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Exchange-correlation orbital functionals in current-density functional theory: Application to a
quantum dot in magnetic fields
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The description of interacting many-electron systems in external magnetic fields is considered in the frame-
work of the optimized effective potential method extended to current-spin-density functional theory. As a case
study, a two-dimensional quantum dot in external magnetic fields is investigated. Excellent agreement with the
quantum Monte Carlo results is obtained when self-interaction corrected correlation energies from the standard
local spin-density approximation are added to exact-exchange results. Full self-consistency within the complete
current-spin-density-functional framework is found to be of minor importance.
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I. INTRODUCTION

Since its introduction in 1964, density functional theory!-
(DFT) has become a standard tool to calculate the electronic
structure of atoms, molecules, and solids from first prin-
ciples. Early on, the original DFT formulation has been ex-
tended to the case of spin-polarized systems,® which also
provides a description of many-electron systems in an exter-
nal magnetic field. However, in this spin-density functional
theory (SDFT) framework, the magnetic field only couples to
the spin but not to the orbital degrees of freedom, i.e., the
coupling of the electronic momenta to the vector potential
associated with the external magnetic field is not taken into
account. A proper treatment of this coupling requires exten-
sion to current-spin-density functional theory*> (CSDFT) in
terms of three basic variables: the electron density n(r), the
spin magnetization density m(r), and the paramagnetic cur-
rent density j,(r). These densities are conjugate variables to
the electrostatic potential, the magnetic field, and the vector
potential, respectively.

In order to be applicable in practice, DFT of any flavor
requires an approximation to the exchange-correlation (xc)
energy functional. The wuse of the local-vorticity
approximation,*> which is an extension of the local spin-
density approximation (LSDA), is problematic in CSDFT:
the xc energy per particle of a uniform electron gas exhibits
derivative discontinuities whenever a Landau level is de-
populated in an increasing external magnetic field. This leads
to discontinuities in the corresponding xc potential.® These
discontinuities then incorrectly appear when the local values
of the inhomogeneous density and vorticity coincide with the
corresponding values of the homogeneous electron gas. A
popular way to circumvent this problem is to use functionals
that interpolate between the limits of weak and high mag-
netic fields.”8

Explicitly orbital-dependent functionals, which are suc-
cessfully used in DFT and collinear SDFT,”!? are natural
candidates to approximate the xc energy in CSDFT for two
reasons: first, they are constructed without recourse to the
model of the uniform electron gas and second, they are ide-
ally suited to describe orbital effects such as the filling of the
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Landau levels. In this way, the problem inherent in any
uniform-gas-derived functional for CSDFT is avoided in a
natural way.

The use of orbital functionals requires the so-called opti-
mized effective potential (OEP) method!' to calculate the
effective potentials. The OEP formalism has been recently
generalized to noncollinear SDFT!? as well as to CSDFT.!?
In addition, a larger set of basic densities has been consid-
ered in order to include the spin-orbit coupling.'*!> Recent
applications of the OEP method for atoms!® and periodic
systems'® have indicated that the difference between exact-
exchange calculations carried out fully self-consistently
within CSDFT or SDFT, respectively, is only minor. These
works have also indicated that the inclusion of correlation
energies is of particular importance when dealing with
current-carrying states.

In this work, we consider the OEP formalism within CS-
DFT in the presence of an external magnetic field. In particu-
lar, we focus our attention on two-dimensional semiconduc-
tor quantum dots (QDs),'” which are exposed to uniform and
constant external magnetic fields. In addition to the various
applications in the field of semiconductor nanotechnology,
QDs are also challenging test cases for computational many-
electron methods due to the relatively large correlation ef-
fects. Moreover, the role of the current induced by the exter-
nal magnetic field is particularly relevant in QDs,'® which
makes them a reference system in CSDFT since its early
developments.'” Therefore, it is interesting to examine
whether the self-consistent solution of CSDFT differs from
the result obtained by adding the external vector potential to
the SDFT scheme, which amounts to neglecting the xc vector
potential of CSDFT.

As expected, we find that bare exact-exchange (EXX) cal-
culations are not sufficient to obtain total energies, which are
in agreement with numerically accurate Quantum Monte
Carlo (QMC) results, although a considerable improvement
to the Hartree-Fock results is found. However, including the
self-interaction corrected LSDA correlation energies to the
EXX solution leads to total energies that agree very well
with QMC results. In addition, within the given approxima-
tions, our results confirm that the role of self-consistent cal-
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culations in the framework of CSDFT is only minor. In par-
ticular, we observe that accurate total energies and densities
can also be obtained by simply modifying the SDFT scheme
by including the coupling to the external vector potential.
Indeed, this procedure has been employed in the past to par-
tially remedy the lack of good approximate current-
dependent functionals. Here, a validation is provided in the
more general context of the OEP framework.

This paper is organized as follows. In Sec. IT A, we re-
view the OEP method in CSDFT. The formalism is then
adapted to the case of QDs in magnetic fields in Sec. II B. In
Sec. I A, we discuss details of the numerical procedure
before presenting the results of our calculations in Sec. III B.
A brief summary is given in Sec. IV.

II. OPTIMIZED EFFECTIVE POTENTIAL METHOD IN
CURRENT-SPIN-DENSITY-FUNCTIONAL THEORY

A. General formalism

The Kohn-Sham (KS) equation in CSDFT reads
(Hartree a.u. are used throughout unless stated otherwise)

1 1 2
[5<— iV + —As(r)> +v,(r) + ugoBy(r) [P, =g, D,.
c

(1)

The three KS potentials are given by
1
0,(r) =vo(r) + vy(r) + vy (r) + z—cz[Aé(r) -AJ0], ()

B,(r) =By(r) + B,.(r), 3)
and
As(r) = A(](l') + Axc(r)s (4)

where the xc potentials are functional derivatives of the xc
energy E,. with respect to the corresponding densities,

5EXC[n’m7j£Z] (5)

vxc(r) = 5]’1(1‘) s

Bxc(r) [ ML] (6)

om(r)
and

lec(r) — M’ (7)
¢ 3j,(r)

respectively. The self-consistency cycle is closed by calcu-
lating the density

occ

n(r) = 2 Of(r)dy(r), (8)
k=1

the magnetization density

oce

m(r) = - pg >, OL(r) od(r), (9)
k=1

and the paramagnetic current density
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occ

Jp(r) = 52 {®{(r) V &y(r) - [VO{(0)]y(r)}.  (10)
k=1

The ground-state total energy of the interacting system can
then be computed from

E[n.m.j,]=T[n.m.j,]+ Uln]+ E[n.m.,j,]

+Jdrn(r)vo(r)—fdrm(r)Bo(r)

1 1
o2 g, a0+ 25 [[ammeniie),
(1)

where T and U are the kinetic energy of the KS system and
the Hartree energy, respectively.

Gauge invariance of the energy functional implies that £
depends on the current only through the vorticity

v(r) =V X [j,(r)/n(r)], (12)

ie., E.[n.j,,m]=E.[n,v,m].’> This immediately leads to
the following relation for the xc vector potential:

V[n(r)Ay(r)]=0. (13)

If one uses an approximate E, ., which is explicitly given
in terms of the densities, the calculation of the corresponding
xc potentials via Egs. (5)—(7) is straightforward. Here, how-
ever, we deal with approximations to the xc energy, which
are explicit functionals of the KS spinor orbitals ®,. These
functionals are, via the Hohenberg-Kohn theorem, implicit
functionals of the densities. In the spirit of the original OEP
formalism, the corresponding integral equations for the xc
potentials can be derived'® by requiring that the effective
fields minimize the value of the ground-state total energy
[Eq. (11)]. Therefore, the functional derivatives of the total
energy with respect to the three KS potentials are required to
vanish. This procedure leads to three OEP equations that are
most conveniently written as'>

occ

> Di(r)Wy(r) + He. =0, (14)
k=1

oce

- pp>, ®i(r)oW,(r) + He. =0, (15)
k=1

and
3 (@](0) ¥ W)~ [VOL6 W, (0} - He. =0,
Li=t
(16)

9,20

where we have defined the so-called orbital shifts as fol-

lows:
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E D) (17)

€

W (r) =

jik

with

lef ar’ {”“(r')@(r’@k(r )+ 5 AD)
X{D](r' )V dy(r") —[V'clﬂ(r')]cbk(r')}

+IU“BBxc(r’)(I)}L(r,)0-q)k(r q)T(r,)&(DT( )}
(18)

The orbital shifts W, have the structure of a first-order shift
from the unperturbed orbital ®, under a perturbation whose
matrix elements are given by DZJ-. Physically, the OEP equa-
tions [Egs. (14)—(16)] then imply that the densities do not
change under this perturbation. If A, is set to zero, Egs. (14)
and (15) exactly reduce to the OEP equations of noncollinear
SDFT.!?

Equations (14)—(16) form a set of coupled integral equa-
tions for the three unknown xc potentials, and they can be
solved by a direct computation of the orbital shifts.!>?° Al-
ternatively, one can employ the Krieger-Li-lafrate (KLI) ap-
proach as a simplifying approximation,?’:?> which is known
to yield potentials that are very close to the full OEP ones in
SDFT. In the following, we utilize the KLI approximation in
the description of a quasi-two-dimensional semiconductor
QD!7 in an external magnetic field.

B. Application to quantum dots

The QD is described as a many-electron system restricted
to the xy plane and confined in that plane by an external
parabolic potential vy=m*wgr?/2, with r2=x2+y2. Following
the most common experimental setup,'’ the external mag-
netic field is defined to be uniform and perpendicular to the
xy plane, ie., By(r)=VXAy(r)=Bge, with the gauge
Ay(r)=Bgre,/2. We apply the effective-mass approximation
with the material parameters for GaAs, i.e., the effective
mass m*=0.067, the dielectric constant €*=12.4, and the ef-
fective gyromagnetic ratio g*=-0.44.

In QDs, the magnetization is parallel to the external field,
i.e., these systems show collinear magnetism. Therefore, the
KS magnetic field B, and the magnetization density have
only nonvanishing z components. The Pauli-type KS equa-
tion becomes diagonal in spin space and can be decoupled
into two separate equations for the spin-up and spin-down
orbitals ¢;,(r). We further assume that the xc potentials pre-
serve the cylindrical symmetry of the problem, i.e.,

* /'LBg*Bxcz(r)7 (19)

where the upper signs are for spin-up and lower signs are for
spin-down electrons, and A, (r)=A,.(r)e, Due to the cylin-
drical symmetry, we can separate the wave function into ra-
dial and angular parts as @;,(r)=exp(ilf)R;;,(r), where the
radial wave functions R;;,(r) are real-valued eigenfunctions
of the Hamiltonian:

vxca(r) = vxco‘(r) = vxc(r)
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. 1 (& 10 P\ 1 O
Hy,=—~——=\"S5+-— -5 |+-0.+m" —_r
2m”\ dr ror r 2 2
LA
O _/ngBo+UH(I‘)+UXCO-(I‘)
mc r

(20)

with the total confinement Q=1 wj+w’/4 and the cyclotron
frequency w.=By/m"c. The radial wave functions are ex-
panded in the basis of eigenfunctions of the corresponding
noninteracting problem, i.e., the eigenfunctions of Hamil-
tonian (20) with the Hartree and all xc potentials set to zero.

As a consequence of the cylindrical symmetry, the densi-
ties are independent of the angle and thus solely given in
terms of r=|r|. Also, only the § component of the paramag-
netic current density, as the conjugate variable to the vector
field in this direction, plays a role, ie., j,(r)=[j,(r)
+J,,(r)]e, Instead of using the density and the z component
of the magnetization, one employs the spin-up and spin-
down densities. Hence, the three densities to be determined
are ny(r), n)(r), and j,(r).

Consequently, the OEP-KLI equations are given as a 3
X3 matrix equation that reads

D(r)Vye(r) =R(r), (21)

where the potential vector is given by

1
ch(r) = (vch(r)’chl(r)’ ;Axc(r)) . (22)
The matrix D(r) reads

ni(r) 0 ()
D= 0 n) j, (] (23)
Jpt(r) Jpy(r) N(r)

where the densities and current densities are given by

occ

n(r(r) = 2 R.,Z'l(;(r) ’ (24)
un
oce l
Joor) = 2 =Ry, (r). (25)
Gy’

The last component N(r) in Eq. (23) reads

occe 2

Ni= 2 E

o= iy T

R, (). (26)

The right-hand side of Eq. (21) contains functional de-
rivatives of the xc energy. They can be calculated once an
approximation to the xc energy is specified. Here, we use the
EXX approximation to E,, i.e.,
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occe

1
LA D>

2 o=t {1} {kom)

d*rd*r'

() 0i10(0) Qo (®) @, (T
X ‘P]IO'( )(P,/Za'(* )‘Pk ,( )(Pk}ng'( ) ) (27)
€r-r'|

The first two components of R on the right-hand side of Eq.
(21) are then given by

occ

RI,Z(r) =—5 2 le(r(r)kaa'(r)
2 i) ko

Xf dzrr eia (l_m)R/'la'(r,)kaO'(r,)
NP +r2=2rr cos 6

occ

- E% jio(r)Dy jyp ¥ C.C. (28)
j

where the first component of R, R, is for =1 and the
second, R,, is for =]. The third component is given by

occ

l+m
7 2 leo’(r)kaa(r)
o=1,] {jt}.{km}

Xf dzr, ei() (l_m)Rilo(r’)kaa(r’)
\/rz +r'2=2rr" cos 0

occe

] *
5 2 2 dpiten)Djyj gt e, (29)
o=1,1 {ji}

with

* l
Djl,jlzr= f dzl’(cho.(r) + ;Axc(r)>R12'lo-(r)

occ
+2 fderer!eiH'(l—m)

{km}

% Rilo'(r’)kaa(r,)R[l(r(r)Rkt710'(r)

(30)
VP2 + 2= 271 cos 6

in all three cases.

III. NUMERICAL RESULTS
A. General remarks

A detailed analysis of Eq. (21) reveals that for a system
with a vanishing current, the third line of the matrix equation
identically vanishes. However, for these states, the correct
value of the current is already obtained at the level of SDFT
as a natural symmetry constraint. In fact, by using zero vec-
tor potential as the initial value, one can show that it remains
zero at each iteration. Hence, one recovers the original SDFT
result for noncurrent carrying states.'*> On the other hand, for
states carrying no current, the xc vector potential is always
nonvanishing even if one chooses a vanishing vector poten-
tial as the initial value.

A closer inspection of the KLI equations shows that they
become linearly dependent in the asymptotic region and
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FIG. 1. (Color online) Total ground-state energy (minus 6}
=6V a)3+w?/4) in a six-electron quantum dot as a function of exter-
nal magnetic field (SI units). The results have been calculated by
using the EXX, EXX with LSDA correlation (EXX+cLSDA), and
EXX with the corrected LSDA correlation (EXX+c 1 | LSDA). The
LSDA and the QMC results (Ref. 8) are shown for comparison. The
arrows mark the points where the ground-state configuration (L_, S,)
changes.

therefore do not have a unique solution. In our numerical
procedure, we take a pragmatic approach to the problem of
linearly dependent KLI equations and add a very small
positive constant to N(r) in Eq. (26). As a consequence,
the limit becomes A.(r)— 0. In addition, we impose
Uxeo(r) = —1/r. This procedure also limits the possible ap-
pearance of numerical artifacts in the KLI potentials that
result from a finite basis set. Such difficulties have also oc-
curred for open-shell atoms.!>?? Although we face similar
problems in QD calculations (see below), we have confirmed
that the evaluation of the total energies, densities, and cur-
rents is not considerably affected. A further analysis is pre-
sented elsewhere.?* In the context of the full solution of the
OEP equations, problems in the computation of the effective
potential due to the use of a finite basis set were recently
analyzed in several works and different possible solutions
were proposed.?>2°

B. Examples

Figure 1 shows the total energy of a six-electron QD
(wy=5 meV) as a function of B,. The kinks correspond to
changes in the ground-state configuration (L., S.). Apart from
the fully polarized (S,=3) states, the EXX energies (dotted
line) are considerably too large when compared to the accu-
rate QMC results (dashed line).® EXX also leads to an erro-
neous occurrence of the (-5,2) ground state at B,
=1.5-2.0 T. However, adding the LSDA correlation® post
hoc to the EXX energies (EXX+cLSDA) yields the correct
sequence of states as a function of B. This is a major im-
provement over the cLSDA-corrected Hartree-Fock calcula-
tion that does not give the correct ground states for a similar
system.?! As expected, the corrections given by cLSDA are
largest for the unpolarized state (0,0) and smallest for the
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FIG. 2. (Color online) Angular components of the paramagnetic
and diamagnetic currents, j,y and js4 and their sum for the
(-21,3) state at By=11 T. The dashed line shows the exchange
vector potential for the same configuration.

completely polarized states (—15,3) and (-21,3). This is due
to the fact that the electron exchange has a larger effect on
the total energy in systems with a high number of same-spin
electrons.

Despite the improvement of EXX+cLSDA over the bare
EXX, the result is not satisfactory in comparison to QMC:
Fig. 1 shows that the energies of EXX+cLSDA are consis-
tently too low by 1.0-1.5 meV. On the other hand, the agree-
ment between QMC and the conventional LSDA (dash-
dotted line) is very good. Hence, taking into account that
EXX is expected to capture the frue exchange energy by a
good accuracy (the only deviation arising from the missing
correlation in the self-consistent solution), our result demon-
strates the inherent tendency of the LSDA to cancel out its
respective errors in exchange and correlation. This well-
known error cancellation is lost when adding LSDA correla-
tion to the EXX result. As expected, the performance of
EXX+cLSDA with respect to QMC is best in the fully po-
larized regime (By=5 T), where the exchange contribution
in the total energy is relatively largest.

As a simple cure to the error in EXX+cLSDA, we apply
a type of self-interaction correction as first suggested by Stoll
et al.3> The LSDA correlation energy can be improved by

E¢t1spA = Ecspa — J d*r{n;(r)€[n;,0]+n|(r)e[0,n T},

@31

where €[n;,n ] is the correlation energy per electron in the
two-dimensional electron gas.*® Therefore, in this approxi-
mation, denoted as EXX+c1 | LSDA, the correlation energy
between like-spin electrons is removed. We emphasize that
this contribution is nonzero in the exact treatment and thus
cannot be neglected. However, within the LSDA, it contains
mostly self-interaction energy. Now, we find that EXX
+c 1 ] LSDA (solid line) is very close to QMC and actually
performs better than the conventional LSDA.

Figure 2 shows the paramagnetic current j,, and the dia-
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magnetic current j,(r)=n(r)Agy(r)/m* at By=11 T for the
(=21,3) state. The total current j,=j,o+j,9 changes sign at
r~350 a.u. due to the existence of a single vortex at the
center of the QD. We find the vortex solution, which is in
agreement with both LSDA and numerically exact
calculations.®

In Fig. 2, we also show the exchange vector potential A,.
The small kink at 7~ 1100 a.u. is due to a basis-set problem
described in Sec. III A. The maximum of |A,| is located near
the edge of the QD at r~700 a.u. However, its relative
magnitude with respect to the external vector potential A is
largest at r~ 150 a.u., where we find |A,/Ay| ~0.1. Despite
the considerable magnitude of A,, we find that its effect on
physical quantities such as the total energy, density, and cur-
rent density is practically negligible. In the case presented in
Fig. 2, for example, the difference between SDFT and CS-
DFT total energies is ~0.02%. In the context of the OEP
method, the minor role of the xc vector potential has been
observed for open-shell atoms,'® molecules,** and extended
systems.'® Earlier QD studies at the level of LSDA have also
led to similar conclusions.?

Finally, we point out that, in principle, a given functional
should be evaluated using the KS orbitals in a self-consistent
procedure, and not in a post hoc manner as we have done in
this work. However, the variational nature of DFT implies
that if one evaluates the total energy with a density that
slightly differs from the self-consistent density, the resulting
change in the energy is of second order in the small deviation
of the densities. Of course, this argument breaks down if the
self-consistent density from an exchange-only calculation is
very different from one where also correlation is treated self-
consistently. This situation is conceivable in cases of
symmetry-broken ground states such as, e.g., spin-density
waves. However, for the range of the physical parameters
considered here, a symmetry-broken solution is not expected.

IV. SUMMARY

We have applied the optimized effective potential method
in current-spin-density-functional theory to two-dimensional
systems exposed to external magnetic fields. We have ob-
served that the bare exact-exchange result (within the KLI
approximation) is not sufficient in finding the correct
ground-state sequence as a function of the magnetic field,
although a considerable improvement over the Hartree-Fock
results is found. Adding the correlation energy in the form of
the standard local spin-density approximation yields excel-
lent agreement of the ground-state energies with the quantum
Monte Carlo results, if the spurious self-interaction error is
corrected. Moreover, within the specified approximations, we
found no considerable differences in total energies and den-
sities when compared to the results obtained using a full-
fledged current-spin-density-functional theory and a spin-
density-functional scheme modified to include the coupling
to the external vector potential.
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