Towards time-dependent density-functional theory for molecules in strong laser pulses
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To describe the dynamical interplay of electronic and nuclear degrees of freedom in molecules ex-
posed to strong laser pulses, we present two different variational approaches based on the statonary-
action principle: A mean-field treatment of the electron-nuclear interaction and an explicitly corre-
lated ansatz. The two methods are tested on a one-dimensional model of H, which can be solved
exactly. The correlated approach significantly improves upon the mean-field treatment, especially
in the case of laser fields strong enough to cause substantial dissociation.
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The past decade has witnessed rapid progress in laser
technology. Nowadays, tabletop systems routinely pro-
vide femtosecond laser pulses with intensities in the ter-
awatt regime. The field strengths at such intensities
are comparable to or even larger than, typical atomic
or molecular binding forces [1]. Therefore, an ade-
quate description of strong-field multiphoton processes
requires a non-perturbative scheme which treats the ex-
ternal laser field and the internal Coulomb forces of the
atom or molecule on equal footing. While considerable
progress has been made in understanding the behavior
of atoms in high-intensity laser pulses, the situation for
molecules is far less advanced since the additional nuclear
degrees of freedom tremendously increase the complexity
of the problem. The traditional methods like expanding
the total molecular wavefunction in terms of few Born-
Oppenheimer (BO) states or restricting oneself to a clas-
sical description of the nuclear degrees of freedom [2,3]
cannot satisfactorily explain the complex interplay be-
tween the electronic and the nuclear motion. In fact,
the direct numerical solution of the full time-dependent
(TD) Schrédinger equation (SE) for the H. molecular
ion [4] shows that a proper treatment of all fundamen-
tal processes, i.e., electronic and vibrational excitation,
ionization, and dissociation, is mandatory in the high-
intensity regime. However, even for this smallest possible
molecule, the full-scale numerical solution of the electron-
nuclear TDSE is barely feasible. Clearly, the strong-field
dynamics of larger molecules requires an approximate
treatment. To this end, we employ the stationary-action
principle
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which, for any approximate form of the wavefunction
U, determines the corresponding equations of motion
and thus the dynamical behavior of the system. In this
Letter, we will present two different approximations for
the total wavefunction W: The first one is based on a
mean-field-type treatment of the electron-nuclear cou-
pling which neglects correlation effects between the elec-
tronic and the nuclear motion. The second approach

employs an explicitly correlated ansatz for the electron-
nuclear part of the wavefunction. The crucial point
of both approaches is that they provide a description
in terms of single-particle orbitals. Only single-particle
equations, by their very nature, can be solved with mod-
erate numerical effort and thus bring within reach the
TD treatment of larger systems.

For simplicity, we restrict ourselves to the discussion of
diatomic molecules consisting of N, electrons and two nu-
clei of masses M7 and Ms and charges Z; and Zs. Since
we shall be interested in radiation sources in a regime
where the dipole approximation holds true, the center-
of-mass (CM) motion of the total system can be sepa-
rated off. The molecule is then described by the vector
of the internuclear distance R and electronic coordinates
r = {r;} referring to a molecular body-fixed frame whose
z-axis e, is parallel to R. In terms of these coordinates,
the Hamiltonian in Eq. (1) reads (atomic units)

H(Ea R,1) = T(£7 R)+ W(E’ R)+ WL (£7 R,t) (2)

where T = —(1/211,)V — (1/2p16) Y0y V2 with pu,, =
(MlMg)/(Ml +M2) and He = (Ml +M2)/(M1 +M2 + 1)
denotes the kinetic-energy operator, and W = W, +
Wen + Wiy contains the interactions between all par-
ticles. Mass-polarization and Coriolis terms are ne-
glected.  Furthermore, employing the length gauge,
the laser potential in Eq. (2) is given by Vi(t) =
(fanJr qe D, R(R)rj) E(t), where E(t) denotes the
electric field amplitude, q, = (Z1 My — ZoMy)/(My+ My)
and e = (Z1+Z2+M1+M2>/(M1+M2+Ne)' R(R) rep-
resents the 3 x 3 rotational matrix which rotates the inter-
nuclear axis R (i.e., the z-axis of the body-fixed frame)
into the z-axis of the CM-fixed coordinate system.

In our first approach, the total electron-nuclear many-
body wavefunction is approximated by

Y(R,r,t) =~ x(R, 1)¥(x, 1), (3)

where x(R,t) is a TD nuclear wavefunction and % (r,t)
represents a TD electronic many-particle state. The
stationary-action principle (1) with Hamiltonian (2) then



leads to a TDSE for the nuclear wavefunction
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and to a many-body TDSE for ¢(r,t). Applying TD
density-functional theory (TDDFT) [5-7] to the latter

leads to a set of TD Kohn-Sham equations:
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where {¢;(r,t)} are electronic Kohn-Sham orbitals. The
local effective potentials Vs, and vgs . are given by
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Us,e(T,1) = Ve (v, ) + Ve (15 8) + 0T (0, 0). - (7)

The last terms on the r.h.s. of Eqgs. (6) and (7) denote
the time-dependent Hartree (mean-field) potentials aris-
ing from the electron-nuclear interaction. By virtue of
the ansatz (3), they are given by the classical electrostatic
potentials caused by the respective charge distributions:

Ve (R, 1) = / dr W (v, R)p(r, 1) (8)
o (1) = / AR W, (v, R)T(R, 1), )

where I'(R, ) = [x(R,#)|? and p(r,t) = Y7, [ip; (r, 1),
The electron-nuclear interaction is given by W, (r,R) =
A |r—ﬁRez|_l+Zg |r+ﬁRez|_1. The second
term on the r.h.s. of Eq. (7) is the Hartree-exchange-
correlation (Hxc) potential arising from the TDDFT
treatment of the electronic degrees of freedom. Finally,
the first terms on the r.h.s. of Egs. (6) and (7) represent
the laser potentials given by V1, ,(R,t) = —¢,RE(t) and
vpe(r,t) = ¢ [dRT(R,t) (R(R)r) E(2).

In order to assess the accuracy of the scheme pre-
sented above, we apply it to a simplified model of the
H. 2+ molecule which can be solved exactly. In this model,
the dimensionality of the problem is reduced by confin-
ing the dynamics of all particles to one spatial dimension,
i.e., the particles are allowed to move only in the direc-
tion of the laser polarization axis. Extensive studies have
demonstrated that this model qualitatively reproduces all
typical non-linear phenomena observed in strong-field ex-
periments [8]. We emphasize that our primary interest
is not the analysis of this model system. Instead, we aim
at an ab-initio description of larger molecules exposed
to strong laser fields. However, in order to assess the
quality of the approximations employed, it is essential to
have a numerically exact reference solution, to which the
approximate results can be compared. The 1D model
Hmolecule naturally lends itself for that purpose.

The exact reference solution of the TDSE for the model
H;r molecule as well as the corresponding solution of the

approximate equations of motion (4), (5) are obtained
numerically by employing the split-operator technique
[9]. The initial wavefunctions are chosen as the respective
molecular ground states. As an example, we investigate
the dynamics of the model H; molecule in a A = 770 nm,
77 fs laser field, where the laser is linearly ramped from
zero to its maximum value within 12.5 optical cycles and
subsequently kept constant for another 17.5 optical cy-
cles. Fig. 1 shows the time evolution of the expectation
value of the internuclear separation (R)(t) for a peak
laser intensity of Iy = 7.5 x 103 W/cm? as obtained
from the exact solution (solid line) and from the approx-
imate scheme (dashed line). As seen in this figure, the
laser field causes the molecule to stretch in the begin-
ning of the propagation. However, the field is not strong
enough to substantially dissociate the system. Instead,
the molecule starts to vibrate, which is reflected in the
oscillatory structure of the mean internuclear distance
(R)(t). Compared to the exact results, we find that, for
the laser parameters considered here, the approximate
scheme reproduces the main features of the dynamics:
(R)(t) initially increases and subsequently oscillates, al-
though on a quantitative level, the amplitude of the os-
cillations of (R)(t) is underestimated while its frequency
is overestimated.

In order to analyze the origin of these deviations,
we investigate the potential V", (R,t) of the nuclear
single-particle equation (4). This quantity is inherently
time-dependent, but still it is instructive to consider
the static nuclear potential resulting from the stationary
ground-state solution of Eqgs. (4) and (5) with the laser
field switched off. In Fig. 2, this static nuclear ground-
state potential is compared with the lowest-energy BO
surface, which provides a very good reference for the
ground state of the H; model molecule. The mean-field
nuclear potential is in good agreement with the BO curve
only in the neighborhood of the equilibrium internuclear
separation. For larger values of R, the approximate nu-
clear potential severely deviates from the reference curve.
[ From this perspective, the deviations of the strong-field
behavior are easily understood: Compared to the ex-
act dynamics, the approximate scheme requires much
more energy to stretch the molecule. Consequently, if
the same laser parameters are used in the exact and the
approximate calculation, the latter will significantly un-
derestimate the nuclear motion, leading to the deviations
found in (R)(t). Likewise, for laser parameters leading
to substantial dissociation, the mean-field approach is
found to underestimate the dissociation probability sig-
nificantly as shown in Fig. 3. Hence, we conclude that
a mean-field-type approximation for the electron-nuclear
interaction cannot, provide a satisfactory picture of the
strong-field dynamics of molecules.

In order to improve upon the mean-field approach,
electron-nuclear correlation needs to be incorporated in



the approximate form of the total wavefunction ¥. We
propose the explicitly correlated expression

\P(Ra r, t) = X(R7 t) @R(rvt)a (10)
er(r,t) = ¢1(r — gez, t) + da2(r + gez, t)

where, x(R,t) again denotes the nuclear wavefunction.
However, in contrast to the mean-field approach (3),
the electronic degrees of freedom are not described by
molecular orbitals, but by explicitly TD atomic orbitals
¢1,2(r, t) which are attached to one of the nuclei. In other
words, the correlation between the electron and the nu-
clei is introduced by referring the electron, in the spirit
of a Heitler-London ansatz, to one or the other nucleus.
The variationally best wavefunction of the form (10) is
obtained by requiring the action to be stationary with
respect to variations of all orbitals. This leads to [10] the
equations of motion:

i (R, 1) = (hu(Rot) = A®)) x(R,1), (1)
i10ph12(x,t) = het o ¢12(r, ) + Q1 a(r, t) (12)

with the effective nuclear Hamiltonian

(R 1) = fiva _ u—1n<vR>e(R, 1) Ve
+<I:I - iat>e(R7 t)' (13)

and the effective electronic Hamiltonian
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= dpnpie/(dpin + pe), and Qqo(r,t) de-
notes the inhomogeneity term : Qyo(r,t) := ((H(r +
R/2e.,R) — i0;)¢2/1(r + Re.,t)), For ease of no-
tation, the following abbreviations have been intro-
duced: (O)e = (0)c(R, 1) = (¢Rr|OlpR)e/(PRIPR)e

and (O), = (O),(r,t) := (X|O|x)n/{X|X)n, where the
subscripts “e” or “n” indicate the integration over the
electronic or nuclear coordinate, respectively. Egs. (11)
and (12) form the heart of the new time-dependent varia-
tional scheme which, like the mean-field approach treats
the strong external fields Vi, ,(t) and vr(t) and the
intramolecular forces on the same footing in a non-
perturbative way. Furthermore, the method properly
accounts for the quantum nature of both the electronic
and the nuclear degrees of freedom. In this respect, the
proposed variational approach goes beyond the common
mixed classical-quantum mechanical methods where the
nuclear dynamics is treated classically. On the other
hand, in contrast to methods employing the wavepacket
propagation on few BO potential-energy surfaces, the
influence of the strong laser field on the time evolu-
tion of the electrons is consistently incorporated as well.

where [i.

Still, although an explicitly correlated ansatz for the to-
tal wavefunction is used, it is important to realize that
the dynamics is completely described in terms of single-
particle orbitals. Consequently, the computational effort
to solve Egs. (11, 12) stays manageable. Considering
these equations of motion individually, we observe the
following features: The electronic equation (12) differs
significantly from the corresponding mean-field equation
(5). Whereas the latter describes the time evolution of
molecular single-particle orbitals, the former propagates
TD single-particle atomic orbitals. Consequently, ad-
ditional inhomogeneity terms appear in Eq. (12) which
act as source or sink terms and are responsible for the
(laser-induced) transfer of electronic charge between the
two nuclei. Considering the effective electronic poten-
tials, the contribution arising from the electron-nuclear
interaction is given by (We,(r £ R/2e,,R)),(r,t) =
—1/r = (1/{x|x)n) [ dR (|X(R, t1?/|r + Rez|). Accord-
ingly, the electron feels the bare Coulomb force of its
reference nucleus and a Hartree-type potential from the
second nucleus. In particular, due to the dependence of
(Wen) on the time-dependent orbital x(R, ), the formal-
ism presented above naturally includes the quasistatic
picture of molecular strong-field dynamics [11], which,
e.g., successfully describes enhanced ionization leading
to dissociative Coulomb explosion [12]. Turning to the
nuclear equation of motion (11), we find that it is for-
mally similar to Eq. (4). In particular, it again employs
inherently TD effective potentials such that the nuclear
dynamics is not restricted to a fixed potential-energy
surface, but non-adiabatic processes can be described
even by employing only one TD nuclear potential. The
TD effective nuclear potential is explicitly given by the
expectation value of H — id; with respect to er(r,t),
as seen from the last term of Eq. (13). Due to the
Heitler-London-type form of ¢gr which is correct in the
asymptotic (R — oo) limit the description of the effec-
tive nuclear potential and thus of the nuclear dynamics
should be improved as compared to the TD mean-field
scheme.

We employ again the same model H, to calculate the
effective nuclear potential Vi, (R) = (H,)c(R) obtained
from a self-consistent ground-state solution of the vari-
ational equations (11) and (12) (with the laser field
switched off). Evidently, the resulting nuclear poten-
tial, as shown in Fig. 2, improves significantly upon the
mean-field curve and only shows small deviations from
the reference potential for R 2 5 a.u. Since the devia-
tions of the nuclear mean-field potential were identified
as the main source of error in the TD Hartree approach,
the correlated variational scheme promises a more ad-
equate treatment of the strong-field dynamics. This is
confirmed by the results obtained for the dynamics of
the model. The time evolution of the mean internuclear



distance (R)(t), for the same laser parameters, is shown
in Figs. 1,3 and the improvement is obvious. In Fig. 1 the
agreement is excellent and even in the case of the strong
field in Fig. 3, leading to considerable photodissociation,
the qualitative picture is correct.
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FIG. 1. Time evolution (in units of the optical cycle T) of

the mean internuclear distance (R)(t) obtained for the model
H3 molecule, in a A = 770 nm, Iy = 7.5 x 10" W/cm? laser
field from the various methods described in the text.
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FIG. 2. Effective nuclear potential Vs n(R) obtained for the

model H from the methods described. Atomic units.
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FIG. 3. Time evolution of (R)(t) for the model H), in a
A =228 nm, Iy = 2.5 x 1013 W/cm2 laser. In the insert, the

mean field solution for a period of 100 T.



