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PACS 71.10.-w — Theories and models of many-electron systems
PACS 31.10.+z — Theory of electronic structure, electronic transitions, and chemical binding

PACS 31.15.Ew — Density-functional theory

Abstract —

We present a novel method for calculating the fundamental gap. To this end,

reduced-density-matrix-functional theory is generalized to fractional particle number. For each
fixed particle number, M, the total energy is minimized with respect to the natural orbitals and
their occupation numbers. This leads to a function, EY,, whose derivative with respect to the
particle number has a discontinuity identical to the gap. In contrast to density functional theory,
the energy minimum is generally not a stationary point of the total-energy functional. Numerical
results, presented for alkali atoms, the LiH molecule, the periodic one-dimensional LiH chain, and
solid Ne, are in excellent agreement with CI calculations and/or experimental data.

Copyright © EPLA, 2007

Introduction. — Reduced-density-matrix-functional
theory has recently attracted a lot of attention [1-8].
Functionals of the one-body reduced density matrix
(1-RDM) have been used very successfully in the calcu-
lation of correlation energies and dissociation curves of
small molecules [9]. Given the success of these functionals
it is interesting to evaluate their performance in the
calculation of other properties. One particularly interest-
ing quantity in this context is the fundamental gap A. It
is given by the difference between the ionization potential
and the electron affinity

A=T—A, (1)

where
_ N-1 N
I= Etot - Etot?

(2)
(3)

Here, EY, is the total ground-state energy of the neutral N
electron system while Et]Xtil are the ground-state energies
of a system with charge F1. In the chemistry literature
(see, e.g., ref. [10]), A/2 is usually termed the absolute
hardness of a chemical species. Here, we use the term
fundamental gap for both finite and extended systems
since the physical concept defined by eq. (1) is the

same in both cases. A method to calculate ionization

_ N N+1
A= Etot - Etot .

potentials  within  reduced-density-matrix-functional
theory (RDMFT) has recently been proposed [11].
Within density functional theory (DFT) one can
prove [12] that the fundamental gap is exactly given
by the orbital-energy difference Ae between the lowest
unoccupied and the highest occupied Kohn-Sham (KS)
state plus a number, A,., which amounts to the disconti-
nuity of the exchange-correlation potential upon adding
and subtracting a fractional charge with respect to the
N-electron system. This discontinuity is zero for LDA
and GGA [12]. Consequently, Ae is the prediction for
the gap within these approximations. This prediction,
however, deviates strongly from the experimental values
underestimating them by typically 30-50%. Moreover,
strongly correlated materials, like FeO and CoO are
predicted by LSDA to be metals (zero gap) while,
experimentally, these materials are anti-ferromagnetic
insulators [13]. Within exact-exchange, one of the variants
of DFT functionals, the discontinuity A,. differs from
zero leading to an overestimation of the fundamental
gap. The results are very close to those obtained within
Hartree-Fock theory [14]. Consequently, the calculation of
the fundamental gap within DFT is still an open problem.
In the present article we propose a method for calcu-
lating the fundamental gap by exploiting reduced-density-
matrix-functional theory. We derive a rigorous formula for
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the fundamental gap and give numerical results for finite
and extended systems.

The discontinuity of y in RDMFT. — In RDMFT
the one-body reduced density matrix

y(r,r') = N/d37"2 BT (r ey ) (e, Ty Ty
(4)

is used as the fundamental variable. Here, ¥(r;...ry)
is the many-body wave function of the interacting
N-electron system. As was shown by Gilbert [15], one
can establish a rigorous one-to-one correspondence
between the ground-state wave function and the one-body
density matrix. Therefore, all ground-state observables
are functionals of the 1-RDM. The main advantage of
RDMFT compared to DFT is that the kinetic energy as
a functional of v(r, ) is known exactly,

://d?’rd?’r'é(r ) (—V;> y(r,r).  (5)

Hence, writing the total energy in the form

Eiot[v] = T[] + Eext[Y] + Bu[v] + Exc[7], (6)

where FEoyt[y] and FEwnly] are the usual external and
Hartree energy functionals, respectively, leads to an
exchange-correlation energy which, in contrast to DFT,
does not contain any kinetic-energy contributions.

A complication within RDMFT is the absence of a
Kohn-Sham system: Due to the idempotency of the
density matrix of all non-interacting systems it is impos-
sible to reproduce the density matrix of an interacting
system since the latter is always non-idempotent. Never-
theless, one can directly minimize the total energy with
respect to the density matrix. In practice, this minimiza-
tion is replaced by a minimization with respect to the
natural orbitals ¢; and occupation numbers n; which are
the eigenfunctions and eigenvalues of ~,

/ o'y (7 )ip5 (') = oy (1), (7)

In the minimization, a set of boundary conditions for n’s
and ¢’s should be considered. For the natural orbitals
the only condition is orthonormality. For the occupation
numbers there are two conditions which are necessary
and sufficient for the ensemble N-representability of the
one-body density matrix for integer particle number [16].
They are the particle number conservation Z;’il n; =N,
and the condition 0 <n; < 1. The orbital orthonormality
and the particle number conservation conditions can be
implemented via the Lagrange multipliers p and ¢;; and
the functional to be minimized reads

Z”J

3 e (/de e (r) —; )

F[ ] Etot

(8)

J,k=1

The inequality condition 0 < n; <1 allows for optimal sets
of n’s containing the border values zero and/or one. We
refer to these states as pinned states. For these states the
derivative 6F/dn; is not equal to zero in the range [0, 1]
and one of the two borders, either zero or one, is accepted
as the optimal value for n;. This situation is most evident
for non-interacting particles, where Eio is linear in all
n;’s. The existence of an occupation number which is equal
to one means that the particular natural orbital exists in
all the determinants with non-zero coefficient in the full
CI expansion. This situation is rather exceptional for the
exact wave function of a system of interacting particles.
However, it is rather the rule than the exception for
most of the existing approximate 1-RDM functionals for
systems with more than two electrons. These functionals
have the tendency to produce occupation numbers equal
to one for most of the core states. Consequently, the func-
tional derivative of F' with respect to v does not vanish
at the minimum energy. One should mention that there
are functionals which do not produce pinned states [17].
In DFT the situation is very different because any
density which integrates to the correct particle number is
N-representable. Therefore, the functional

Flol = Bl = [ rotr) - )

always has a minimum with 0F/dp=0 at the solution
point so that 0 Eiot/dp(r) = p.

In order to derive a formula for the fundamental
gap within RDMFT we extend the definition of the
total-energy functional Ej.t[y] to systems with fractional
particle number M. Such systems can be described as an
ensemble consisting of an N and an N + 1 particle state for
N <M < N +1. The resulting ensemble 1-RDM for the
fractional particle number M =N +7n (NeN, 0<n<1)
is given by

9)

YM(

)+ (e, ),

(L= (r,r’

and the lowest energy of the ensemble is

r,r')= (10)

iy = (L= B, +nE ™,

(11)
where EY, and ENT!' are the ground-state energies of

the N and N + 1 particle system, respectively. It can be
shown that, in complete analogy to the case of integer
N, the necessary and sufficient conditions for a given
to be decomposed as in eq. (10) are: 3372 n; =M and
0 < n; < 1, where n; are the eigenvalues of ™ [18].

As one can see in fig. 1, the derivative IEY, /OM has a
discontinuity at the integer particle number N, which by
egs. (1)-(3) is identical to the fundamental gap

OEM,
oM

9By,
oM

A= (12)

So far, the derivation followed exactly the steps known
from the generalization of DFT to fractional particle
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Fig. 1: Total energy for fractional total number of particles.

number [12]. In the following we prove that the Lagrange
multiplier, p, in (8) is identical with the chemical poten-
tial, i.e.

OEM,
oM
In DFT, eq. (13) is a trivial consequence of the variational
equation 0F/dp = () which implies that JEmt/ép: w [19].

n(M) =

(13)

Consequently, EMT — EM — E[ M+”] E[pM] = [d3r x
6E/dp(r )\pM(PM+"() pM(r fds M+" (r)—

pM(r))=p(M)n. In our context of RDMFT however,
this equivalence is not at all obvious because §F/§vy need
not vanish at the minimum energy (due to the states
pinned at the border). To prove (13), we investigate the
difference

B — EM = E[yM*"] — E}yM] =

(5E
3, g3 0T tot M M
(14)
Using the fact that
6nj % /
W =¥; (r)p;(r'), (15)
6@] (pk 90]
1
dy(r,r") Z:l j— Nk k<m)’ (16)
k#j
the functional derivative of (8) yields
oF 0E ot ,
= — —7r'). 1
oy(r,r')  dy(r,r") po(r =) (17)
Evaluating 0F/dy via the functional chain rule, (17)
leads to
(5Etot o i
Sy(r,r) or =7’ +Z§nj(57frr
OF  bpj(=)
+ d3z — " tee. 18
Z/ 50, @) 07 (.7 1)

At the energy minimum, 0F/dp; =0 and 6F/on; =0
for any unpinned state [. The pinned states, however,
contribute so that

5Et0t

YT ) i uo(r

min

Ny iw;<r>sop<r'>, (19)

where we have used (15) and the sum runs over those
pinned states for which 0F/dn,#0. Equation (14)
therefore reduces to

M+n M
Etot Etot -

n+Z 5nM
//d3 d3’l“/(p;;M )

If we write the occupation numbers and orbitals of the
M +n system as

2y (M) =AM (7))
(20)

M
n-‘rﬂ

. M+n =
j

:nj-w—&-énj, ©; <pJ +dpj,

(21)

we can obtain the first-order corrections of 4™*7. The
changes dn; and 0y, in eq. (21) are not arbitrary. They
are the changes in the optimal n; and ¢; if an infinitesimal
charge 7 is added to the system. Using the orthonormality
of the natural orbitals we get

77+ZW

x [§np+n;,w/d3r (apy(r)égo;(r)+5g0p(r)<p;M(r))
(22)

M+n M
Etot Etot -

The second term in the square brackets is zero since
the norm of the natural orbitals does not change and
the first term is zero because the sum runs only over
pinned states and for these dn, =0, i.e. no states get
unpinned. The states that would most likely get unpinned
are those where the “true” energy minimum (6F/dén =
0) lies at a small distance outside the allowed interval.
However, this distance is still finite and the infinitesimal
additional charge 1 cannot move the true minimum inside
the allowed interval. This completes the proof of (13).
Hence, by (12), we can evaluate the fundamental gap from
the discontinuity of the Lagrange multiplier u(M):
A= lim[pu(M +n) — p(M —1)]. (23)
Results. — Equation (23) is of course proven for the
exact functional. It is interesting to test it using approx-
imate functionals E[y]. We employed the functional of
Goedecker and Umrigar [3] (GU) which has the same
structure as the Miiller functional [1,2] with the impor-
tant difference that the self-interaction terms are explicitly
removed. Our implementation for atoms and molecules is
based on a Gaussian basis set expansion of the natural
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Fig. 2: The chemical potential p (in hartree) as a function of
particle number M for the LiH molecule.

orbitals and uses the GAMESS [20] computer code to
calculate the one- and two-electron integrals. We minimize
the total energy with respect to both the natural orbitals
and the occupation numbers employing a conjugate gradi-
ent scheme. Since the N-representability conditions for
fractional particle number are identical to those for inte-
ger [18], the generalization to fractional particle numbers
is straightforward. We obtained the fundamental gap for
several small molecules using 20 to 30 natural orbitals
which were expanded in a cc-PVQZ atomic Gaussian basis
set [21].

Figure 2 shows the result of the numerical calculations
for the LiH molecule using the GU functional. There is
a step near M =4 which is sharp at the lower edge but
relatively smooth at the upper edge. The discontinuity
of u(M) is located at a value slightly higher than M =4
precisely at the point where the highest fractional occupa-
tion number crosses one and gets pinned. These features
are due to the approximate nature of the exchange-
correlation energy. The exact functional would show the
discontinuity exactly at M =4. In order to extract a
numerical value for the gap from the graph in fig. 2 we
used the intersection of the extrapolated curve p(M) for
M >4 and a vertical line at the position of the jump.

The results for the fundamental gap of Li, Na, and LiH
calculated with the GU functional are given in table 1
and are in very good agreement with state of the art CI
calculations. They also agree very well with experimental
data. Note that in the context of DFT, these values are
exceedingly difficult to calculate because, within standard
LDA/GGA-type functionals, the negative ions of such
small systems are not even bound.

For periodic systems the symmetry properties of the
many-body wave function imply that

v(r+ R, 7’ +R) :’Y(Ta”‘/) (24)
for arbitrary lattice vectors R. This property, on the other
hand, implies that the eigenfunctions of «, i.e. the natural
orbitals, are Bloch functions, pxi(r), where A is a band

Table 1: The fundamental gap for some atoms and small
molecules as well as the LiH chain, and solid Ne from RDMFT
compared to other calculations and experimental values; all
gaps are given in hartree. (*)QCI from ref. [22]; (*)from ref. [23];
(°)ionization potential from [22], electron affinity from [24];
(*)CISD using the same basis set as in RDMFT; (°)ionization
potential from ref. [25], electron affinity from [26]; (/)LDA,
with CRYSTAL code [27] and the same basis set; (9)GGA, with
CRYSTAL code [27] and the same basis set; (")from ref. [28].

RDMFT Other theoretical Experiment
Li 0.18 0.175(%) 0.175(%)
Na 0.18 0.169(¢) 0.169(%)
LiH molecule  0.27 0.286(%) 0.271(¢)
LiH chain 0.64  0.500(7), 0.509(9)
Ne solid 0.76  0.439(/), 0.546(9)  0.797(")

index and kis a wave vector in the first Brillouin zone [29].
Hence, the spectral representation of v reads

Z Nk Pxe(T

") oar(r). (25)

In principle, one should now minimize the total energy
with respect to the occupation numbers ny; and the
natural orbitals ¢xg(r) as described above for finite
systems. However, with the approximate functionals
currently available, we encounter a serious difficulty:
For the Miiller functional p(M) does not show any
discontinuity for all the systems we studied so far. The
self-interaction correction of Goedecker and Umrigar [3]
seems to be essential to reproduce this feature. However,
in terms of Bloch orbitals, the self-interaction terms go
to zero, i.e., the GU functional reduces to the Miiller
functional if Bloch orbitals are inserted. To properly
subtract the spurious self-interaction one has to use
localized orbitals [30,31], such as Wannier functions.
Inserting the standard transformation from Bloch to
Wannier functions,

or k(T (r—R),

ZeHcR
in eq. (25), the 1-RDM can be represented as

=3 Y r- R

A R,R

(26)

(' — R')wi(r— R),
(27)
where wy(r) is the Wannier function referring to band A

and
S

For systems with a gap, the Wannier functions decay
exponentially. Hence, we expect that the products wj (v —
R')wy(r— R) contribute very little to v if R#R'. As a

WR—-R) (28)
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first implementation we neglect these off-diagonal terms
altogether by making the approximation

g)\(R* R/) =Ny (5(R* R/)
which leads to
y(r,r') = ZnA wi(r' = R)wy(r — R).
AR

(29)

(30)

Restricting the search to density matrices of the form (30),
we can then go ahead and minimize the total energy with
respect to the Wannier functions and their occupation
numbers ny using the GU functional. The self-interaction
terms, when evaluated with Wannier orbitals, do not
vanish and we obtain reasonable results (see below). The
restricted search over density matrices of the form (30) can
be viewed in yet another way: By eq. (28), the approxima-
tion (29) amounts to neglecting the k-dependence of the
Bloch occupation numbers, ny;~ny. This is expected to
be a good approximation for insulators. For metals on the
other hand, the approximation breaks down completely
because myr changes, at the Fermi surface, from values
close to one to values close to zero within the same band.

We implemented the minimization of the 1-RDM func-
tionals in the space of Wannier states using the Wannier
computer code described in [32,33]. As a first test case, we
considered a system in one dimension, namely the LiH
chain. As in the case of finite systems, u(M) shows a
pronounced step. The size of this step compares favor-
ably with the LDA and GGA values (see table 1). Clearly,
there are no experimental data available for this system
but, as always, the LDA/GGA results are expected to be
smaller than the true value.

As a first fully three-dimensional system, we performed
a calculation for solid Ne. Figure 3 shows the disconti-
nuity of the chemical potential when only the occupation
numbers are optimized. The discontinuity in Ne appears
slightly above 10 which is again due to the approximate
nature of the exchange-correlation functional. The value
of the gap, extracted from fig. 3 by extrapolation, is
also included in table 1 and compares very well with the
experimental value.

In conclusion, we have presented a method to calculate
the fundamental gap of finite systems and periodic solids
within reduced-density-matrix-functional theory. First
numerical results were obtained using a recently proposed
1-RDM functional. For all systems studied, the chemical
potential shows a clear discontinuity as a function of the
total number of electrons if all self-interaction terms are
removed. The extracted gap values agree better with CI
calculations and/or the experiment than any standard
DFT or Hartree-Fock calculation.
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Fig. 3: The chemical potential p (in hartree) as a function
of particle number M for solid Ne. The value of the gap is
compared with HF, various DFT calculations [34] and with
experiment [28].
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