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1 Introduction

The response of an interacting many-particle system to a time-dependent external
field can usually be treated within linear response theory. Due to rapid experimental
progress in the field of laser physics, however, ultra-short laser pulses of very high
intensity have become available in recent years. The electric field produced in such
pulses can reach the strength of the electric field caused by atomic nuclei. If an
atomic system is placed in the focus of such a laser pulse one observes a wealth of new
phenomena [1] which cannot be explained by traditional perturbation theory. The
non-perturbative quantum mechanical description of interacting particles moving in a
very strong time-dependent external field therefore has become a prominent problem
of theoretical physics. In principle, it requires a full solution of the time-dependent
Schrodinger equation for the interacting many-body system, which is an exceedingly
difficult task. In view of the success of density functional methods in the treatment
of stationary many-body systems and in view of their numerical simplicity, a time-
dependent version of density functional theory appears highly desirable, both within
and beyond the regime of linear response.

The first steps towards a time-dependent Kohn-Sham (KS) scheme were taken by
Peuckert [2] and by Zangwill and Soven [3]. These authors treated the linear density
response of rare-gas atoms to a time-dependent external potential as the response
of non-interacting electrons to an effective time-dependent potential. In analogy to



stationary KS theory, this effective potential was assumed to contain an exchange-
correlation (xc) part, v,.(rt), in addition to the time-dependent external and Hartree

terms:
vs(rt) = v(rt) / dr'

Peuckert suggested an iterative scheme for the calculation of v,., while Zangwill and
Soven adopted the functional form of the static exchange-correlation potential in LDA,
i. e.
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where €9™(n) is the xc energy per volume of the homogeneous electron gas. This
approximation can be expected to be good only if the time dependence of n(rt) is
sufficiently slow. In practice, however, it gave quite good results even for the case of
rather rapid time dependence.

The approach of Zangwill and Soven is valid under the assumption that a time-
dependent KS theorem exists. Significant steps towards a rigorous foundation of time-
dependent density functional theory were taken by Deb and Ghosh [4]-[7] and by
Bartolotti [8]-[11] who formulated and explored Hohenberg-Kohn (HK) and KS type
theorems for the time-dependent density. Each of these derivations, however, was
restricted to a rather narrow set of allowable time-dependent potentials (to potentials
periodic in time in the theorems of Deb and Ghosh, and to adiabatic processes in
the work of Bartolotti). A general formulation covering essentially all time-dependent
potentials of interest was given by Runge and Gross [12]. A detailed description of
the time-dependent density functional formalism will be presented in section 2. The
central result is a set of time-dependent KS equations which are structurally similar to
the time-dependent Hartree equations but include (in principle exactly) all many-body
effects through a local time-dependent exchange-correlation potential.

To date, most applications of the formalism fall in the regime of linear response.
The linear response limit of time-dependent density functional theory will be discussed
in section 3. After that, in section 4, we shall present a new method [13] of constructing
approximations of the time-dependent xc¢ potential beyond the linear response regime.
This method can be viewed as the time-dependent counterpart of the so-called opti-
mized potential method [14]-[29].

2 Formal Framework

In this section we deal with many-electron systems moving in an explicitly time-
dependent potential

Vit = X [droadlmi.) 3)

o=t
The total Hamiltonian is given by

H)=T+U+V({1) , (4)

where 7' is the kinetic energy of the electrons

T=3 [drii) <V2>¢U(r) (5)

o=t



and U is the mutual Coulomb interaction

(atomic units are used throughout). The number of electrons, N, is fixed.

Ordinary time-independent density functional theory is based on the existence of
an exact mapping between densities and external potentials. In the ground state
formalism, the existence proof relies on the Rayleigh-Ritz minimum principle for the
energy. Straightforward extension to the time-dependent domain is not possible since a
minimum principle is not available in this case. The existence proof for a 1-1 mapping
between time-dependent potentials and time-dependent densities, first given by Runge
and Gross [12], is somewhat more involved and will briefly be indicated below. Starting
from the time-dependent Schrodinger equation

0 -
i=0(t) = H(t)o (1) (7)

we shall investigate the densities n(rt) of electronic systems evolving from a fized initial

(many-particle) state
®(to) = Do (8)

under the influence of different external potentials v(rt). For each fixed initial state
®g, formal solution of the Schrédinger equation (7) defines a map

A v(rt) — () 9)

between the external potentials and the corresponding time-dependent many-particle
wave functions and a second map

B:®(t) — n(rt) = (®(¢)[a(r)|(t)) (10)

between the many-particle wave functions and the time-dependent densities. The aim
is to prove invertibility of the complete map

G :v(rt) — n(rt) . (11)

In the following we shall demonstrate that if the potentials v(rt) are required to be
expandable in a Taylor series with respect to the time coordinate around the initial
time %y, then the map G is indeed invertible up to within an additive, merely time-
dependent function in the potential. In other words, two densities n(rt) and n'(rt)
evolving from a common initial state ®; under the influence of the potentials v(rt) and
v'(rt) are always different provided that the potentials differ by more than a purely
time-dependent function:

v(rt) # o' (rt) + c(t) . (12)

Using the condition that the potentials v and v’ can be expanded in a Taylor series,

T %vk(r) (£ — 1) (13)

=0

v(rt)
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Eq. (12) is equivalent to the statement that for the expansion coefficients vg(r) and
vy (r) there exists a smallest integer £ > 0 such that
ak
O (r) — vy (r) = o (v(rt) — o' (rt)) # const. (15)
ot t=to
To demonstrate the 1-1 correspondence we prove in a first step that the current den-
sities

i(xt) = (@(1)[3(x)|B(1)) (16)
and
§(xt) = (@) (x)|'(¢) (17)
are different for different potentials v and v'. Here,
== z% (81 () (Vo (r) — (V] (1)) o (x) ) (18)

is the usual paramagnetic current density operator. In a second step we shall show
that the densities n and n' are different.
Using the quantum mechanical equation of motion for the expectation value of an

operator Q(t),

2 /a0 = @0l (52 - 0.0 w) . (9
we obtain for the current densities:
9 jrt) = (1) 50)|8(1)) = ~i(@(0)[ir), A (1) 2(1) (20)
9 3(rt) = @050 |9(1) = ~@ @G, A@OIP @) - (@)
Since ® and @' evolve from the same initial state
D(tg) = ¥'(to) = 0o (22)
we can write
g ) = §0) | = =it0ulfir), B o) ~ £ t0)]j00)
= —ng(r)V (v(rty) — v'(rty)) (23)
with the initial density
mo(r) = (@i(e) o) (24)

If the condition (15) is satisfied for £ = 0 the right-hand side of (23) cannot vanish
identically and j and j' will become different infinitesimally later than ¢,. If (15) holds
for some finite £ > 0 we use Eq. (19) (k + 1) times and obtain after some algebra:

= —no(r) Vwy(r) # 0 (25)

t=to

(2)" 6w ~s100)

with

(26)

t=to

wi(r) = (%)k (v(xt) — v'(xt))
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Once again, we conclude that
j(rt) # j'(xt) (27)

provided that (15) holds for v and v'. To prove the corresponding statement for the
densities we use the continuity equation

% (n(xt) — n'(xt)) = —V - (§(xt) - § (xt)) (28)

and calculate the (k + 1)th time derivative of Eq. (28) at ¢t = {:
5\ +2
() @00=r@)] | =V ot (29
=to

In order to prove that the densities n(rt) and n'(rt) will become different infinitesimally
later than ¢y, we have to demonstrate that the right-hand side of Eq. (29) cannot vanish
identically. This is done by reductio ad absurdum: Assume

V - (no(r)Vuwg(r)) =0 (30)
and evaluate the integral
/d37" no(r) [V (r)]?
= — [dr )V - (nofe) Vuor(x) + $S - (o () (1) Vure(x) . (1)

where we have used Green’s theorem. The first integral on the right-hand side of (31)
vanishes by assumption. For physically reasonable potentials (i. e. potentials arising
from normalizable external charge densities), the surface integral vanishes as well [30].
Since the integrand on the left-hand side is non-negative one concludes that

no(r) [Vw(r)]* = 0 (32)

in contradiction to wy(r) # const. This completes the proof of the theorem.

We note in passing that the right-hand side of Eq. (29) is linear in wg. Conse-
quently, the difference between n(rt) and n’'(rt) is non-vanishing already in first order
of v(rt) — v'(rt). This result will be of importance in section 3 because it ensures the
invertibility of linear response operators.

Having established the existence of the inverse map

Gtin(rt) — v(rt) +c(t) (33)

subsequent application of the map A tells us that the many-particle wave function is a
functional of the time-dependent density, unique up to within a purely time-dependent
phase «(t):

®(t) = e OW[n](t) . (34)

~

As a consequence, the expectation value of any quantum mechanical operator Q(t) is
a unique functional of the density:

QInl(t) = (Y[n](1)| Q)| ¥[n] (1)) - (35)



The ambiguity in the phase cancels out. As a particular example, the right-hand side
of Eq. (20) can be considered as a density functional which depends parametrically on
r and ¢:

P(n](rt) = —i(¥[n] (1) [j(r), H®)]|¥[n]()) (36)
This implies that the time-dependent particle and current densities can always be
calculated (in principle exactly) from a set of “hydrodynamical” equations:

%n(rt) -V -j(rt) (37)
d.
5 (rt) = P[n|(rt) . (38)

In practice, the functional P[n] is of course only approximately known.

The 1-1 correspondence between time-dependent densities and time- dependent po-
tentials can be established for any given interaction U in particular also for U= 0,
i. e. for non-interacting particles. Therefore the external potential v [n|(rt) of a non-
interacting system reproducing a given density n(rt) is uniquely determined. However,
the 1-1 correspondence only ensures the uniqueness of vs[n] for all v-representable
densities but not its existence for an arbitrary n(rt). In order to derive a time-
dependent KS scheme we have to assume, similar to the static case, non-interacting
v-representability, i. e., we have to assume that v, exists for the time-dependent den-
sity of the interacting system of interest. Under this assumption, the density of the
interacting system can be obtained from

= 2_:1 s (rt)|” (39)

with orbitals ¢;(rt) satisfying the time-dependent KS equation

2

i) = (= 4ol i) (10

As usual, the single-particle potential v, is written as

/
v (xt) = w(xt) + [d*r ‘:(r ?\ +veln](xt) (41)
where v(rt) is the external time-dependent field. The second term on the right-hand
side of Eq. (41) is the time-dependent Hartree potential while the third term is the
xc potential which, in practice, has to be approximated. As in the static case, the
great advantage of the time-dependent KS scheme lies in its computational simplicity
compared to other methods such as time-dependent configuration interaction [31]-[36].

There is an important difference between the ordinary ground state density func-
tional theory and the time-dependent formalism developed above: the 1-1 correspon-
dence between potentials and densities can be established only for a fized initial many-
body state ®y. Consequently, the functional P[n] implicitly depends on ®;. In the
same way, vg[n]| and v,.[n] implicitly depend on the initial KS Slater determinant. The
formalism provides no guideline of how to choose the initial KS orbitals ¢;(rty) as long
as they reproduce the initial interacting density ngy corresponding to ®y. In general,
there exist infinitely many Slater determinants reproducing a given density [37, 38].



From a formal point of view there is no problem with that; any choice of initial or-
bitals ¢;(rty) reproducing the initial interacting density no will do the job because
the dependence of v4[n| on the initial state is such that the interacting density will be
reproduced for all times. In practice, however, the dependence on the initial state is a
nuisance. Of course one would prefer to have functionals of the density alone rather
than functionals of n(rt) and ®,. One has to emphasize, however, that for a large
class of systems, namely those where both ®; and the initial KS Slater determinant
are non-degenerate ground states, P[n| and v,[n] are indeed functionals of the density
alone. This is because any non-degenerate ground state @, is a unique functional of
its density ng(r) by virtue of the traditional HK theorem. In particular, the initial KS
orbitals are uniquely determined as well in this case.

The functionals P[n], vs[n], vy[n] are well-defined only for v-representable den-
sities, i. e. for densities that come from some time-dependent potential satisfying
Eq. (13). Moreover, the derivation of the time-dependent KS scheme requires the
assumption of non-interacting v-representability of the interacting density. In view
of this, a Levy-Lieb-type [39, 40, 41] extension of the respective functionals to arbi-
trary (non-negative, normalizable) functions n(rt) appears desirable. Two different
proposals of this type have been put forward so far [42, 43].

Besides these mathematical generalizations, a number of extensions of the time-
dependent density functional formalism to physically different situations have been
developed. Those include spin-polarized systems [44], multicomponent systems [45],
time-dependent ensembles [46, 47|, external vector potentials [43, 48] as well as super-
conducting systems [49].

3 Frequency-dependent Linear Response

In this section we shall consider the density response of an N-electron system being
initially, i. e. at times t < £, in its ground state. In this case, the initial density ny(r)
can be calculated from the ordinary ground state KS equations

Vv? no(r’
(-5 ot + feer PO o) 00 = ep¥0) @)
m(r) = 3 |7 (43)
lowest N
At t =ty a perturbation is switched on so that the total potential is given by
v(rt) = vo(r) + vy (rt) (44)
vi(rt) =0 for t<t, . (45)

The objective is to calculate the linear density response n;(rt) to the perturbation
v1(rt). Conventionally, n; is computed from the full linear response function x as

1(rt) / dt'/dsr x(rt, o't o, (2't') . (46)
to

Since the time-dependent KS equations (39)-(41) provide a formally exact way of
calculating the time-dependent density, we can compute the exact density response
n1(rt) as the response of the non-interacting KS system:

na (rt) = /t i / Er' s (xt, Y0P () (47)
0
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where vgl) is the effective time-dependent potential evaluated to first order in the

perturbing potential, i. e.

v (rt) = vy (rt) + /d3 p m(r + /dt'/d3r' feelmo] (xt, o't ny (2't)) . (48)

Here the exchange-correlation kernel f,. is given by the functional derivative of v,

OV [n](rt)

Jze[no](xt, 2't") = St , (49)

n=no

evaluated at the initial ground state density ny.

While the full response function yx is very hard to calculate, the non-interacting
KS response function can be computed relatively easily. In terms of the static initial
KS orbitals <p§~0) (Eq. (42)), the Fourier transform of y;(rt, r't'") with respect to (t —t')
can be expressed as

0% (1) 6O (210 (11 0
o) = Ty S~ ) b P DA O

Y w—(gj —exr) +1in

where fi, f; are the usual Fermi occupation factors and o, denotes the spin orientation
of the kth orbital.

Eqgs. (47) and (48) constitute the KS equations for the linear density response.
They provide a formally exact self-consistent scheme to calculate the density response
ny(rt).

For practical applications one has to find approximations for the exchange-correla-
tion kernel f,.. To this end, it is useful to express f,. in terms of the full response
function x. An exact representation of f,. is readily obtained by solving Eq. (46) for
v, and inserting the result in Eq. (48). Eq. (47) then yields

5t —t')

Feclrol 1, 2) = 2 (e, 2') — Xl (xt2'8) = T

, (51)
where x, ! and x ! stand for the kernels of the corresponding inverse integral operators
whose existence on the set of densities specified by Eqs. (45) and (46) follows from
Eq. (29), as discussed above. The frequency-dependent response operators x(r,r’;w)
and y;(r,r’;w), on the other hand, can be non-invertible at isolated frequencies [50, 51].

Due to causality, fu.(rt,r't') vanishes for t' > ¢, i. e., fz. is not symmetric with
respect to an interchange of (rt) with (r't'). Consequently, f,.(rt,r't") cannot be [52]
a second functional derivative 6%F.[n]/dn(rt)dn(r't’). Since, on the other hand, f,.
is the functional derivative of v,. one concludes that the exact v,.[n](rt) cannot be
a functional derivative, in contrast to the static case. We mention that v,. can be
written as a functional derivative within certain approximations that are local in time,
such as the one given by Eq. (2).

Eq. (51) shows that f,. depends on the time arguments only through the difference
(t —t') so that we can work with the Fourier transform f,.[n¢](r,r";w) as well.

Once again, the most straightforward approximation for f,. is the LDA where the
functional fr.[no] is replaced by the corresponding function f2o™(ng) of the homoge-
neous electron gas, evaluated at the initial density ng(r) of the actual inhomogeneous
system:

FEPAng)(r, 15 w) i= [l (no(x), [t — T'iw) . (52)
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The LDA of non-local quantities, such as response functions, always involves some
ambiguity [53, 54] as to whether the inhomogeneous ng is to be evaluated at r, at r’,
or at some suitably chosen mean value of r and r'. Of course, in the limit of slowly
varying no(r) (i. e. in the limit where the LDA should be a good approximation) the
choice does not matter. In addition to the LDA replacement f,. — f"™ we now make
the assumption that both no(r) and n;(rw) are slowly varying on the length scale given
by the range of f™(ny(r), |r —r'|;w). In this “double” local density limit, the change
in the xc potential can be calculated as

C e

oD (rw) = 1y (rw) /d?’r' hom (o (x), [t — ¥'];w) . (53)

In terms of the Fourier transform of f!™ with respect to (r — '), Eq. (53) amounts
to the approximation [55]

foe[no] (v, x;w) — §(x — ') from (ny(x), ¢ = O;w) . (54)

xc

This approximation requires the xc kernel of the homogeneous electron gas as input.
In order to investigate this quantity we consider Eq. (51) in the homogeneous case.
Fourier transformation with respect to (r —r’) and (¢t — t') leads to

1 1 A7

T oxbom(ng, w)  xPm(ng, w) @2

hom

xc (n0> q;(.d) (55)

The response function x"°™ of a non-interacting homogeneous system is of course
well-known: x"°™ is identical with the Lindhard function.

Eq. (55) shows that the response function x"™ of the homogeneous electron gas
uniquely determines the xc kernel fi°™ and thus fEZP4. Unfortunately, x"*™ is not
known exactly. However, some exact features of "™ are known. From these, the

following exact properties of f2™ can be deduced:
1. As a consequence of the compressibility sum rule one finds [56]

lig 717 (g0 = 0) = 45 (82" (n)) = foln) (56)

q—0

where, as before, €™ (n) denotes the exchange-correlation energy per volume of

the homogeneous electron gas.
2. The third-frequency-moment sum rule leads to [57]

lim £27 (g, = o0)

= —pendd (S o L (S0 < fw 60

5 dn \ nd/3 dn n4/3

3. According to the best estimates [58, 59] of 9™ the following relation holds for
all densities:

fo(n) < foo(n) <0 . (58)
4. The short-wavelength behavior is given by [60]
2 Arw
: hom __=2. . "n1 _

where g(r) denotes the pair correlation function.
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5. fhom(q,w) is a complex-valued function satisfying the symmetry relations
Refr™(q.w) = Refy™ (g, ~w) (60)

(@ —w) (61)

6. fl9m(q,w) is an analytic function of w in the upper half of the complex w-plane
and approaches a real function f(q) for w — oo [61]. Therefore, the function
hom(g,w) — foo(q) satisfies standard Kramers-Kronig relations:

hom(

Im q,w ) —Im

dw' Im fhem (g Imfpm(q,w')
hom —P q,w 9
Re 1 (4,) - [ mta (62)
dw' Reflom(q,w') — foo(q)
hom - _P 0
Im / S — (63)

7. The imaginary part of f exhibits the high-frequency behavior

Jim I'm hom (

c
qw) = i (64)
for any ¢ < oo [62]. A second-order perturbation expansion [62, 63] of the
irreducible polarization propagator leads to the high-density limit

23w

T (65)

8. In the same limit, the real part of f™ behaves like [55]

C

lim Re hom( ,w) = foo(q) + m

[ dee]

(66)

Since ¢ > 0, the infinite-frequency value f. is approached from above. This
implies, in view of the relation (58), that Ref>"(q = 0,w) cannot grow mono-
tonically from fy to fuo.

The above features of 2™ are valid for a three-dimensional electron gas. Analogous
results have been obtalned for the two-dimensional case [62, 64, 65].

The approximation (2) employed by Zangwill and Soven leads, by virtue of Eq. (49),
to the following approximation for f,.:

2 ,hom
28] (rt, x't") = 6(t — t')o(r — r')w (67)
dn? n=no(r)
Comparison with (56) shows that
28] (rt,x't') = 6(t — )0 (r — x') f (ng(r), ¢ = 0;w = 0) . (68)

In other words, Zangwill and Soven employed the static (w = 0) response of the ho-
mogeneous electron gas. Gross and Kohn [30, 55] went beyond this limit by explicitly
including the frequency dependence of 2™ in Eq. (54). Taking into account the exact

10



high- and low-frequency limits, Gross and Kohn proposed the following parametriza-

tion:
a(n)w

Imfhom(g=0,w) = AT bW (69)

where
a(n) = —c(y/c)*(foo(n) — fo(n))*? (70)
b(n) = (v/¢)**(foo(n) — fo(n))** (71)

_ (r@a/4))
v = o (72)

fo, feo, and c are given by Egs. (56), (57), and (65), respectively. Using the Kramers-
Kronig relation (62), the real part can be expressed as

Re ifcom(q =0,w)

a (8 1 1+s 1—-s5 1
= e ras 2 () - ()

1—s 14+4s 1
— H . 2:1 2.
A TES ) I -

E and IT are complete elliptic integrals of the second and third kind in the standard
notation of Byrd and Friedman [66].

Figs. 1 and 2 show the real and imaginary part of f!™ as calculated from (69)
and (73). The functions are plotted for the two density values corresponding to rs = 2
and r; = 4. For the lower density value (r; = 4), a considerable frequency dependence
is found. The dependence on w becomes less pronounced for higher densities. In the
extreme high-density limit, the difference between fy and f,, tends to zero. One finds
the exact result

foo— fo~ 7?2 forr, — 0 . (74)

At the same time, the depth of the minimum of I'm fo™
tion again proportional to 2.

We finally mention that an extension of the parametrization (69) to non-vanishing
g was given by Dabrowski [67]. The spin-dependent case was treated by Liu [68]. A
similar interpolation for the exchange-correlation kernel of the 2-dimensional electron
gas has been derived by Holas and Singwi [62].

The time-dependent KS scheme defined by Egs. (47) and (48) has turned out
to be remarkably successful. It has been applied to the photo-response of atoms
[3, 69, 70] and molecules [71, 72], metallic [73]-[79] and semiconductor surfaces [80],
bulk semiconductors [81] and metal clusters [82]-[85]. As an example for the quality
of the results we show, in Fig. 3, the photoabsorption cross section of xenon. A
comprehensive review of applications is given in the book by Mahan and Subbaswamy
[87].

For finite systems, the Fourier transform of the linear density response (46) has
poles at the true excitation energies of the interacting many-body system. Since
Eq. (47) is an exact representation of the linear density response it can be exploited
for the calculation of excitation energies. On the basis of Eq. (47), a simple additive
correction to the poles of x;, i. e. to the KS single-particle excitation energies, has
recently been proposed [88].

decreases, within our parametriza-
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Fig. 1. Real part of the parametrization for f2(q = 0, w)
(from [57])

Fig. 2. Imaginary part of the parametrization for
2™(q = 0,w) (from [57])
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Fig. 3. Total photoabsorption cross section of the Xe atom versus photon energy in the vicin-
ity of the 4d threshold (from [3]). Solid line: self-consistent time-dependent KS calculation;
dash-dot line: self-consistent time-dependent Hartree calculation (f,. = 0); dashed line:
independent particle result (Hartree and exchange-correlation kernels neglected); crosses:
experimental data from [86].

4 Time-dependent Optimized Effective Potential

In the last section an approximation of the xc functional was derived within the regime
of linear response; in other words, an approximate expression for the first-order coef-
ficient f,. of the functional Taylor expansion of v,.[n] about ny has been determined.
Beyond the realm of linear response theory, the only approximation of v,. used un-
til today is the adiabatic approximation given by Eq. (2). In the following, a new
approach to the construction of v,.(rt) will be developed [13] which can be viewed
as a time-dependent version of the so-called optimized potential method (OPM). The
approach leads to v,. as a function of (r¢) rather than to v,. as an explicit functional
of the density. The OPM of stationary systems [14, 15] takes as starting point a given
expression for the total energy E[p; ...y of an N-electron system as a functional of
a set of single-particle orbitals {¢;(r)} (e. g. the Hartree-Fock total energy functional
in the exchange-only case). Then, the variationally best local effective potential is
determined such that, when inserted in a stationary single-particle Schrodinger equa-
tion, it yields the set of N eigenfunctions (corresponding to the N lowest eigenvalues)
that minimize E[y; ... ¢n]|. In practice, the full OPM scheme is computationally quite
involved since it requires the numerical solution of an integral equation for v,.(r). As
a consequence, complete OPM calculations have been performed mainly for problems
where the potential is a function of a single variable, e. g. for spherically symmetric
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atoms [15]—-[20]. There exists, however, an approximate OPM scheme, recently pro-
posed by Krieger, Li, and Iafrate (KLI) [21]-[29], which is numerically as easy to handle
as the ordinary KS scheme. This simplified OPM has been applied very successfully
to the calculation of atomic properties.

In order to derive a time-dependent generalization of the OPM we consider an N-
electron system at some finite time ¢y, which, for all times up until £y, has been in the
ground state associated with an external potential vo(r) (e. g. a nuclear Coulomb po-
tential). We assume that the corresponding stationary OPM problem has been solved
for that system, i. e. a local effective potential and a set of N single-particle orbitals
{¢;} (with energy eigenvalues ;) minimizing a given energy functional E[¢p; ... ¢oy]
are assumed to be known. Again, at ¢ = ¢y, an additional time-dependent potential
v1(rt) is switched on. Our goal is to determine the time evolution of the system under
the influence of the total external potential v(rt) = vo(r) + v1(rt) from ¢y up until an
arbitrary later time t;. To construct an optimized local effective potential we start
with the quantum mechanical action

Alpr...on] = Z/ dt/d?’rqﬁ (rt) (zg—i-v )(b](rt)
—/ dt/d3rnrt) (rt)——/ dt/d3 /d‘“% Ageldr .. dx]  (75)

written as a functional of N time-dependent single-particle orbitals {¢;(rt)} where
n(rt) = E;-V |¢;(rt)[?. In the following no specific approximation is used for the
exchange-correlation functional A.[¢; ...¢y], but we mention that in an exchange-
only theory A,. would be replaced by the time-dependent Hartree-Fock expression

we_ Lo , 9 (r't) 5 (x't) i (xt) 5 (xt)
Al _—522’];5@0]./_ dt/d3 /d3 4 (76)

v — |

(0 denotes the spin orientation of the jth orbital). The orbitals are solutions of the
time-dependent Schrodinger equation

2% ¢;(rt) = (—% —i—vs(rt)) ¢,(rt) j=1,...,N | (77)

with ¢;(rt) = ¢;(r) exp[—ic;(t — to)] for —oo < t < ty. The local effective potential is
given by

vs(rt) = v(rt) + vy (rt) + vge(rt) (78)
where vy(rt) = [d3r'n(r't) /|r —1'| denotes the time-dependent Hartree potential. The
total potential v,(rt) has to be determined in such a way that the {¢;(rt)}, resulting
from Eq. (77), render the total action functional A[¢; ...¢x| stationary. Therefore,
we have to solve the following variational problem:

SA[1...dn] &t 8, 0A[¢p1 ... pn] 0¢;(r't')  0A[¢1 ... pn] 6¢;(x't)
S0, (xt) XJ:/_OO at fa < 5o,00)  ouxt) | ogi(rt) 5vs(rt)>
0 . (79)

We first compute the functional derivatives §A/d¢; and dA/ 0¢j: defining

1 6Au[dr ... dn]
gj(xt)  O¢;(rt) ’

Ugej(Tt) = (80)

14



we obtain

Al ... 2
0AIgr - dn] 6[;; (r,tf’;N ] = l—i% — (—% + o't + vu(2t) + uuj(r’t’))] o5 (x't") O(ty — t')
(81)
and an analogous expression for 0A/d¢} which, for all reasonable (i. e. real) functionals
Algy ... dn], is the complex conjugate of (81). #(x) denotes the usual step function
(1 for x > 0, 0 for x < 0). To arrive at Eq. (81) the first term of Eq. (75) has to
be integrated by parts with respect to the time coordinate. We impose the usual
boundary condition on ¢;(rt) at ¢ = ¢y, i. e. d¢;(rt;) = 0, thus obtaining a zero
boundary contribution. The other boundary contribution at ¢ = —oo vanishes, too,
because the action functional (75), in order to be well-defined, is to be calculated
by introducing the usual factor e” in the integrand and taking lim, .o+ after the
integration. Substituting Eq. (78) into (81) and making use of the fact that ¢} solves
the complex conjugate of the Schrédinger equation (77), we find

A[¢1 R ¢N] rqt
— " = |Uge(TT) — Uy, t1—t . 82
e = [0a) = @) 650°0) 002 = ) (52)
In order to evaluate A/dv, from Eq. (79), we further need the functional derivatives
d¢;/0vs and ¢} /6v,. The stationary OPM eigenfunctions {¢;(r), j = 1, ... ,00}
form a complete orthonormal set, and so do the time-evolved states {¢;(rt), j =
1, ... ,00} for any time ¢t € [—00,t;], and we denote this set by ®;. Now consider

®, as unperturbed states, remembering that at ¢ = t; the orbitals are held fized with
respect to variations in the total potential. We therefore start from ¢ = t;, subject the
system to an additional small perturbation dv,(rt) and let it evolve backward in time.
The corresponding perturbed wave functions ¢/(rt) are determined by the backward
Schrodinger equation

2

9 ¢;(rt) = (— % + v,(rt) + 5vs(rt)) oi(xt) j=1,... ,N  (83)

"ot

with the initial condition ¢}(rt;) = ¢;(rt;). This problem cannot be treated directly
with time-dependent perturbation theory as described in standard text books because
the unperturbed Hamiltonian is already time-dependent. Nevertheless, Dirac’s method
of variation of constants can be applied in a straightforward manner. We expand, at
each given ¢, the perturbed wave function ¢(rt) in terms of the set ®;,

Z cin(t)pr(rt) (84)
and insert this expansion in (83), utilizing Eq. (77). The resulting equation
1 Z Cjk ¢k I't Z Cjk (5’05 I‘t ¢k(1't) (85)

is then multiplied by ¢7(rt) and integrated over all space; the orthonormality of &,
yields

(1) = 3 30 enlt) [ 61000 (50
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We now make the usual ansatz for a perturbation expansion,
0 1
cin(t) = () + e (6) + ... (87)

and collect corresponding orders on each side of Eq. (86). This yields

Gt = 0
&) = %gcﬁ)(t) / d’r ¢} (vt)dv, (vt)dy (1) (88)

Since, in our case, the wave function evolves backward from the fixed state ¢;(rt;) we
find cg-(,)c) (t) = d;% and cg-}c) (t1) = 0, leading to

() = / dt’ / &r ¢ (xt')0u, (xt') g, (xt!) . (89)

It follows that the first-order correction to the wave function ¢;(rt) under the influence
of duvs(rt) is given by

36;(xt) = gcg}g(t)(pk(rt) :iki /t " ar / %' (et 0u, (F't) (K"t i (xt) . (90)

Therefore, the desired functional derivative is

(5¢j(1’ltl) . ° .
Fogw) 2 O (O (T) 62 1) 62 —1) (91)

Once again, 0¢} /dvs leads to the complex conjugate expression. We can now insert
(82) and (91) in the variational equation (79), and the result is the time-dependent
OPM (TDOPM) integral equation for the local exchange-correlation potential v,.(rt):

N 4
iZ/_oodt’/d3r/ ['UzC(I'It’) _ chj(rltl)] ¢j(rt)¢;(r't')K(rt,r't’) L oce =0 . (92)
J

The kernel
K(rt,r't") Zqﬁkrtqﬁk Yot —t) (93)

can be identified with the Green’s functlon of the system, which satisfies the differential
equation

lz’ % - (—%,2 + vs(r't')ﬂ K(rt,x't") = —id(r —1')o(t — ') (94)

with the initial condition K (rt,r't') = 0 for ¢ > t. The TDOPM scheme is now
complete: the integral equation (92) has to be solved for v,.(rt) in combination with
the Schrodinger equation (77) and the differential equation (94) for K(rt,r't'), both
with the appropriate initial conditions. It is easy to show that in the time interval
[—00, t1] the exchange-correlation potential v,.(rt) is only determined up to within a
purely time-dependent function c(t) (as expected in view of the time-dependent HK
theorem discussed in section 2).
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We now demonstrate that for ¢ < tg or for a time-independent external potential
(v1(rt) = 0) the TDOPM reduces to the stationary OPM. For this purpose we rewrite
Eq. (92) in the following way (using the fact that v, is real):

o0

zz [t [ ) — s O] G300 08) S G100 00— 1)+ e

k=1
ke

—zZqﬁy (et) g5 xt) [ [ (g 0'0) — g (0)) 500050 (95)

In the static case, the orbitals {¢;(rt)} are replaced by {;(r) exp[—ic;(t —to)]}. It is
reasonable to assume that the exchange-correlation functional A,. then becomes

Age[dr - .. dn] — /t ;dt’ Entn(t)...on(t)] (96)

where E,.[¢;...@n] is the corresponding ground state exchange-correlation energy
functional. Definition (80) then yields

(97)
B (r)=p;(r)e "t 710
We assume that the value of E,.[¢; ... n] remains unchanged if the arguments {¢;(r)}
are multiplied by phase factors e’® . If this is the case, we can use the identity

;i (rt) ;(rt) ¢ (rt) i (xol) et 28(#5(rot)) (98)
| 7 (rot)|

(where r is an arbitrary reference point) and write E,. in Eq. (96) as a functional of the
combinations ¢;(rt)¢}(r't). Then it is not difficult to show that w3 is independent

xcj

of time and that the right-hand side of (95) is zero. We therefore obtain

N t1 0 Y ’
i [t @ o) — o] 0i(r)e; () Y e )l )e g (e — )
j —0Q k=1
k#j
+ cc. = 0 . (99)

Performing the integration over ¢’ we find the stationary OPM integral equation [15]

lim i/d?’r' [’U (I‘I) _ustatzc( )] ( ) f(rl)i M + cc. =0 (100)

7’]—)0+ ] e xc) SO] (p] P &‘j _ 8k _ 177 .C. .
ke

The derivation of Eq. (100) shows that in order to recover the static limit from the

time-dependent formalism one had to extend the time integral in Eq. (75) to —oo; a

finite lower time boundary does not correctly account for memory effects in v,, and

therefore results in an unphysical time dependence even in the static case.

The numerical implementation of the full TDOPM is an extremely demanding
task. It is therefore most desirable to obtain a simplified scheme. To this end we
shall perform a transformation of Eq. (92) similar to the one proposed by KLI in the
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stationary case [26, 29]. This will lead to an alternative but still exact form of the
TDOPM scheme which allows one to construct approximations of v,.(rt) which are
explicit functionals of the orbitals {¢;}, thereby avoiding the need to solve the integral
equation. Following Refs. [26] and [29], we define

o0

plet) = ey [t [ ') - el ) 2 AL o)
v (101)

and
Tae(t) = / A7 1 (1) ey (rt) (102)

where n;(rt) = |¢;(rt)|?. Eq. (95) can then be written as
N N t
Y oni(xt)pi(rt) + ce = —iY ny(rt) / dt’ (Taes (t') =Wy (#)) , (103)
J J B
and it is easy to show that
/d37" n;j(rt)p;(rt) =0 . (104)

Evaluating ¢;(rt)[—i 0/0t + V?/2 — v,(rt)]¢5 (rt)p;(rt) we find after some straightfor-
ward algebra that p,(rt) satisfies the following differential equation:

2 piet) — i 3,00) - (et
= 1 (rt) [Ure(rt) = thpes(xt) — (Taej (£) — Tae (1) )] (105)

with the current density J;(rt) = (2¢) ! (qﬁ;‘ (xt)Vo;(rt) — ¢;(rt) Ve (rt)) and Ty;(t)
= [d®r n;(rt)vy(rt). Finally, operating with V2 on Eq. (103) and using Eq. (105) we
find

5V - (ny(xt) Vs (xt) — i m(xt)

Une(Tt) = i (rt) (w(rt)-i— uj;(rt))
+ gjjj 5) [Beast) — 5 (Taeg0) + 7245 0)) |
+ 4nzrt)i:jv2nj(rt) [t (@as(t) ~ 7y 1) (106)
where
(K1) = ey (50) 7[5V B Vs et i) 2 py(xt) 43, (x1)- Vi (x)].

(107)
Egs. (106) and (107) together with the differential equation (105) for p;(rt) and the
condition (104) (which can be used to fix the constant left undetermined by Eq. (105))
represent an exact alternative formulation of the TDOPM scheme. The advantage of
Eq. (106) lies in the fact that it is a very convenient starting point for constructing
approximations of v,.(rt) as explicit functionals of the {¢;(rt)}: it is only necessary
to approximate p;(rt) in Eq. (107) by a suitably chosen functional of the orbitals. We
can then readily solve Eq. (106) analytically for v,.(rt), as we shall show below.
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We expect an approzimate potential 0,.(rt) defined in this way to be close to the
exact vg.(rt). This conjecture is based on the observation that the difference between
Uz and v, is entirely accounted for by the differences u;cj — Ug; Which are zero if

averaged over the jth orbital, as will be demonstrated in the following. From Eq. (107)
we obtain

ﬁ;'cj (t) — Usgcj (t) =

% /d3r V - (pj(rt)Vn,;(rt)) + i/d?’r [nj(rt) %pj (rt) + J;(rt) - Vp;(rt)| . (108)
Using the divergence theorem, the first term on the right-hand side can be trans-
formed into a surface integral which vanishes if the time-dependent orbitals decrease
exponentially for 7 — oco. The contribution to the second integral containing J; - Vp;
is then integrated by parts. The surface term vanishes due to the same argument as
before, and the remaining term is transformed using the continuity equation for the
jth orbital to replace —V - J;(rt) by On;(rt)/0t. Hence we find

T (1) = ey (£) = i % &ty =0 (109)

where the last equality follows from Eq. (104).

The simplest approximation is obtained by replacing p; by its average value, i. e. by
setting p;(rt) = 0. The resulting approximate potential ¥,. is determined by the
equation

’ljwc(l't) = ’rl(i‘t) ;nj(rt) % (chj(l't) =+ u;Cj(rt))
1 X _ 1, .
+ n(rd) %:nj(rt) Uacj(t) — 3 (Umcj(t) + chj(t))]
+ 4nzrt) ; V2n;(xt) [ RACEGEL SO (110)

This equation is still an integral equation for #,.. It can, however, be solved analytically
[25]: multiplying Eq. (110) by nk(rt) and integrating over all space yields

5acck(t) = m:':ck(t) + Z Mkj (t)awj (t) ) (111)
where we have defined
weelrt) = - (L) S ny(r) 5 (taes ) 1))
e ) 5 () + 8 0)
+ 4nzrt) %:Vznj(rt) /t _dt (T (t') — Wy () (112)
- (rt)n, (xt)
My;(t) = / d®r R (113)



Solving Eq. (111) for @,.;(t) requires inversion of the N x N matrix

Apj(t) = o — Mi;(t) (114)
and leads to N
5:vcj(t) - Z (Ail (t))jk: m:vck(t) . (115)

k

When Eq. (115) is substituted into Eq. (110), one obtains v,.(rt) as an explicit func-
tional of the orbitals {¢;(rt)}. As the exact v,.(rt) which follows from Eq. (92), 0.(rt)
is determined by Eq. (110) only up to within a purely time-dependent function c(t).

The last term of Egs. (110) and (112) vanishes identically for a large class of
exchange-correlation functionals A,.. This class includes all functionals depending on
{#;} only through the combinations ¢;(rt)¢}(r't) (such as the time-dependent Hartree-
Fock functional, Eq. (76)).

Eq. (110) combined with the Schrédinger equation (77) represents a time-dependent
scheme which is numerically much less involved than, e. g. , the time-dependent
Hartree-Fock method. On the basis of the experience with the stationary KLI scheme
we expect a very small loss of accuracy compared with time-dependent Hartree-Fock.
Atomic systems subject to intense laser pulses are currently being studied with this
method.
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