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Abstract Charge transport through a nanoscale junction
coupled to two macroscopic electrodes is investigated for the
situation when bound states are present. We provide numer-
ical evidence that bound states give rise to persistent, non-
decaying current oscillations in the junction. We also show
that the amplitude of these oscillations can exhibit a strong
dependence on the history of the applied potential as well
as on the initial equilibrium configuration. Our simulations
allow for a quantitative investigation of several transient fea-
tures. We also discuss the existence of different timescales
and address their microscopic origin.

PACS 05.60.Gg · 72.10.-d · 73.23.-b · 73.63.-b

1 Introduction

In order to describe electronic transport through mesoscopic
or nanoscopic devices, a quantum description of transport
is essential. A seminal quantum theory of transport is the
Landauer–Büttiker formalism [1, 2], which expresses the
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conductance of a device in terms of the quantum-mechanical
transmittance of (noninteracting) electrons at the Fermi en-
ergy.

In recent years and spurred by experimental progress in
transport measurements through single molecules [3], the
Landauer–Büttiker formalism has been combined [4–12]
with (static) density functional theory which allows to take
the atomic structure of both the molecule and the contacts
into account. For a recent critical review of this methodol-
ogy, the reader is referred to Ref. [13].

The Landauer–Büttiker formalism focuses on the de-
scription of steady-state transport and assumes that for a
system which is driven out of equilibrium by a direct cur-
rent (DC) bias, a DC current will eventually develop, which
means that the dynamical formation of the steady state is not
proved but rather taken for granted. The question how the
system dynamically reaches a steady state has been inves-
tigated both numerically [14–17] and theoretically [18, 19].
Using nonequilibrium Green functions (NEGF) techniques
it has been shown [19] that the total current (and density)
approaches a steady value provided that the local density of
states is smooth in the device region. Such value is (1) in
agreement with the Landauer formula and (2) independent
of the initial equilibrium configuration and the history of
the applied bias. For a steady state to develop the condi-
tion on the local density of states excludes the presence of
bound states. Recently, the inclusion of bound states in time-
dependent quantum transport has been studied in Ref. [20]
and further been addressed in subsequent work [21]. There it
is demonstrated that if the DC biased Hamiltonian supports
two or more bound states, the long-time limit of the current
consists of two terms: a steady-state contribution given by
the Landauer formula and an additional, dynamical contri-
bution responsible for undamped current oscillations. The
frequencies of these oscillations are given by the differences
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between two bound-state energies and, interestingly, the am-
plitudes depend on both the initial state and history of the
time-dependent perturbation.

In the present work, the history as well as the initial-state
dependence of the dynamical part of the current is investi-
gated numerically in detail. As a tool for our numerical cal-
culations we use a recently developed algorithm [14] which
allows for the time propagation of quantum transport sys-
tems according to the Schrödinger equation.

The paper is organized as follows. In Sect. 2 we sum-
marize the results of Ref. [21] which are relevant for the
discussion of our findings and we briefly describe the cen-
tral ideas of the time-propagation algorithm. In Sect. 3 we
present our numerical results which not only confirm the ex-
istence of the undamped current oscillations but also allow
to identify additional internal transitions contributing to the
transient behavior of the driven system. We investigate the
dependence of the current oscillations on various parameters
and initial conditions and provide theoretical explanations
of the observed behavior. Finally, we recapitulate our main
results in Sect. 4.

2 Two approaches to time-dependent transport

In this Section we briefly describe two alternative ap-
proaches to time-dependent transport in a typical electrode–
device–electrode geometry: nonequilibrium Green func-
tions (NEGF) and direct solution of the time-dependent
Schrödinger equation. As was already pointed out within
the former approach [20, 21], quantum transport in systems
of noninteracting electrons exhibits persistent current- (and
density-) oscillations if two or more bound states are present
in the biased system. Here, we use the latter approach to
address several issues about such bound-state oscillations.
A particularly interesting feature of them is the fact that
their amplitude depends on the entire time evolution as the
system is driven out of equilibrium (memory effects).

2.1 Nonequilibrium Green functions

We consider a quantum system of noninteracting electrons
which consists of a central device (e.g., a quantum point
contact or a single molecule plus a few atomic layers of
the left and right electrodes) and two semi-infinite reser-
voirs (left and right electrodes). As an initial state we use
the one proposed by Cini [18]: all parts of the system, i.e.,
left lead (region L), central device (region C), and right lead
(region R), are initially (at t ≤ 0) connected and in a well-
defined equilibrium configuration with a unique temperature
and chemical potential (thermodynamic consistency). In this
initial state, the charge density of the electrodes is perfectly
balanced and no current flows through the junction.

For noninteracting electrons at zero temperature, the ini-
tial state is a Slater determinant of eigenstates of the entire
contacted system with eigenenergies smaller than the Fermi
energy. At time t > 0 the system is driven out of equilibrium
by exposing it to an external time-dependent potential which
is local in time and space. For example, we may switch on
an electromotive force in a such way that the potential drop
is entirely limited to the central region. The boundaries of
the open quantum system are chosen in a way that the den-
sity outside the region C is accurately described by an equi-
librium bulk density. The time-dependent perturbation may
cause a current flow through the device. The total current
from region α = L,R can be calculated from time deriva-
tive of the total number of particles in α:

Iα(t) = −e

∫
α

dr
d

dt
n(r, t), α = L,R, (1)

where n(r, t) is the time-dependent electron density and
the space integral extends over region α (e is the electron
charge). Assuming no direct coupling between the left and
right electrodes, the single-particle Hamiltonian of the entire
contacted system can be written as:

H (t) =
⎡
⎣HLL(t) HLC 0

HCL HCC(t) HCR

0 HRC HRR(t)

⎤
⎦ . (2)

The diagonal blocks of the above matrix are obtained by pro-
jecting the full Hamiltonian H onto the corresponding re-
gion. The off-diagonal blocks in (2) account for the coupling
between the device region C and the leads and, for simplic-
ity, we assume them to be time-independent. For instance,
in a real-space representation using a finite-difference dis-
cretization of the kinetic energy, the off-diagonal elements
of H are simply given by the off-diagonal elements of the ki-
netic energy operator. (Model systems with time-dependent
couplings were studied, e.g., in Ref. [22].)

One way to deal with nonequilibrium problems is pro-
vided by the NEGF theory. From the equation of motion
of the Keldysh–Green function one can rewrite the current
Iα(t) of (1) in terms of the lesser Green function projected
onto different subregions as:

Iα(t) = 2e Re Tr
[
G<

Cα(t, t)H αC

]
, (3)

where Tr denotes the trace over a complete set of states in the
central region. The lesser Green function can be expressed
[18, 19, 23–25] in terms of retarded and advanced Green
functions as

G<(t; t ′) = GR(t;0)G<(0;0)GA(0; t ′). (4)

The initial condition is G<(0;0) = if (H 0) where f (ω) =
(exp(β(ω − μ)) + 1)−1 is the Fermi distribution function
and H 0 is the (time-independent) Hamiltonian for t < 0.
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It can be shown [25] that in a DC biased system the total
time-dependent current approaches a steady value provided
the local density of states in region C is smooth. In this case,
the steady current is given by:

I
(S)
L = lim

t→∞ Iα(t)

= e

∫
dω

2π

[
f

(
ω − U∞

L

) − f
(
ω − U∞

R

)]
T (ω). (5)

In the above equation U∞
α is the value approached by the

bias in lead α when t → ∞ and T (ω) = Tr[GR
CC(ω)�L(ω)×

GA
CC(ω)�R(ω)], where �α(ω) = −2 Im[�R

α (ω)] and GR/A
CC

are the retarded and advanced Green functions projected
in region C. �R

α (ω) = HCαgR
αα(ω)H αC is the embedding

self-energy with the retarded Green function of lead α,
gR

αα(ω) = (ω − H 0
αα − U∞

α + i0+)−1. The steady current
does not depend on the initial Hamiltonian (the memory of
different initial conditions is completely washed out) and is
also independent of the history of the applied bias (memory-
loss theorem) [19].

The above scenario changes drastically if the Hamil-
tonian H∞ := limt→∞ H (t) has two or more bound eigen-
states. In this case the long-time limit of the current has two
contributions [21]:

lim
t→∞ Iα(t) = I (S)

α + I (D)
α (t) . (6)

In addition to the steady-state contribution I
(S)
α given by (5)

one finds a dynamical, explicitly time-dependent contribu-
tion I

(D)
α which can be written as

I (D)
α (t) = 2e

∑
b,b′

fb,b′Λ(α)

b,b′ sin
[(

ε∞
b − ε∞

b′
)
t
]
. (7)

In (7) the summation is over all bound states of the final
Hamiltonian H∞ and I

(D)
α oscillates with frequencies given

by the differences of the bound-state eigenenergies. The
quantities Λb,b′ and fb,b′ are defined according to

Λ
(α)

b,b′ = TrC
[∣∣ψ∞

bC

〉〈
ψ∞

b′C
∣∣�A

α (ε′
b)

]
, (8)

and

fb,b′ = 〈ψ ′
b|f

(
H 0)|ψ ′

b′ 〉 . (9)

The state |ψ∞
bC〉 is the projection of the bound eigenstate

|ψ∞
b 〉 of the biased Hamiltonian H∞ onto the central re-

gion. The state |ψ ′
b〉 is related to |ψ∞

b 〉 by a unitary transfor-
mation:

⎡
⎣ |ψ ′

bL〉
|ψ ′

bC〉
|ψ ′

bR〉

⎤
⎦ =

⎡
⎣eiΔ∞

L 1L 0 0
0 MC 0
0 0 eiΔ∞

R 1R

⎤
⎦

⎡
⎣ |ψ∞

bL〉
|ψ∞

bC〉
|ψ∞

bR〉

⎤
⎦ , (10)

with

Δ∞
α = lim

t→∞

∫ t

0
dt ′

(
Uα

(
t ′
) − U∞

α

)
, (11)

MC a unitary “memory matrix” with the same dimension
as the number of degrees of freedom employed to describe
region C and 1α the identity matrix projected onto region
α = L,R. The memory matrix depends on the history of
the time-dependent perturbation and is defined through the
equation below

lim
t→∞ GA

CC(0; t) = MC lim
t→∞ ḠA

CC(0; t), (12)

where ḠA
CC(0; t) is the projection onto region C of the ad-

vanced Green function ḠA(0; t) = i exp(iH∞t).
A few remarks about the central result in (6) are in or-

der. First, we wish to emphasize again that no steady-state
current develops if the biased Hamiltonian H∞ has bound
eigenstates. The current oscillations given by (7) are per-
sistent, i.e., they do not decay in time. Second, in contrast
to the case without bound states, the asymptotic current de-
pends both on the initial equilibrium configuration and the
history of the applied bias and gate voltage through the co-
efficients fb,b′ of (9). For sudden switching of the bias and
gate voltage Δ∞

α = 0 and MC = 1C (1C being the identity
matrix projected onto region C), and the matrix in (10) re-
duces to the identity matrix, while other switching processes
yield different memory matrices and hence different ampli-
tudes of the current oscillations, see Sect. 3 for a detailed
study of the history dependence. Third, the NEGF formal-
ism described in this section can be combined with Time-
Dependent Density Functional Theory [26, 27] (TDDFT) to
include exchange and correlation effects in the calculated
density and current. In this theory the steady-state assump-
tion is consistent with the TDDFT equation for the total cur-
rent provided the density of states in region C is a smooth
function [25].

If, on the other hand, bound states are present in the
biased Hamiltonian, two scenarios are conceivable. In the
first scenario the exact Kohn–Sham potential in the long-
time limit converges to a time-independent potential sup-
porting bound states. In this case the proof of Ref. [21] ap-
plies leading to oscillating currents for t → ∞. This may be
well consistent with a time-independent Kohn–Sham poten-
tial for t → ∞, because the exact Hartree plus exchange-
correlation potential may well become time-independent
even if the density is oscillatory. Moreover, we would like
to point out that the proof of Ref. [21] does not make any
statement about the amplitude of the oscillations. Therefore
it is also possible that a time-independent Kohn–Sham po-
tential (in the long-time limit) supporting two bound states
leads to density and current oscillations with a negligible
amplitude.
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However, it is also conceivable that the exact Kohn–
Sham potential is time-dependent, featuring the frequencies
of the bound-state energy differences. In that case the den-
sity will again be time-dependent for t → ∞. This situa-
tion can even be captured by simple exchange-correlation
functionals which are local in time such as, e.g., TDLDA or
TDGGA.

On one hand, the oscillations of the effective potential in
region C give rise to new conductive channels, an effect that
cannot be captured in any static approach. On the other hand,
the asymptotic (t → ∞) density depends on the occupation
coefficients fb,b which in turn depend on the history of the
TDDFT potential. Thus, history-dependent effects may be
observed even at the level of the adiabatic local density ap-
proximation. Finally we emphasize that the above conclu-
sions are not limited to TDDFT but also apply to any other
single-particle theory of electrons such as, e.g., Hartree–
Fock theory. Similarly, they also apply to a single-electron
theory of coupled electronic and nuclear motion, where the
time evolution of the nuclei is treated in the Ehrenfest ap-
proximation and thus the potential acting on the electrons
depends parametrically on the (time-dependent) nuclear co-
ordinates. In this latter case the presence of a self-consistent
oscillatory solution in a Holstein wire connected to one-
dimensional noninteracting leads was observed in Ref. [28].

2.2 Direct propagation of the time-dependent Schrödinger
equation

Calculating the time-dependent current in terms of the
Green function projected onto the central region amounts
to solving either the Keldysh–Dyson integral equations [29,
30] or the integro-differential Kadanoff–Baym equations
[31, 32]. In this work we use an alternative approach which
is based on solving the time-dependent Schrödinger equa-
tion for the initially occupied one-particle states [14]. An
advantage of the latter approach over the former ones is that
the wavefunctions depend only on one time argument as op-
posed to the double time dependence of the Green function.
This algorithm has recently also been used to study electron
pumping by direct time propagation [33].

For noninteracting electrons at zero temperature the total
current from region α of (1) can alternatively be expressed
as a surface integral

Iα(t) = −e
∑
occ

∫
Sα

dσ n̂ · Im
[
ψ∗

n (r, t)∇ψn(r, t)
]
, (13)

where n̂ is the unit vector perpendicular to the surface el-
ement dσ , the surface Sα is perpendicular to the longitu-
dinal geometry of our system and ψn(r,0) are the eigen-
states of H (t < 0). The electrode–junction–electrode sys-
tem is infinitely extended and nonperiodic. In practice, of
course, we can only deal with finite systems and therefore

we only propagate the initial wavefunction projected onto
the central region C. The presence of the leads is taken into
account by applying the correct boundary conditions. It is
worth to note that even for interacting electrons one can
use (13) to compute the current through the junction if the
single-particle orbitals ψn(r, t) are the Kohn–Sham orbitals
of time-dependent density functional theory.

For a description of the algorithm proposed in Ref. [14],
it is convenient to write Hαα(t), with α = L,R, as the sum
of a term H 0

αα = H αα(0) which is constant in time and an-
other term Uα(t) which may be explicitly time-dependent,
Hαα(t) = H 0

αα +Uα(t). In configuration space Uα(t) is di-
agonal at any time t since the potential is local in space. Fur-
thermore, the diagonal elements Uα(r, t) are spatially con-
stant for metallic electrodes. Thus, Uα(t) = Uα(t)1α and
UL(t)−UR(t) is the total potential drop across the junction.
The total Hamiltonian is H (t) = H̃ (t) + U (t) with

H̃ (t) =
⎡
⎣H 0

LL HLC 0
HCL HCC(t) HCR

0 HRC H 0
RR

⎤
⎦

and

U(t) =
⎡
⎣UL(t)1L 0 0

0 0 0
0 0 UR(t)1R

⎤
⎦ . (14)

In this way, the only term in H̃ (t) that depends on t is
HCC(t). For any given initial one-particle state |ψ(0)〉 =
|ψ(0)〉, we calculate |ψ(tm = m�t)〉 = |ψ(m)〉 by employ-
ing a generalized form of the Cayley method (atomic units
are used throughout)

(
1 + iδH̃

(m))1 + i δ
2U (m)

1 − i δ
2U (m)

∣∣ψ(m+1)
〉

= (
1 − iδH̃

(m))1 − i δ
2U (m)

1 + i δ
2U (m)

∣∣ψ(m)
〉
, (15)

with H̃
(m) = 1

2 [H̃ (tm+1) + H̃ (tm)], U (m) = 1
2 [U (tm+1) +

U (tm)] and δ = �t/2. The above propagation scheme is uni-
tary (norm conserving) and accurate to second-order in δ.
From (15) we can extract an equation for the time-evolved
state in region C. After some algebra, one ends up with an
equation which gives the wave function in region C at time
step m + 1 in terms of the wave function in region C at
the previous time step and two additional terms (source and
memory term):

∣∣ψ(m+1)
C

〉 = 1C − iδH
(m)
eff

1C + iδH
(m)
eff

∣∣ψ(m)
C

〉 + ∣∣S(m)
〉 − ∣∣M(m)

〉
. (16)

The effective Hamiltonian H
(m)
eff of region C is defined ac-

cording to H
(m)
eff = H

(m)
CC − iδHCL(1 + iδH 0

LL)−1HLC −
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iδHCR(1 + iδH 0
RR)−1HRC , where H

(m)
CC = 1

2×
[HCC(tm+1) + HCC(tm)]. The source term |S(m)〉 depends
on the initial wavefunction in region α = L,R and reads

∣∣S(m)
〉 = − 2iδ

1 + iδH
(m)
eff

∑
α=L,R

Λ
(m,0)
α

u
(m)
α

HCα

× (1 − iδH αα)m

(1 + iδH αα)m+1

∣∣ψ(0)
α

〉
, (17)

with

u(m)
α = 1 − i δ

2U
(m)
α

1 + i δ
2U

(m)
α

and Λ(m,k)
α =

m∏
j=k

[
u(j)

α

]2
. (18)

The memory term |M(m)〉 is responsible for the hopping in
and out of region C. It depends on the wavefunction in the
device region at previous time steps and reads

M(m) = − δ2

1 + iδH
(m)
eff

∑
α=L,R

m−1∑
k=0

Λ
(m,k)
α

u
(m)
α u

(k)
α

× [
Q(m−k)

α + Q(m−k−1)
α

](∣∣ψ(k+1)
C

〉 + ∣∣ψ(κ)
C

〉)
, (19)

with Q(m)
α = HCα[(1 − iδH αα)m/(1 + iδH αα)m+1]H αC .

For more details on the implementation of the algorithm the
reader is referred to Ref. [14].

3 Numerical results

In this section we present the results of our numerical sim-
ulations for simple one-dimensional model systems which
support two bound states in the long-time limit. Of partic-
ular interest will be the dynamical part of the current and
the dependence of the amplitude of the bound-state oscilla-
tions on the history of the time-dependent potential and on
the initial state. We also identify single-particle transitions
other than between the bound states which are relevant to
understand the shape of the transient current.

The time-dependent one-dimensional Hamiltonian is
given by

H(x, t) = −1

2

d2

dx2
+ U0(x) + U(x, t) =: H 0(x) + U(x, t).

(20)

For times t ≤ 0 the Hamiltonian is H 0(x) and the system
is in its ground state. At t = 0 the system is driven out
of equilibrium by the time-dependent potential U(x, t). We
choose the time-dependent perturbation in a such way that
for t → ∞ the Hamiltonian globally converges to an asymp-
totic Hamiltonian, which we denote with H∞(x).

The time-dependent perturbation U(x, t) can be written
as a piece-wise function of the space variable x. Let Uα(t)

be the applied bias in region α = L,R and Vg(x, t) the gate
voltage applied to region C. The latter may depend on both
position x and time t . Then

U(x, t) =
⎧⎨
⎩

UL(t), −∞ < x < xL,

Vg(x, t), xL < x < xR,

UR(t), xR < x < ∞,

(21)

with xL and xR the positions of the left and right interfaces
respectively. In our numerical implementation we discretize
H on a equidistant grid and use a simple three-point dis-
cretization for the kinetic energy. In all systems studied be-
low the simulations have been performed by considering a
propagation window which extends from xL = −1.2 a.u. to
xR = 1.2 a.u. and a lattice spacing �x = 0.012 a.u. The oc-
cupied part of the continuous spectrum ranges from k = 0
to kF = √

2εF and it is discretized with 200 k-points. All
occupied states are propagated from t = 0 to t = 1400 a.u.
using a time step of 2δ = 0.05 a.u. In all the numerical exam-
ples studied below the final Hamiltonian supports two bound
states and the resulting current in the long-time limit then is

I (t) = I (S) + Iosc(x) sin(ω0t) (22)

and, on top of the steady current I (S), has an oscillating part
with only one frequency ω0 given by the eigenenergy differ-
ence of the two bound states. It is also worth mentioning that
the amplitude Iosc of this current oscillation depends on the
position (see (8)) while the steady-state current is position-
independent.

3.1 Bound state oscillations and transients

As for a first example, we study a system with an initial po-
tential U0(x) = 0. Initially, the system is in the ground state
with Fermi energy of εF = 0.1 a.u. All wavefunctions of the
ground-state Slater determinant are extended one-particle
states with energy between 0 and εF. At t = 0, the system
is suddenly driven out of equilibrium by switching on a po-
tential U(x, t) which consists of a constant bias in the left
lead, UL = 0.1 a.u., and a constant gate voltage in the cen-
tral region, Vg = −1.4 a.u. The biased Hamiltonian has two
bound eigenstates with energies of ε∞

b,1 = −1.032 a.u. and
ε∞
b,2 = −0.133 a.u. From the discussion of the previous Sec-

tion we expect that a steady state cannot develop and that
the time-dependent current exhibits an oscillatory behav-
ior with frequency being ω0 = ε∞

b,2 − ε∞
b,1. This is indeed

confirmed by our numerical simulations, as one can see in
Fig. 1, where we plot the modulus of the discrete Fourier
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Fig. 1 Modulus of the discrete Fourier transform of the current for
Vg = −1.4 a.u. and a constant bias in the left lead of UL = 0.1 a.u.
The inset shows a magnification of the region with bound-continuum
transitions from the bound state with higher energy to the Fermi energy.
Different curves correspond to different time intervals

transform of the time-dependent current. The latter quantity
is defined according to

I (ωk) = 2δ

π
√

2N0

np+N0∑
n=np

I (2nδ)e−iωknδ, ωk = 2πk

N0δ
. (23)

We have computed I (ωk) for different values of np =
(4 + 2p) × 103, p = 0,1,2,3,4, and N0 = 16 × 103. Dif-
ferent values of p correspond to different time intervals
t ∈ (tp, tp + T0) with tp = (2 + p) × 100 a.u. but with the
same duration T0 = 800 a.u. The coefficient in (23) is de-
fined such that the height of the peak I (ω) at ω is equal
to the amplitude of the oscillations with frequency ω. Be-
sides the zero-frequency peak (not shown) due to the nonva-
nishing DC current, I (ω) shows a dominant peak at the fre-
quency of ω0 = ε∞

b,2 − ε∞
b,1 of the transition between the two

bound states. As expected, the height of this peak remains
unchanged as p varies from 0 to 4, i.e., the current oscilla-
tion associated with this transition remains undamped. We
emphasize that they are an intrinsic property of the biased
system.

Closer examination of Fig. 1 reveals four extra peaks
which are related to different internal transitions. The first
and the last pairs of peaks occur at frequencies which corre-
spond to transitions between the bound states and the lower
edge of the unoccupied part of the continuous spectrum
in the left and right lead of the biased system, ε∞

b,i → εF,
and ε∞

b,i → εF + UL, with i = 1,2. These sharp struc-
tures (mathematically stemming from the discontinuity of
the zero-temperature Fermi distribution function) give rise
to long-lived oscillations of the total current and density.
These oscillatory transients die off very slowly, the height of
the peaks decreases with increasing tp empirically as 1/tp
(power-law behavior). In Fig. 1, as well as in all follow-

Fig. 2 Modulus of the discrete Fourier transform of the current of a
translationally invariant initial Hamiltonian which is perturbed at t = 0
by a sudden bias in the left lead of UL = 0.15 a.u. and the system
evolves towards a steady state. Then, at T = 150 a.u. a gate voltage
Vg(x) = −vg = −1.02 a.u. is suddenly turned on. (The inset shows
a schematic sketch of the time evolution of the applied bias and gate
potentials.) The first peak appears at ω = 0.686 a.u. which is the mod-
ulus of the energy of the bound eigenstate of the final Hamiltonian
(H [x, t > T ] has one bound eigenstate). Different curves correspond
to different Fermi energies

ing examples, we report results for the current calculated
in the center of the device region. However, it is worth to
mention that the amplitude of the current oscillations de-
cays exponentially in the leads as e

−(kα
b,1+kα

b,2)|x−xα | , where

kα
b,i =

√
2(|ε∞

b,i | + Uα) with i = 1,2, α = L,R and x is a

point in lead α. Consequently, the dynamical part of the cur-
rent vanishes deep inside the leads (away from where the
bound states are localized).

In the second example, we consider a system described
by the translationally invariant Hamiltonian H(x, t < 0) =
− 1

2
d2

dx2 . At t = 0 we suddenly switch on a constant bias in
the left lead UL = 0.15 a.u. and propagate until T = 150
a.u., when a steady state is reached. At t = T a gate volt-
age Vg(x) = −vg = −1.02 a.u. is suddenly turned on and
the Hamiltonian H(x, t > T ) has one bound eigenstate at
energy ε∞

b = −0.686 a.u. The depth vg is chosen in such a
way that if one slightly increases vg a second bound eigen-
state appears. Since the system has only one bound state, the
oscillations die out slowly as 1/(t − T ) and eventually an-
other steady state develops. In order to understand the tran-
sient oscillations, we have studied the Fourier transform of
the current as shown in Fig. 2. There the first peak appears at
the frequency of ω = |ε∞

b,1| which is a transition between the
bound level and the bottom of the continuum. As such, the
position of this peak remains unchanged for different Fermi
energies. Besides this transition one observes other peaks
whose positions shift as the Fermi energy is changed. They
correspond to transitions from the bound level to the top of
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the left and right continua and, as for the first transition, they
decay as 1/(t − T ).

3.2 Dependence of the current oscillations on the initial
conditions

The dynamical part of the current depends on the initial
Hamiltonian H 0(x) through the amplitudes fb,b′ of (9). In
the first example of the previous section the Hamiltonian at
negative times, H 0(x), had no bound eigenstates. At positive
times a gate voltage and a bias in the left lead were suddenly
switched on and the Hamiltonian at positive times is equal to
H∞(x) and has two bound eigenstates. We now consider a
system with two bound eigenstates for t ≤ 0 and exposed to
a DC bias for t > 0. Specifically, we start with a static poten-
tial describing a quantum well of a depth of U0(x) = −1.4
a.u. for |x| < 1.2 a.u. The ground state of the system is the
Slater determinant of all the extended eigenstates with an
energy up to εF = 0.1 a.u. and of the two bound eigenstates
at energies of ε0

b,1 = −1.035 a.u. and ε0
b,2 = −0.156 a.u. At

t = 0 a DC bias UR = 0.1 a.u. is suddenly switched on in the
left lead and the Hamiltonian H(x, t > 0) = H∞(x) is equal
to the final Hamiltonian studied in the previous section. The
resulting time-dependent currents for these two systems are
shown in Fig. 3.

As a consequence of the fact that H∞(x) is the same
in both systems the time-dependent currents should oscil-
late with the same frequency, a result which is confirmed by
our numerical calculation. The amplitude of this oscillation,
however, depends on the initial equilibrium configuration as

Fig. 3 Comparison of the time-dependent current for systems with
and without bound states at negative times. The inset shows a magni-
fication of the time-dependent current of the system with two initial
bound states. Since both systems have the same final Hamiltonian, the
frequencies of the current oscillations are the same while the amplitude
of the oscillations for the quantum well (with two bound state initially)
is smaller by almost two orders of magnitude than for the system with-
out initial bound states

well as on how H(x, t) approaches the asymptotic Hamil-
tonian H∞(x). As one can see from Fig. 3, the amplitude is
much larger in the system with no initial bound states. This
difference can be explained qualitatively by looking at (9).
In both systems the time-dependent perturbation is switched
on suddenly. Therefore, the transformation matrix of (10)
becomes the unit matrix and (9) reduces to

fb,b′ = 〈
ψ∞

b

∣∣f (
H 0)∣∣ψ∞

b′
〉
. (24)

When the perturbation is small like in the case of the system
with two initial bound states (H 0 ≈ H∞), the eigenfunc-
tions |ψ∞

b 〉 of H∞ are approximate eigenfunctions of H 0

as well. Therefore f (H 0)|ψ∞
b 〉 ≈ f (εb)|ψ∞

b 〉 and fb,b′ ≈
f (εb)δb,b′ which leads to a vanishing dynamical part of
the current since there only the off-diagonal elements con-
tribute. By contrast, if the applied potential U(x, t) is large,
the overlap 〈ψ∞

b |f (H 0)|ψ∞
b′ 〉 can be quite substantial and

the resulting amplitude of the current oscillation is large.

3.3 Dependence of the current oscillations on the history of
the bias

The amplitude of the bound state oscillations depends,
through the transformation matrix in (10), on the history
of the time-dependent potential which perturbs the initial
state. In this Section we investigate for the first time how
such amplitudes depend on the switching process (history-
dependence effects).

We take the flat potential U0(x) = 0 as an initial poten-
tial and the Fermi energy of εF = 0.2 a.u. At t = 0 a gate
voltage Vg(x) = −1.3 a.u. abruptly lowers the potential in
the center. In addition, a time-dependent bias is applied to
the left lead as UL(t) = UL sin2(ωbt) for t ≤ tb = π

2ωb
and

UL(t) = UL for t > π
2ωb

, where UL = 0.1 a.u.
The final biased Hamiltonian has two bound states with

energies of ε∞
b,1 = −0.933 a.u. and ε∞

b,2 = −0.063 a.u. which
again leads to undamped oscillations in the current.

Choosing tb in a such way that Δ∞
L equals 2π , 4π, . . .

the upper block of the unitary matrix in (10) becomes the
identity matrix in region L. This suggests that the amplitude
of the current oscillations may exhibit a nonmonotonic be-
havior as a function of the switching time. Our numerical
results demonstrate that this is not the case. Figure 4 shows
that the amplitude decreases monotonically as a function of
tb , a trend which is expected in the region of long switching
times (adiabatic switching). Such behavior, however, does
not contradict the analytic results of Sect. 2.1. In fact, the
memory matrix in the central region MC also depends on
the way the bias is switched on through the time-dependent
embedding self-energy needed to calculate GA

CC(0; t), see
(12), and, in general, MC �= 1C when Δ∞

L = 2π, 4π, . . .
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Fig. 4 The amplitude of the current oscillation as a function of the
switching time of the bias. The bias in the left lead is switched accord-
ing to UL(t) = UL sin2(ωbt) for t ≤ tb = π

2ωb
and UL(t) = UL = 0.1

a.u. for later times. The frequency of the current oscillation of
ω0 = ε∞

b,2 − ε∞
b,1 is given by the difference of bound state energies

in the final system which has the values of ε∞
b,1 = −0.933 a.u. and

ε∞
b,2 = −0.063 a.u., respectively. The Fermi energy is εF = 0.2 a.u. and

the gate potential is Vg = −1.3 a.u. The inset shows the potential land-
scape (external potential plus bias plus gate potential) for t < 0, t = 0,
and t > tb

3.4 Dependence of the current oscillations on the history of
the gate voltage

Finally, we present some results to illustrate the depen-
dence of the current oscillations on the switching process
of the gate voltage. Again we start with the constant poten-
tial U0(x) = 0 at equilibrium. At t = 0 a bias is ramped up
abruptly in the left lead and the time-dependent current goes
through some transient which lasts for a few tens of atomic
units. We wait long enough, for a time of T = 150 a.u., for
a steady state to develop. After this time all dependence on
the history of the applied bias is washed out. At t = T a
time dependent gate voltage Vg(x, t) = − vg

tg
(t − T ) is ap-

plied to the region C. The gate voltage decreases linearly
until t = T + tg and remains constant and equal to −vg for
all later times. In Fig. 5 we provide a schematic sketch of
the overall time-dependent perturbation.

The time tg is the switching time. The final Hamiltonian
H∞(x) = H(x, t > T + tg) has two bound eigenfunctions
and the steady state cannot develop.

In Fig. 6 the amplitude of the oscillation versus the
switching time tg is shown for a final depth of the gate
vg = 1.3 a.u. In the upper panel, the bias in the left lead is
fixed to UL = 0.15 a.u. and the Fermi energy is varied from
εF = 0.1 to 0.3 a.u. We first note that in the limit of adiabatic
switching (tg → ∞) the oscillation amplitude tends to zero.
Furthermore, we see that the amplitude reaches a maximum
value for a certain switching time. It is also worth noting that
the amplitudes are generally smaller for larger Fermi ener-

Fig. 5 Schematic sketch of the time evolution of the Hamiltonian.
Starting from an initially constant potential (left), at t = 0 a bias is sud-
denly applied to the left lead and the system evolves towards a steady
state (center). Then, between times T and T + tg , a time-dependent
gate voltage Vg(x, t) = − vg

tg
(t − T ) is switched on in the region C.

For times t > T + tg (right) the Hamiltonian remains constant in time

Fig. 6 The amplitude of the current oscillations as function of the
switching time tg for vg = 1.3 a.u. Upper panel: for fixed bias
UL = 0.15 a.u. and different Fermi energies. Lower panel: for fixed
Fermi energy εF = 0.2 a.u. and different values of the bias. All curves
reach a maximum whose position remains almost unchanged

gies, a behavior which can be explained as follows: let |φn〉
be an eigenstate of H 0 with eigenenergy εn, then
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Fig. 7 The amplitude of the current oscillation as function of the
switching time of the gate. The red (black) curve refers to the initial
ground state with (without) a bound state. The numerical parameters
are εF = 0.1 a.u., UL = 0.15 a.u.

fb,b′ =
∑

εn<εF

〈ψ ′
b|φn〉〈φn|ψ ′

b′ 〉. (25)

As the Fermi energy increases the sum over εn approaches
the sum over a complete set of eigenstates and hence fb,b′
approaches the value 〈ψ ′

b|ψ ′
b′ 〉. This latter quantity vanishes

since the states |ψ ′
b〉 are related to the orthogonal states

|ψ∞
b 〉 by a unitary transformation and hence remain orthog-

onal. The lower panel of Fig. 6 shows the amplitude versus
the switching time of the gate voltage for a fixed Fermi en-
ergy εF = 0.2 a.u. and for different values of the applied
bias. The striking feature of this plot is that the position of
the maximum remains almost unchanged as function of the
bias UL.

As a final example, in Fig. 7 we compare the amplitude
of the oscillations as a function of the switching time tg
for two different initial states with the same Fermi energy
εF = 0.1 a.u. In one case we start, as before, with the con-
stant potential U0(x) = 0, and hence H 0(x) does not have
bound eigenstates. In the other case we start with a quan-
tum well of the depth of U0 = −0.5 a.u. for |x| ≤ 1.2 a.u.
The Hamiltonian H 0(x) in this latter case has one bound
eigenstate. A bias UL = 0.15 a.u. in the left lead is suddenly
switched on in both systems and after a time of T = 150 a.u.
a steady state is attained. For T < t < T + tg a gate volt-
age Vg(x, t) is gradually switched on as before, and for
t > T + tg the gate voltage remains constant and equal to
vg = −1.3 a.u. in the first case and −0.8 a.u. in the sec-
ond case. Hence, both systems have the same asymptotic
Hamiltonian H∞(x). The remarkable difference between
the value of the amplitudes in these cases can be explained
in the same way as in Sect. 3.2.

Interestingly, in the case where the system initially has
one bound state, the amplitude has a maximum for sudden
switching of the gate, i.e., tg = 0 a.u., while in the case with

no initial bound states the maximum appears at a finite value
of tg .

Similarly, we have found a maximum for small tg for
the following situation: We start with an initial state with-
out bound states. At t = 0 a.u. we suddenly apply a bias in
the left lead and wait until a steady state is achieved. Then
we switch on a gate in such a way that one bound state is
created and wait until the associated bound-continuum tran-
sitions have decayed before we add another bound state to
the gate with a switching time tg .

The fact that in this case the largest amplitude for the
current oscillations is found for switching time tg is close
to zero strongly suggests that the position of the maximum
in the oscillation amplitude as function of tg is related to
a transient effect. This is also supported by the following
observation (see Fig. 6): the switching time tg for which the
current oscillations are largest depends on the Fermi energy
(for fixed bias) since the transitions from the bound states to
the top of the Fermi sea obviously depend on εF. At the same
time, the position of this maximum is almost independent of
the bias (for fixed Fermi energy) since the bias only leads to
a slight energy shift for the bound states.

4 Conclusions

In the theory of electronic transport one usually assumes that
the application of a DC bias to an electronic system attached
to two macroscopic electrodes always leads to the evolution
of a steady-state current. Recent theoretical work states [21]
that the presence of bound states leads to qualitatively new
features (current oscillations and memory effects) in the dy-
namics of electronic transport in the long-time limit. These,
as well as transient features, are investigated here in detail
by numerical simulations. In the Fourier transform of the
calculated time-dependent current, one not only finds the
predicted transitions between the bound states in the long-
time limit, but also transitions in the transient regime be-
tween the bound states and the continuum of the leads. We
have shown that the amplitude of the persistent current os-
cillations depends both on the initial state and on the history
of the system. Since a current and a density are related via
the continuity equation, also the time-dependent density in
the long-time limit will therefore be history-dependent. In-
terestingly, these memory effects show up not only in the
dynamical part but also in the time-independent contribution
of the bound states to the density [34].

Our results indicate that in transport calculations special
care has to be taken if bound states are present in the biased
system. A warning flag has already to be raised at the as-
sumption of the evolution to a steady state which is not true
in general. Of course, the theoretical analysis predicts the
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existence of oscillations in the current but makes no state-
ment on their relative importance as compared to the steady-
state contribution. Our results show, however, that the ampli-
tude of the oscillations locally may very well be compara-
ble or even larger than the steady-state current and therefore
cannot be neglected in general. We would also like to point
out that the existence of bound states in biased transport sys-
tems may not be an exotic feature in an experimental situ-
ation. For single molecules attached to metallic leads it is
quite conceivable that some of the molecular orbitals have
energy eigenvalues which lie in an energy gap of the leads.
Those orbitals, which cannot hybridize with any lead states,
remain fully localized and the corresponding local density of
states will exhibit sharp resonances at those energies. In the
case of transport experiments on quantum dots, one could
artificially create bound states by applying a strong attrac-
tive gate potential.

Of course, unlike our model systems, in real systems
one always has interactions (electron–electron, electron–
phonon, etc.) which are expected to lead to a level broad-
ening and hence a damping of the oscillations. The ques-
tion if these oscillations, in principle, can be seen experi-
mentally then becomes a matter of timescales. We empha-
size that ultimately in molecular electronics one wants to
take advantage of the electronic timescale (femtoseconds) to
perform switching processes. For these electronic processes
electron–phonon coupling, which is governed by the nuclear
timescale (hundreds of femtoseconds or picoseconds), is not
important.

Although our numerical simulations were performed for
noninteracting electrons, the conclusions about the dynami-
cal current oscillations apply to any effective single-electron
theory. In particular they also apply to the TD Kohn–
Sham equations which are in principle able to reproduce
the time-dependent density[26] (and the longitudinal cur-
rent via the continuity equation) of an interacting system
if the exact exchange-correlation functional is used. As al-
ready observed in Section 2.1, there are two scenarios how
the presence of bound states can affect the biased Kohn–
Sham Hamiltonian: either the exact Kohn–Sham potential
becomes time-independent for large times although the den-
sity is oscillating, or, alternatively in the large-time limit the
exact Kohn–Sham potential is still time-dependent, automat-
ically leading to a time-dependent density as well.
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