resulting from various approximations to EPFT[p]. LYP denotes the correlation-
energy functional by Lee, Yang and Parr [30], PW91 the generalized gradient
approximation by Perdew and Wang [31], and LDA the conventional local density
approximation in the parametrisation of F. by Vosko, Wilk and Nusair [32]. The
first column, denoted by CS and KLI-CS, respectively, shows the results of a
recently developed scheme which employs an optimized effective potential (OEP)
including correlation effects [17]. In this scheme the full integral equation of the
optimized effective potential method [33, 34],

/d3 ! ‘/;((C)OEP ) uxcza’ ) Z ong— SOICO'( ) (pia(r)g);o—(rl) +ce.=0
€ko — Eio
k#z
(32)
with
1 5Exc [(p]o-]

Pis(r) 0pio(r)
is solved semi-analytically by an approved method due to Krieger, Li and Iafrate [35,
36, 37

(33)

chz’a(r) =

VOEP ( ) VKLI

XCo XCo

[uxcw ) (V;I;LUI - axcio)] (34)

where the constants (V;fg;,l ﬂxcig) are the solutions of the set of linear equations
No—1
> (050 — Mjio) (VXEZLUI ﬂxcz’cr) Vijo —Uxejo  j=1,...,N, (35)
i=1
with
My = /d?’r M’ (36)
Po(T)
N .
VS, ()= S 2y ) (37
=1 pO' (r)

Here, tiyj, denotes the average value of uy.j,(r) taken over the density of the jo
orbital, i. e.

Txcjo = / Pio (1) txejo (r)d%r (38)

and similarly for V;(SCN Like in the conventional Kohn-Sham method, the xc-
potential resulting from equation (34) leads to a single-particle Schrédinger equa-

tion with a local effective potential

(——+vo v/ _r,|d3' VO >) 0io(r) = ejopialr)  (39)
(j=1,...,N, o=1]).



The selfconsistent solutions ¢j,(r) of equation (39) with lowest single-particle
energies €;, minimize the total-energy functional

B o) = XY [ (~29) gt

o=",} i=1

+/p r) vo(r) d°r
+% / / 7p(r)_pg‘) d*r d*r’

_Z Z Z //d3 By @5 (T) Pk (T) 1o (1) 00 (')

o=} jk=1 v — /|
+Ecc *Hepjo - (40)

In the above equation, E-5 denotes the Colle-Salvetti functional [15, 16] for the
correlation-energy given by

B = = b [2060)| o0 T V0 — Vol

1
- Z pa Apa 4p(1‘)Ap(I‘) d3,r

—a r@ 3’/“
A e (41)

where
pr(r)py(r)
N(r) = 4 L) 42
(x) e (42)
n(r) = 1+dp(r)7s, (43)
5 _1
p(r)~Femrt) !
&(r) = 44
(x) o (44
The constants a, b, ¢ and d are given by
a = 0.04918, b=0.132,
¢ = 0.2533, d = 0.349.

In Table 2, the four approximate DFT correlation energy functionals are evaluated
at the exact densities [13, 28] of H™, He, Be*?, Ne™, Be, Ne and compared with
the ezact DFT correlation energies given by equation (22). On average, the
KLI-CS values are superior.

In Table 3 selfconsistent DFT correlation energies are compared with QC values
taken from [38]. In these selfconsistent calculations the approzimate correlation-
energy functionals EXYP EFWOl  FLDA are complemented with the approxvimate
exchange-energy functionals EB% [39], EFYW9! [31] and ELPA, respectively. In
the KLI-CS case, the DFT exchange-energy functional (17) is of course treated
exactly. The numerical data show three main features:
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Table 2: Non-relativistic absolute correlation energies resulting from various ap-
proximate DFT correlation energy functionals, evaluated at the exact ground-
state densities [13, 28] of the respective atoms (in Hartree units). Exact values
are from [13, 38]. |A|% denotes the mean value of |E. — EDSL |/|EDSY | in
percent.

CS LYP |PW91 | LDA | EXACT
H- [ 0.0297 | 0.0299 | 0.0320 | 0.0718 | 0.0420
He | 0.0416 | 0.0438 | 0.0457 | 0.1128 | 0.0421
Bet2 | 0.0442 | 0.0491 | 0.0535 | 0.1512 | 0.0443
Net® | 0.0406 | 0.0502 | 0.0617 | 0.2030 | 0.0457
Be | 0.0936 | 0.0955 | 0.0950 | 0.2259 | 0.0962
Ne |0.375 |0.383 |0.381 |0.745 | 0.394

A% | 8.2 95 154 | 175

Table 3: Non-relativistic absolute correlation energies of first and second row
atoms from selfconsistent calculations with various DF'T approximations. QC
denotes the conventional quantum chemistry value [38]. |A|% denotes the mean

value of |(E(]3FT - E?C)/Egc‘ in percent. All other numbers in Hartree units.

KLI-CS | BLYP | PW91 | LDA QC

He 0.0416 | 0.0437 | 0.0450 | 0.1115 || 0.0420
Li 0.0509 | 0.0541 | 0.0571 | 0.1508 || 0.0453
Be 0.0934 | 0.0954 | 0.0942 | 0.2244 || 0.0943
B 0.1289 | 0.1287 | 0.1270 | 0.2906 | 0.1249
C 0.1608 | 0.1614 | 0.1614 | 0.3587 || 0.1564
N 0.1879 | 0.1925 | 0.1968 | 0.4280 | 0.1883
0O
F
N

0.2605 | 0.2640 | 0.2587 | 0.5363 | 0.2579
0.3218 | 0.3256 | 0.3193 | 0.6409 || 0.3245

e 0.3757 | 0.3831 | 0.3784 | 0.7434 | 0.3905
Na 0.4005 | 0.4097 | 0.4040 | 0.8041 || 0.3956
Mg 0.4523 | 0.4611 | 0.4486 | 0.8914 | 0.4383

Al 0.4905 | 0.4979 | 0.4891 | 0.9661 || 0.4696
Si 0.5265 | 0.5334 | 0.5322 | 1.0418 || 0.5050
P 0.5594 | 0.5676 | 0.5762 | 1.1181 || 0.5403
S 0.6287 | 0.6358 | 0.6413 | 1.2259 || 0.6048
Cl 0.6890 | 0.6955 | 0.7055 | 1.3289 || 0.6660

Ar 0.7435 | 0.7515 | 0.7687 | 1.4296 || 0.7223
A% 313 | 452 510| 120




Table 4: Non-relativistic absolute correlation energies of atoms from selfconsistent
calculations with various DF'T approximations. All numbers in Hartree units.

KLI-CS | BLYP | PW91 KLI-CS | BLYP | PW91
K 0.8030 | 0.7821 | 0.7994 || Rb | 1.7688 | 1.7832 | 1.9509
Ca 0.8269 | 0.8329 | 0.8467 || Sr 1.8222 | 1.8355 | 2.0056
Sc 0.8832 | 0.8855 | 0.9033 || Y 1.8763 | 1.8863 | 2.0671
Ti 0.9371 | 0.9374 | 0.9613 || Zr 1.9281 | 1.9363 | 2.1307
\Y% 0.9882 | 0.9882 | 1.0198 || Nb | 1.9475 | 1.9558 | 2.1899
Cr 1.0073 | 1.0086 | 1.0736 || Mo | 1.9905 | 2.0003 | 2.2551
Mn | 1.0812 | 1.0861 | 1.1375 || Tc 2.0796 | 2.0874 | 2.3412
Fe 1.1597 | 1.1620 | 1.2158 || Ru | 2.1571 | 2.1637 | 2.4254
Co 1.2324 | 1.2331 | 1.2933 || Rh | 2.2278 | 2.2340 | 2.5081
Ni 1.3009 | 1.3010 | 1.3700 | Pd 2.3123 | 2.3154 | 2.6074
Cu 1.3693 | 1.3694 | 1.4562 || Ag | 2.3561 | 2.3649 | 2.6705
Zn 1.4273 | 1.4303 | 1.5212 || Cd | 2.4146 | 2.4247 | 2.7373
Ga 1.4704 | 1.4753 | 1.5768 || In 2.4600 | 2.4704 | 2.7964
Ge 1.5101 | 1.5174 | 1.6343 || Sn 2.5024 | 2.5135 | 2.8577
As 1.5465 | 1.5570 | 1.6917 || Sb 2.5419 | 2.5544 | 2.9193
Se 1.6177 | 1.6288 | 1.7662 || Te 2.6134 | 2.6252 | 2.9965
Br 1.6795 | 1.6912 | 1.8393 || I 2.6763 | 2.6876 | 3.0726
Kr 1.7355 | 1.7493 | 1.9112 || Xe 2.7338 | 2.7456 | 3.1475

1. For most atoms, the absolute value of EQC is smaller than the absolute cor-
relation energy obtained with any DFT method, as it should be according
to the relation (26).

2. The values of EXV-CS FIYP " pPWOl and EQC agree quite closely with each
other while the absolute value of EP4 is too large roughly by a factor of
two. We mention that due to the well known error cancellation between
ELPA and EMPA | the resulting LDA values for total xc energies are much
better.

3. The difference between EPFT and EQC is smallest for the EXMCS values,
larger for EXYF and largest for EXW9'. The difference between EQC and
EPFT has three sources:

(a) The values of ESC are only approximate, i. e. not identical with Eguyac-

(b) The values of EPFT are only approximate, i. e. not identical with

DFT
E c,exact”

(c) As shown in the last section, the exact values Eg%y,., and EPEL  are
not identical.
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Currently it is not known with certainty which effect gives the largest con-
tribution. However, with the arguments given in the last section, we expect
the contribution of (c) to be small. Assuming that the quoted values of EQC
are very close to Ec,g{act we conclude that EFMC5 is closest to EDg L.
Table 4 shows correlation energies of atoms K through Xe obtained with the
various selfconsistent DFT approaches. In almost all cases, the absolute KLI-CS
values for E. are smallest and the ones from PW91 are largest, while the LYP
values lie in between. In most cases, EXV=5 and EP™F agree within less than
1 % while |[EFW9Y is larger (by up to 10 %) as the atomic number Z increases.
We emphasize that reliable values for EQC do not exist for these atoms.
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