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Abstract

Rigorous properties of the optimized effective potential (OEP) are derived. We
present a detailed analysis of the asymptotic form of the OEP, going beyond the leading
term. Furthermore, the asymptotic properties of the approximate OEP scheme of
Krieger, Li and Tafrate [Phys. Lett. A 146, 256 (1990)] are analysed, showing that the
leading asymptotic behavior is preserved by this approximation.

1 Introduction

Density Functional Theory (DFT) has become a powerful tool for ab-initio electronic struc-
ture calculations of atoms, molecules and solids [1, 2, 3]. The success of DFT relies on the
availability of accurate approximations for the exchange-correlation (xc) energy functional
FEy. or, equivalently, for the xc potential vy.. Though these quantities are not known ex-
actly, a number of properties of the exact xc potential vy (r) are well-known and may serve
as valuable criteria for the investigation of approximate xc functionals. In this contribu-
tion, we want to focus on one particular property, namely the asymptotic behavior of the
xc potential: For finite systems, the exact xc potential vy (r) is known to decrease like
—1/r as r — oo, reflecting also the proper cancellation of spurious self-interaction effects
induced by the Hartree potential.

Most of the conventional xc functionals including the local density approximation (LDA)
as well as more refined generalized gradient approximations (GGAs) fail to reproduce this
asymptotic behavior correctly. As a consequence, these approximations yield rather poor
results for properties where the asymptotic region of the xc potential is of crucial impor-
tance, e.g. for ionization potentials [4] or excitation energies [5] of atoms and molecules.

In recent years, a different type of approximate xc functionals has gained increasing
interest: It was found that the correct asymptotic behavior can be obtained by employing
xc functionals depending explicitly on the set of Kohn-Sham (KS) single-particle orbitals
rather than the density [6]. The implementation of orbital functionals in the KS scheme is
known as the optimized effective potential (OEP) method [7, 8]. It was recognized early
on [9] that with the exact Hartree-Fock expression for the exchange energy functional, the
OEP method is equivalent to the ezact x-only implementation of KS theory. The fact
that the correct asymptotics as well as other exact properties are reproduced within the
OEP scheme turned out to be an important advantage over the conventional xc¢ functionals
beyond the x-only limit Consequently, approaches using orbital-dependent xc functionals
have been shown to yield highly accurate results comparable to those of quantum chemical
calculations [4].

The original proof [8] of the asymptotic behavior of the OEP was based on the asymp-
totic form of the Green‘s function which is easily accessible only in 1D. Considering the
3D Green'‘s function, Krieger, Li and Iafrate [6] made it plausible that the statement holds
true in the 3D case as well. An alternative proof was recently given [10] for the x-only case.

1



This proof uses the exact scaling behavior of the x-energy functional and can therefore not
be extended to the correlation potential. The purpose of the present contribution is to
provide a rigorous proof valid for both exchange and correlation. Our investigation con-
firms the statement of Ref. [6] for a particular well-defined class of orbital functionals for
the correlation energy. Furthermore, we investigate how exactly the asymptotically leading
term is approached. The paper is organized as follows: After a brief introduction to the
OEP method in section 2.1, the asymptotic form of the OEP is investigated in detail in
section 2.2. The central result is a lemma proven in section 2.2.1. In the final chapter
3, the analysis of section 2 is applied to the approximate OEP scheme of Krieger, Li and
Tafrate (KLI) [6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

2 The OEP method

2.1 Derivation of the OEP integral equation

In this section, we derive the OEP equations for the spin-dependent version of DFT [24,
25], where the basic variables are the spin-up and spin-down densities p4(r) and p,(r),
respectively. They are obtained by self-consistently solving the single-particle Schrodinger
equations

<_V7 + Vsa[pTv PL](I‘)) 90]'0(1') = 5ja‘PjU(r) j=1...,Ny o =T (1)

where N
po(r) = lpio (r)[. (2)
i=1

For convenience we shall assume in the following that infinitesimal symmetry-breaking
terms have been added to the external potential to remove any possible degeneracies. The
KS orbitals can then be labeled such that

€10 < €20 < ... < ENyo < EN,41)0 < -+ (3)

The Kohn-Sham potentials Vs, (r) may be written in the usual way as

p(r')

v — /|

Vsolr) = vo(r) + [ ' L0 4 Vo 1), (@

p(r) = D po(r) (5)
o="}
where vy(r) represents the external potential and Vi.,(r) is a local exchange-correlation
(xc) potential defined by the functional derivative of the xc energy:

8By [pr,py]
Vieo (1) := TT)i (6)

At this point we want to emphasize that, by virtue of the Hohenberg-Kohn theorem
applied to non-interacting systems, all single-particle orbitals are formally functionals of
the densities, i.e.

Pjo(r) = @il p](r) - (7)

2



As a consequence, any orbital functional Ey.[{y;-}] is an (implicit) functional of p; and p/,
provided the orbitals come from a local potential. Having this in mind, we may equivalently
start out with an approximation for the xc energy functional depending explicitly on the
set of KS orbitals, i.e.

Exc = xc[{‘pjr}] (8)

rather than the conventional density-dependent approximations for Ey.. However, the
calculation of the corresponding xc potentials vy, (r) becomes somewhat more complicated:
For the case of orbital-dependent xc functionals vy, (r) has to be determined by the solution
of an integral equation, the so-called OEP integral equation. To demonstrate this, we
may start out from the very definition of the local KS xc potential, Eq. (6), following a
derivation first given by Gorling and Levy [26]: In order to use Eq. (6) for orbital-dependent
functionals, we employ the chain rule for functional derivatives, leading to

OEP _ 5E>2:EP H‘Pjr}]
cha ( ) - 5p0( )
_ 3, 0B, oFp [{‘PJT}] dpia(r ) c.c
) azmzl/d Spml)  bpelr) OO ©)

Here and in the following we assume that the xc functional Fy.[{p;s}] only depends on the
occupied KS orbitals. By applying the functional chain rule once more, we obtain

K= X 5 f o [ (PPN Gl e ) S oo

a,B=t} i=1 0pia (') OVsp(r") 5ps(r)

The last term on the right-hand side is readily identified with the inverse Xgl (r,r') of the
density response function of a system of non-interacting particles

dpa(r)

BVas()’ 1

XSO[,ﬂ (r’ rl) =

This quantity is diagonal with respect to the spin variables so that Eq. (10) reduces to

OEP . (!
P - Y [ & [ <6E"5¢(pia[jr(f57}] ;Ifgjér,,)) +C.c.> X5k (£.r) . (12)

a="1,] i=1

Acting with the response operator (11) on both sides of Eq. (12) one obtains

/ EP _ / ‘5EOEP [{‘PJT}] 590204( )
/d3 Vx%, (r")xso (r QZT“Zl/d?’ S () Vs, () + c.c.. (13)

The second functional derivative on the right-hand side of Eq. (13) is calculated using
first-order perturbation theory. This yields

8Pia Do (Pk:a( r)
ﬁ = MZ e pia(D). (14)
k#z

Using this equation, the response function
XSa,p (r, 1) = 5V5ﬂ <Z Pia(T)Pia(r ) (15)
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is readily expressed in terms of the orbitals as

Ny oo AV
XSo (I‘, I Z<pw )(pkff( )‘pko-( )<Pw(r) + e (16)
i=1 k=1 Cic — Eko
ki

Inserting (14) and (16) in Eq. (13), we obtain the standard form of the OEP integral
equation:

Z [ (V2 ) = o 69) o (6'1) pio ()l 0 =0 (1)

where

1B il

Uxcio\T) = — 18
) o (r)  dpig(r) (18)
The quantity Ggsi,(r',r), given by
0 N %
Gsio (r',r) ==Y Pro (') Plq (1) , (19)

w1 Cio — Eko

ki
represents the Green’s function of the KS equation projected onto the subspace orthogonal
to @is (1), i.e., it satisfies the equation

(hso(r) = €i0) Gsio(¥',x) = = (5" = 1) = 9o (') 5, (v)) (20)

where hg,(r) is a short-hand notation for the KS Hamiltonian

2

hso(E) = -+ Vsolo, pil(x). (21)
Now, the OEP scheme is complete: The integral equation (17), determining the local
xc potential vy (r) corresponding to an orbital-dependent approximation of Fy., has to be
solved self-consistently with the KS equation (1) and the differential equation for Gg;, (r', r),
Eq. (20).

The main advantage of such an approach is that it allows for greater flexibility in the
choice of appropriate xc functionals. In particular, the OEP method can be used for the
treatment of the exact exchange energy functional, defined by inserting KS orbitals in the
Fock term, i.e.

Eexact [p = Z Z /d3 /d3 ! (p]tf <pka( l)@ka(r)(pja(rl) ) (22)

2,5 = v |

2.2 Asymptotic properties of the OEP

In this section a number of rigorous statements on the optimized effective potential for finite
systems will be derived. For this purpose, the exchange-only potential and the correlation
potential have to be treated separately within the OEP scheme. The exact exchange
potential of DFT is defined as



5Eexact
Violprs pil(r) = % ; o=T1 (23)

where the exact exchange-energy functional is given by Eq. (22). In an ordinary OEP
calculation, one only determines the potential Vi, [pto, po](r) corresponding to the self-
consistent ground-state spin densities (py9,pj0) of the system considered. If one were to
calculate Vi, [pt, pi] for an arbitrary given set (py,p;) of spin densities one would have to
perform the following three steps:

1. Determine the unique potentials Vs, [pt,p,](r),0 =1,], corresponding to the given
spin densities (py, p))

2. Solve the Schrodinger equation (1) for the spin-up and spin-down orbitals with the
potentials of step (1)

3. Plug the orbitals obtained in step (2) into the OEP integral equation

No
Z / dr' (an(rl) - Uxia(r,))GSia(r,a r)‘Pz’J (r)go;'ka (rl) +ee=0 (24)
=1

and solve this equation for V,, keeping the orbitals of step (2) fixed.

In this way Filippi, Umrigar and Gonze [27] have recently calculated the exchange poten-
tials corresponding to the ezact (not the x-only) densities of some atoms where the exact
densities were determined in a quantum Monte-Carlo calculation. Likewise, for any given
approximate functional F.[{y;s}], the corresponding correlation potential

Vielpr.pilr) = 5 (25)

is obtained by the above steps (1) and (2), and step (3) replaced by the solution of

No
Z/d?’rl (‘/CO'(I.,) - ucia(r,))GSiU(rIa I')(pw(r)(p;-ka (I") +cc=0. (26)
i=1

Whenever, in the following derivations, the OEP equations (24) and (26) are used or
transformed it is understood that the orbitals {y;,} are kept fixed so that they always
correspond to a unique fixed set (p4, p;) of spin densities.

For the following analysis we find it more convenient not to work with the standard
form (17), but with a transformed representation of the OEP integral equation. Following
KLI [18] we define

< [ dr'gl, (x)

Pip(r) = (

Vi2EP (x') = thxcio (1)) 1o (x')

(T
e €ic — Eko Pho(r)
ki
= /d3r'<pfa(r') (VX?:EP(I‘,) - uxcia(r,)) GSia(rlar) . (27)

With this abbreviation, the OEP integral equation (17) can be rewritten in the simple
form:

Ny
Z Pi (r)ic(r) +cc. = 0. (28)
i=1
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Now, the defining equation for Gg;,(r',r) enables us to deduce a differential equation
satisfied by the newly defined quantity v (r): Acting with the operator (hsy — €is) on
Eq. (27) readily leads to

(so(r) = ei0) i, (x) = = [Vi2e (2) = tixcio () = (Voo = tixcio)| 90 (1) (29)

where Vi, denotes the average of Vi, (r) with respect to the ith orbital, i.e.

Vacia 1= [ d*r iy (0)V.EE" (1) i () (30)

and
Uxcio = /d37‘ (P;a(r)uxcia(r)()aia(r)- (31)

The differential equation (29) will serve as the starting point of the analysis below.

Before doing this, we discuss some properties of the quantity 7 (r). First, since the
KS orbitals {p;,} span an orthonormal set, we readily conclude from Eq. (27) that the
function v, (r) is orthogonal to ¢;,(r):

[ & @it =0. (32)

Secondly, we note that Eq. (29), having the structure of a KS equation with an addi-
tional inhomogeneity term, plus the boundary condition that ¢ (r) tends to zero as r — oo
uniquely determines 1} (r). We can prove this statement by assuming that there are two
independent solutions 97, 1 (r) and ¥}, 5(r) of Eq. (29). Then the difference between these
two solutions, W7 (r) := 1}, ;(r) — 1}, »(r), satisfies the homogeneous KS equation

~

(hso — €i0) Wi (r) = 0, (33)

which has a unique solution
Uiy (r) = @io (1), (34)

if the above boundary condition is fulfilled. However, this solution leads to a contradiction
with the orthogonality relation (32) so that ¥} (r) can only be the trivial solution of
Eq. (33),

T (r) =0. (35)

This completes the proof.

Finally, it seems useful at this point to attach some physical meaning to the quantity
¥io: From Eq. (27) it is obvious that 1, is the usual first-order shift in the wave function
caused by the perturbing potential §V;, = V;ngEP — Uxcio- This fact also motivates the
boundary condition assumed above. In x-only theory, uy;, is the local, orbital-dependent
HF exchange potential so that —1;, is the first order shift of the KS wave function towards
the HF wave function. One has to realize, however, that the first-order change of the orbital
dependent potential uy;;[{®is}] has been neglected. This change can be expected to be

small compared to 6V, [18].



2.2.1 An important lemma

We now first prove an important lemma concerning the constants defined by Egs. (30) and
(31). The lemma states that

(i)
ﬂxN,,o‘ = 7XN0-0'

is satisfied for

1 5E§xact
@5, (r) Opie(r)
with the exact exchange-energy functional;

(i)

uxia(r) (36)

acNa—a = VcNaa

is satisfied for any approzimate correlation energy functional E.[{pis}] having the

property
1 OF,
- ¢ _ "% const ,i = 1...N, . (37)
iy (r) 0pic (1)

Ucio (I‘) =

We begin with the proof of statement (ii). To this end we use Eq. (29) for the correlation
part only:

V2 . .
(—7 + Vso(r) — Em) Vig(r) = (Veo (r) — teio (r) — Cio) ¢y (1) (38)
where we have introduced the abbreviation

Ci(f = ‘7cia — Ucig - (39)

If Eq. (38) is satisfied with potentials Vg, (r), Voo (r) and ucir(r) it will also be satisfied
with the constantly shifted potentials

VSa(r) = VSO’(r) + Bsg (40)
f/’vca (I‘) = Vio (I‘) + Beo (41)
Ucig (I‘) = Ucio (I‘) + Bis (42)

and the corresponding eigenvalues &;, and the constants Vcio‘; Ui reflecting the fact that
the eigenvalues as well as the various potentials are only determined up to an arbitrary
constant. The constants Bg,, Bes, Bj, cancel out in Eq. (38) because the eigenvalues &;,
resulting from solving the Schrédinger equation (1) with the potential (40) are given by

€ic = €ig + Bso (43)

and the constants I:/w, ficic obtained from the correlation parts of Egs. (30), (31) with the
potentials (41), (42) are

V;:z'zr + Bca (44)
cio = Ucic + Bia . (45)

S <
Q.
q
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Hence we can assume without restriction that

I
8

Vso(r) — 0 (46)
Veo (I‘) =% 0 (47)
Ucio (T) =% 0. (48)

In the following we shall investigate the asymptotic behavior of the KS orbitals ¢;,(r)
and of the quantities 1;,(r) defined by Eq. (38). As a shorthand we write

Pio(T) =¥ @iy (7) fio (2) (49)
Pio(t) =3 Wig(r)gic () - (50)

The aim is to determine the asymptotically dominant functions ®;,(r) and ¥;,(r). The
angular parts f;;(2) and g;,(€2) are not of interest in the present context. Using the fact
that the KS potential of finite neutral systems behaves asymptotically as [28]

1
VSa(r) Tﬂ)o _; (51)

the KS equation (1) leads to the following asymptotic equation

11 d? 1
<—§ ;WT — ; — Eio—) @io—(r) = O . (52)
The asymptotic form of ®;,(r) is easily found to be
_ﬂio"r
By (r) =5 rl/bic ¢ . (53)

with

Bic =V —2¢iq - (54)

By virtue of Egs. (38) and (53), ¥;,(r) must satisfy the asymptotic equation

(=3 baar = L= ) o) = O¥itr) Gy e (55
where we have introduced the quantity W;,(r) defined by
(Voo (r) = eio (1)) "= Wi (r)wis (2 (56)
From Eqgs. (47) and (48) we know that
Wie(r) =%0. (57)

Inserting the ansatz

e_ﬁio""
Uig(r) = pic(r) r (58)
in Eq. (55) we find that the function p;,(r) must satisfy the equation
1 ! . Pig = O,.r/Pic if O 0 59
2picr - /BZUpicr + r = LioT 1 10 7& ( )



and

1 v .
¥lo — Puoble + 57 = Wiglyrtlfe it Cip =0, (60)
The asymptotic solution of Eq. (59) is immediately recognized as
r—co Cis (1/Bis+1)
Pio(r) — ———r (61)
10
so that
— CZ’O— 1/Bio n—BioT ]
Vig(r) = ———r"'"e if Ciz#0. (62)
0
Writing
pic(r) = FiJ(T)'rl/ﬂiU—I—l it Ciz=0 (63)

one readily verifies by insertion in Eq. (60) that

Fig(r) =30 (64)

as a consequence of (57).
We now prove statement (ii) of the lemma by reductio ad absurdum: Assume that
Cn,os # 0. Then the asymptotic form of ¥y _,(r) is given by (62) and we conclude that

* C 4 21 — *
o @onen) =5 -0, (v g0 @g@). )

For i # N, on the other hand, we obtain

21
Vi (1) i (v) "= Gia(r)r(" o ) 2T g () fio (2) (66)
where
- 'zr/ﬁw if Cia 7é 0
Gio(r) = ' : 67
io(r) {F()Tifo if Cip=0 (67)

From this we conclude that the OEP integral equation

YN, o (T)PN,o (T Z Vie () pio (r) +cc. =0 (68)

is not satisfied for r — 0o because the dominant term given by (65) cannot be canceled by
any of the other contributions (66) which all fall off more rapidly (cf. Eq. (3)). Consequently
the 1, cannot be solutions of the OEP equation which is the desired contradiction. This
implies that Cv,, = 0 which completes the proof of statement (ii).

In order to prove statement (i) of the lemma we first investigate the asymptotic form
of the quantities uy;,(r). Employing the exact exchange-energy functional (22) we find

Ny 4% r
Uio(T) = =) (pigi()Kjia(r) (69)

with



Pjo Pio
Kjio r) i= [ d*r' &2 ‘r_;q( £ir F)¢is(r') (70)

Performing a multipole expansion of Kj;,(r) and using the orthonormality of the KS or-
bitals we find

Kiig(r) =% % (71)
r—00 1 . .
Kjio(r) — r—mka'o—(Q) i F ] (72)

with some integer m > 2 that depends on 7 and j. Hence the sum in Eq. (69) must be
dominated asymptotically by the j = N, term:

r—QQ _ (P*Naa(r)
¢l (r)
Using Egs. (71), (72) and the asymptotic behavior (53) of the KS orbitals we obtain

Uxio (I‘) KNo-’iO' (I‘) . (73)

1
UxN, o (T) = T (74)
and
S T S
Uxio (T) e _T(BNG-U Bic )e(ﬂia*ﬂNga)Twio_(Q) ] (75)

We recognize that uy;,(r) diverges exponentionally to —oo for i < N,. In the x-only case,
the quantities 1;, (r) satisfy the equation

V2
<_7 + VS(T(I') - > ww( ) - ( XO'(r) - U’XiU(r) - CiU) 90227(1‘) (76)
where

Cia = ina — Uxig - (77)

In the following we prove statement (i) of the lemma by reductio ad absurdum: As-

sume that Cn,, # 0. Then, by Eq. (74), the right-hand side of Eq. (76) for i = N, is

asymptotically dominated by —Chn, o9} »(r) and we obtain, in complete analogy to the
correlation-only case:

For i < N, the right-hand side of Eq.(76) is dominated by —uy;,(r)¢}, (r). Using Egs. (53)
and (75) ¥;,(,) satisfies the asymptotic differential equation

11d2 1 L _1-m) _
(‘5 rdrt’ T e) B0 1) = o ) g (79)
From this equation one readily concludes that
1 L _1—
o (r) =5 77~("Nao m) e PNooT i< N, . (80)
ENyo — Eio
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We note in passing that all the functions 1;,, i = 1...N,, have the same exponential decay,
e PNoo”  determined by the highest occupied orbital energy B, o = v/—2€n,o. This fact
further supports the interpretation of the quantities v;, (in the x-only case) as a shift
from the KS orbitals towards the HF orbitals: The HF orbitals ¢F are known [29] to be
asymptotically dominated by the exponential decay e #Noo" of the highest occupied orbital.
The same holds true for the shifted KS orbitals (pir + ¥iq)-

From Egs. (53), (78) and (80) we obtain

* C e ——1 — *
Vo (D)on,o(r) =F ——ﬁ]’j“r(ﬂw et g @ o@). 6
pxes

and

. 1 L L _2-m) _ _ .

Y () pis (r) e p— T(BNUO— Bio )e (/BNaa'f'b’w)T.gia(Q)fio_(Q)’

e 10
1< Ny . (82)

Once again we conclude that in the OEP equation (68) the asymptotically dominant term
(81) cannot be canceled by any of the other terms (82), leading to the contradiction that the
¥js(r) are not solutions of the OEP integral equation. Hence we conclude that Cn, , =0
which completes the proof of the lemma.

Gorling and Levy [10] recently gave a proof of statement (i) of the above lemma. This
proof is based on the scaling properties of the exchange-energy functional and can therefore
not be generalized to the case of correlation. The proof presented above for the correlation
part of the OEP (statement (ii) of the lemma) is valid for all correlation energy functionals
leading to asymptotically bounded functions uc;s (r). For asymptotically diverging uc;s(r)
the lemma might still be valid. In particular, if the divergence is the same as the one
(Eq.(75)) found in the exchange case, the proof of statement (i) carries over. This lemma
will be used in the subsequent section in the derivation of the asymptotic form of the OEP.

2.2.2 Asymptotic form of the OEP

In this section we shall investigate the asymptotic form of the exchange and correlation
potentials. It will be shown that Vi, (r) and uxn,(r) approach each other exponentially
fast for r — oo, and that the difference between Vi, (r) and ucn,,(r) decays exponentially
as well. Using the notation of the last section the detailed statements read as follows:

Theorem 1:
T (ﬁ%fﬁ;*m) —(B(No 110 —BNgo )T
Vo (r) — uxn,o(r) — r\"@o-Do FNoo e~ PWNo-1)o =PNoa )T (83)

where m is an integer satisfying m > 2.
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Theorem 2: If the constant C(y, 1), defined by Eq. ( 39) does not vanish then

Veo (I‘) - UcNaa(r)

T—0

2 2
- C’(Na1)07"(6(1\"’_1)" BNU"+1)e_2(/3(NU—1)a—5Naa)7‘. (84)

If C(n,—1y¢ = 0 the right-hand side of (84) is an upper bound of
[Veo (r) — ten,o(T)| for 7 — 00, ie. for Cn,—1)0 = 0, Veu(r) and
ueN, o (r) approach each other even faster than given by the right-hand
side of Eq. (84).

To prove theorem 1 we write

eiﬂNo'O'T

Un,o(r) =q(r) (85)

T
Using the lemma of the last section ensuring that Cn_, = 0, ¢(r) must satisfy the following
asymptotic differential equation:

1 -, - _(Bl +1)
=gt Mo g (r) + Pngar PNem gl (r) —r Ao/ q(r) = Vie(r) —uxn,o(r) . (86)

This is readily verified by inserting (51), (53) and (85) in Eq. (76). By virtue of Egs. (3)
and (82) the sum
N,—1

> Yo (t)pia(r) (87)
=1

must be asymptotically dominated by the i = (N, — 1) term which decays as

YN, —1)0 (T)O(N,~1)0 (T)

1 4, 1 9
Ti)o ! T(BNU‘T—FB(NU*UV 2 m)ei(ﬂNUU—F’B(NU*l)"')T . (88)
ENyo — &(N,-1)o

This term cannot be canceled by any other term of the sum (87). Hence, for the OEP
equation (28) to be asymptotically satisfied, the expression (88) must be canceled by the
1 = N, term which behaves as

i o) PN,o(r) =F q(r)r(ﬁfvlofz) e Hnoar (89)

Equating the right-hand side of Egs. (88) and (89), the function ¢(r) is readily determined
to be

S
q(r) — 1 T(B(Ng—l)a m)e*(ﬂ(NO——l)a*ﬁNJa)T ] (90)

ENyo — &(N,—1)o

Finally, by inserting this result in the left-hand side of Eq. (86), we confirm that the
right-hand side of this equation decays asymptotically as stated in theorem 1.
To prove theorem 2 we write for the correlation-only case

e_ﬁNo—o'T

T, o(r) = plr)
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Since Cn,, = 0, p(r) must satisfy the following asymptotic differential equation (cf.
Eq. (60)):

1 1

1 T BN M 75; i _(ﬁ’N 'H)
g7 e p (1) + B,or enp/(r) — 1 \TNem U p(r) = Vi (1) — e, o (6) . (92)

If C(Ng—l)a 7é O, the sum
Ny—1
> Yia(M)io(r) (93)
=1

is asymptotically dominated by the i = (N, — 1) term which, according to Egs. (66) and
(67), decays as

7;bEkN(,_1)(7(1')90(N¢,—1)a(I')

72 —
rovcp _M,ﬂ(m_m 1)e—zﬂ(Na—1)a7“_ (94)
ﬂ(NU—l)U

Once again this term cannot be canceled by any other term of the sum (93). Hence it must
be canceled asymptotically by the ¢ = IV, term which behaves as

Yipo E)PN, o (¥) =F P(?‘)T(HNI"" _2) e ool (95)

Equating the right-hand sides of Egs. (94) and (95) we can identify the asymptotic form
of p(r):

__ 2 1
p(r) — _MT(B(N(T*I)U BNgo +1) e_2(B(N0-71)0'_ﬂNUU)T . (96)
ﬁ(NUfl)a

Insertion of this expression in the left-hand side of Eq. (92) proves Eq. (84) for the case
C(n,-1)c # 0. If C(n,-1)o = 0 the asymptotic form of Ve, (r) — ucn, o (r) cannot be stated
explicitly. It is clear, however, that the i = N, term (95) must be canceled asymptotically
by some contribution to the sum (93). Since, by Eqs. (66) and (67), all contributions to
the sum (93) fall off more rapidly than the right-hand side of (94), p(r) must decay more
rapidly than the right-hand side of (96). Hence, by Eq. (92), the right-hand side of (84)
provides an upper bound of Ve, (r) — ucn, o (r)| for r — oo if C(,_1), = 0. This completes
the proof.

Since the asymptotic form of uyxn_ ,(r), as derived in Eq. (74), is —%, theorem 1 imme-
diately implies that

Vi (r) "= _% . (97)

This is a well-known result that has been obtained in several different ways [8, 30, 28, 31, 32]
The exact correlation potential of DFT is known [28] to fall off as —«/(2r*) for atoms with
spherical N and (N — 1)-electron ground states, with a being the static polarizability of
the (N — 1)-electron ground state. Theorem 2 provides a simple way of checking how the
OEP correlation-only potential Vi, (r) falls off for a given approximate orbital functional
E2PProxX[L .- }]: One only needs to determine the asymptotic decay of ucn, o (r).
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3 Approximation of Krieger, Li and Iafrate

3.1 Derivation of the KLI approximation

The OEP method, discussed in the preceding paragraph, opens up a way for using orbital-
dependent functionals within the KS scheme. However, as a price to pay, one has to
solve an integral equation self-consistently with the KS equation. Due to the rather large
computational effort involved in this scheme, it has not been used extensively. Indeed, the
solution of the OEP integral equation has been achieved so far only for systems of high
symmetry such as spherical atoms [6, 8, 16, 17, 33] and for solids within the linear muffin
tin orbitals atomic sphere approximation [13, 34, 35, 36]. Therefore, practical applications
of the OEP scheme to a greater variety of systems require some simplification.

Krieger, Li and Tafrate have suggested an approximation leading to a highly accurate
but numerically tractable scheme preserving many important properties of the exact OEP
method [6, 11, 13, 14, 15, 16, 17, 18, 19]. It is most easily derived by replacing the energy
denominator of the Green’s function (19) by a single constant, i.e.

Gsio (', 1) ~ Aia (5 = 1) — i (')l (1)) . (98)

Substituting this into the OEP integral equation (17) leads to an approximate equation,
known as the KLI approximation:

VKLI

XCco

Qp Zma )P [tseio (1) + (VI — txcio)] + cc. (99)
g —

where VXL is defined in analogy to Eq. (30). In contrast to the full OEP equation (17),

XC10
the KLI equation, still being an integral equation, can be solved explicitly in terms of the

orbitals {¢;,}: Multiplying Eq. (99) by |¢j-(r)|? and integrating over space yields

1
V;(Ig]LUI xC]U + Z M]ZU <VXI§ZL0'I - 5 (IEXCZ'U + ﬂicz'a)) ’ (100)
where
o r 1 X
Vs, = [ ar il 2| i 0) 23 (i (1) + s () (101)
and )
Jzo' . /d3 ‘90]0— | |:J)ZU( )| . (102)

The term corresponding to the highest occupied orbltal ©N, o has been excluded from the
sum in Eq. (100) because Vi§' . = fixen, o, which will be proven in the next section. The

remaining unknown constants (Vxlgjf Uxcio) are determined by the linear equation

No—1
z 1 i 1/ _

Z (5_12 - sz'a) (VXIE}UI - 5 (uxcz’a + u;cio)) (VXSC]U - 5 (uxcja + u;kccja)> ) (103)
i=1

with j = 1,... N, — 1. Solving Eq. (103) and substituting the result into Eq. (99), we
obtain an explicitly orbital dependent functional. The approximation 98 might appear
rather crude. However, it can be justified by a much more rigorous derivation, showing
that the KLI equation can be interpreted as a mean-field type approximation [6, 18].
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3.2 Asymptotic properties of the KLI potential

In this section we shall demonstrate that the above rigorous properties of the full OEP
discussed above are preserved by the KLI approximation. As for the OEP equation, we first
write the KLI approximation (99) separately for the exchange and correlation potentials:

No'
> 10io () (VM (x) = Usio (r) — (Vi = Usio) ) = 0 (104)
i=1
No'
> 0ie ()2 (VEM (2) = Ueig (x) — (VAT - Ui ) ) =0 . (105)
i=1

where, for convenience, we have introduced

1

Uxio (r) = 9 (Uxio (T) + ;o (T)) (106)
and 1
Ueio (r) = 5 (teio (r) + ugio (r)) (107)

in order to deal with real-valued quantities only. Following the argument given in the
beginning of section 2.2.1 (Egs. (40) - (48)) we can assume without restriction that

Vg () =3 0 (108)
Vi) =30 (109)
Ucio(r) =30 . (110)

This is because the structure of Egs. (104) and (105) is again such that an additive constant
in the potentials (108) - (110) cancels out. Of course, Eq. (110) is valid only for those
approximate orbital functionals E.[{¢;s}] leading to bounded functions u;,(r) for 7 — oo
(cf. condition (37)).

In order to determine the asymptotic form of the KLI-x-only potential VXM (r), we first
investigate the asymptotic behavior of the term Y27 iy (r)|? “tyio (r) appearing in the
KLI equation (104): By Egs. (69) and (70) the expression

lon,o(r )| UxN, o ( Z lpio (r | Uxio (T)
can be written as
Nys—1 N,
= |en,o(r )| UxN, o (r) + Z Z‘Pw <P]g )Kjio (r)
i=1 j=1
Ns—1 N, *
N = <)0’LO' ona(r)
— oy @) { s, o) + (L) (20 ) Koo )
| g | ( X g ZZI JZ]- (PN a (PNO_O,(I') Jro

Since K i, (r) decays as an inverse power the double sum over ¢ and j must be asymptotically
dominated by the term with : = N, — 1, j = N, so that

PO(No—1)o (L)

oo 2
|90NUU( )| (uxNoa(r) + (PNJU(I')

KN(,(NU—I)U(I')> .
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The KLI equation (104) then yields

No
> i 0) [ VEH®) = o (1) — (VEH Ui, )|
i=1
S o r) P [ VEVE) — U, () = (VEE, — Ui, )

P(No—1)o(T)
+ | —————K _1elr) +cc.
( ‘PNaa(r) Ng(Ng—1) (r) )

b3 e (i) e (v 0))] =0

i=1 |(PNUU(r)
(111)

Since the KLI equation must be satisfied in the asymptotic region, the expression in square
brackets on the right-hand side of Eq. (111) must vanish identically for » — oco. The
term involving ¢(y, —1)¢(r)/®nN,o(r) cannot be canceled by any of the terms involving
|0io (0)2/| 0N, o ()] because the latter decay more rapidly. From this we conclude that

VEL (£) — Un, o (r) — (V‘fv“ _ rz(NGU)

r—0o (p(NO'—l)a(r)

A _7¢N (r) KNO—(NO-—].)O'(I.) + c.c.
-0
r—00 (73 17 *—ﬂl —m) —(B(N. —1)0—B )r
5 —p P(Ng-1)o Ngo e (Ng—1)oc “PNgo (112)

where, in the second step, we have used Egs. (53) and (72). Uxn,+(r) goes to zero asymp-
totically (cf. Eq. (74)) and the arbitrary additive constant in V.5 (r) had been fixed in such
a way that V.EVI(r) vanishes asymptotically (cf. Eq. (108)). Hence Eq. (112) immediately
implies that

VXIR’LIO' = UxNyo (113)

and thereby

(é_;_m)

VXIELI(I') — Uy, o(r) T2 ' B(Ne-1)0 PNgo e~ Bg—1)0=BNgo)T (114)

We thus conclude that both the lemma of section 2.2.1 and the theorem 1 in section 2.2.2
are preserved in the KLI approximation. Once again, Egs. (74) and (114) immediately
imply that [6, 15, 16]

1
XL 2 (115)
T

For the correlation potential VXM (r) the considerations are even simpler. Dividing the
KLI equation by |pn,(r)|? we find:

Ns—1

0= V;IU{LI(I') - UcNaa( CNaa + Z ‘L()j\;a (‘/;IéLI(I') - Ucia(r) — Cio') (116)
where
Cio :=VEM _ Uiy . (117)
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By Egs. (53), (109) and (110) all the r-dependent functions in (116) vanish asymptotically.
Since the KLI equation (116) must be satisfied for r — oo as well we readily conclude that

Cn,o =0 (118)
so that
V;:IéLI(r) - UCN a Z |J;ija (Cia - Vca( ) UCI%JI( )) . (119)

If C(n,-1)0 # 0, the right-hand side of (119) is asymptotically dominated by the i = (N,—1)
term and we obtain

__ 2 @ _2
VL) ~ U, o(6) "2 Gy ayor oot Phee ) 200 e (120)

If C(n,-1)s = 0, the right-hand side of (120) is an upper bound of |[VEL(r) — Uen,o(r)|
for 7 — oo. We note that VEM(r) and Uey,,(r) approach each other exponentially fast
for r — oo with the same exponential function as theorem 2 predicts for the full OEP.
However, the power of  multiplying the exponential function in (120) differs by 1 from the
power in theorem 2.
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