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Abstract

We study the dynamics of the electronic and nuclear degrees of freedom for molecules in strong laser fields using an ansatz for the

wavefunction that explicitly incorporates the electron–nuclear correlation. Equations of motion for this wavefunction are derived on

the basis of the stationary action principle. The method is tested on a one-dimensional model of the Hþ
2 molecule that can be solved

essentially exactly by numerical integration of the time-dependent Schr€odinger equation. By comparison with this exact solution we

find that the correlated approach improves significantly on a mean-field treatment, especially for laser fields strong enough to cause

substantial dissociation. These results are very promising since our method still has a simple orbital structure and can hence be

applied to realistic many-electron molecules.

� 2004 Published by Elsevier B.V.
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1. Introduction

In recent years, laser technology has dramatically improved such that, nowadays, tabletop systems routinely provide

femtosecond laser pulses with intensities in the terawatt regime [1,2]. If atomic and molecular systems are exposed to
such extreme radiation fields, a wealth of – sometimes unexpected – fascinating phenomena occurs, opening up novel

directions in physics and chemistry.

Owing to their ultra-short duration, femtosecond pulses allow for the direct observation of chemical reactions on

the time scale they really occur [3–5]. This has led to tremendous progress in the understanding of chemical (and

biological) processes. Moreover an old chemists’ dream, namely to control and manipulate chemical reactions by

lasers, has become reality [6–8].

By concentrating the radiation energy on the short femtosecond time scale, current laser pulses reach very high

intensities. The field strengths at such intensities are comparable to or even larger than typical atomic or molecular
binding forces. For instance, the electric field by the atomic nucleus on the first bohr orbit of the hydrogen atom has a

field strength of 5.1� 109 V/m corresponding to an intensity of 3.51� 1016 W/cm2 which is an intensity routinely

reached by current high-intensity lasers. Irradiation of atoms and molecules by such intense laser pulses gives rise to

highly nonlinear effects [9–14] such as multiphoton ionization, above-threshold ionization or dissociation, Coulomb

explosion or high-harmonic generation.

As their salient feature, all discussed phenomena are characterized by strong nonlinearities such that perturbative

approaches are inevitably bound to fail. Therefore, an adequate description of strong-field multiphoton processes
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requires a non-perturbative scheme which treats the external laser field and the internal Coulomb forces of the atom or

molecule on equal footing. Whereas, for atomic systems, considerable progress has been made, the situation is far less

advanced for molecules since the additional nuclear degrees of freedom tremendously increase the complexity of the

problem. Traditionally, one expands the total molecular wavefunction in terms of Born–Oppenheimer (BO) states and

solves the resulting time-dependent coupled equations for the nuclei [15]. Typically, the dynamics of the nuclei is
treated on the lowest few potential energy surfaces. Including a larger number of electronic states, which is mandatory

for high intensity fields, leads to increasingly time-consuming calculations. Moreover, ionization processes are very

difficult to treat within this approach. On the other hand, highly excited as well as ionized electrons have been treated

within the clamped-nucleus approximation [16–19]. This approach, however, leaves the nuclei fixed and does therefore

not allow for the description of dissociation dynamics. Due to their inherent limits, none of these approaches can

satisfactorily account for the interplay between electronic excitation and ionization on one hand, and nuclear vibration

and dissociation on the other hand. Recent exact numerical solutions for the strong-field dynamics of the Hþ
2 molecule

[19–24], however, emphasized the need of such a unified treatment. Yet, even for this simplest possible molecule, a full
numerical solution is an extremely demanding task and cannot be applied to larger systems. Therefore, finally aiming

at ab initio description of the strong-field dynamics of larger molecules, one needs to resort to approximations. In this

work we study two different approximations. The first one is a Hartree or mean-field treatment of the electron–nuclear

coupling and the second one employs a more sophisticated explicitly correlated ansatz for the electron–nuclear part of

the full wavefunction. Our treatment, however, still allows for a description of the system in terms of single particle

orbitals. This feature is of great computational advantage for the description of realistic molecules. To test the validity

of our ansatz we evaluate our approximations for a one-dimensional model of the Hþ
2 molecule for which the exact

electron–nuclear wavefunction can be obtained numerically. This approach will lead to valuable insight into the nature
of the electron–nuclear correlation for molecules in strong laser fields. It must be stressed, however, that our ultimate

goal is to find computationally tractable approximations for realistic many-electron molecules.
2. Basic formalism

2.1. The Hartree approach and an explicitly correlated ansatz for the time-dependent wavefunction

To test our proposed approximations in detail, we employ, in this work, a simplified model of the Hþ
2 molecule. In

the model, the dimensionality of the problem is reduced by restricting the motion of the nuclei and the electron to the

direction of the polarization axis of the laser field [25–27]. In the center-of-mass system, the dynamics of this molecule

is governed by the Hamiltonian (employing atomic units)
ĤðtÞ ¼ � 1

M
o2

oR2
þ WnnðRÞ �

1

2le

o2

oz2
þ Wenðz;RÞ þ V̂laserðz; tÞ; ð1Þ
where R and z denote the internuclear distance and the electronic coordinate as measured from the nuclear center of

mass, respectively, and the electronic reduced mass is given by le ¼ 2M=ð2M þ 1Þ where M is the proton mass. Em-

ploying soft-Coulomb potentials, the particle–particle interactions are given by
WnnðRÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ �n
p ; ð2Þ

Wenðz;RÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� R=2Þ2 þ �e

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ R=2Þ2 þ �e

q ð3Þ
with �e ¼ 1 and �n ¼ 0:03. The actual values of these parameters are not very important for our benchmark purposes,

the value �e ¼ 1 is a commonly used standard choice and the value �n ¼ 0:03 is chosen to give a numerically convenient

smoothing of the internuclear repulsion. Furthermore, the laser field is represented in the length gauge,

V̂laserðz; tÞ ¼ qezEðtÞ, where EðtÞ denotes the electric field amplitude and qe ¼ ð2M þ 2Þ=ð2M þ 1Þ. In recent years, the

reduced-dimensional model was successfully used to analyze the strong-field dynamics of atoms and molecules [28–30].

It has been shown that this model reproduces all the salient strong-field effects such as multiphoton and above-

threshold ionization, above-threshold dissociation, or high-harmonic generation. In particular, the model provided
valuable insight in the impact of electron–electron correlation effects on strong-field atomic dynamics, such as in the

description of non-sequential double ionization [31–35] and non-BO phenomena such as the generation of even

harmonics for molecules in intense laser fields [36]. In much the same way, we employ the model to investigate ap-

proximations for the electron–nuclear correlation in the context of molecular strong-field dynamics and we use it in
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particular to benchmark approximations for the wavefunction. Our reference standard will therefore be the solution of

the time-dependent Schr€odinger equation
ðiot � ĤðtÞÞWðR; z; tÞ ¼ 0; ð4Þ

where ĤðtÞ is the Hamiltonian of Eq. (1). Apart from this exact solution we consider two approximate forms of the

wavefunction. To determine the equations of motion for these approximate wavefunctions we employ the stationary-

action principle [37,38]
dA½W� ¼ d
Z t1

t0

dthWðtÞjiot � ĤðtÞjWðtÞi ¼ 0: ð5Þ
Alternatively one may employ the Frenkel variational principle which will lead to the same equations of motion [36].

For any approximate form of the wavefunction W, the stationary-action principle determines the corresponding

equations of motion and thus the (approximate) dynamical behavior of the system. To study the importance of
electron–nuclear correlation we study two different forms for the wavefunction. The simpler one is the uncorrelated

‘‘Hartree’’ or mean-field form
WðR; z; tÞ ¼ vðR; tÞuðz; tÞ: ð6Þ

This wavefunction is a simple product of a nuclear wavefunction v and an electronic wavefunction u. Going beyond

the simple Hartree approach we further propose an explicitly correlated ansatz for the full time-dependent wave-

function of the form
WðR; z; tÞ ¼ vðR; tÞ /1ðzð � R=2; tÞ þ /2ðzþ R=2; tÞÞ: ð7Þ

In Eq. (7), vðR; tÞ denotes the nuclear wavefunction. The electronic degree of freedom, on the other hand, is described

by a linear combination of two time-dependent atomic orbitals, each attached to one of the two nuclei. In other words,

the correlation between the electron and the nuclei is introduced by referring the electron, in the spirit of a Heitler–

London ansatz, to one or the other nucleus. The variationally best orbitals v, /1, and /2 will be determined by
equations of motion following from the stationary-action principle (5), leading to an ‘‘optimized’’ approximate time-

dependent wavefunction. We will in the following refer to the form in Eq. (7) together with its equations of motion as

the correlated time-dependent variational ansatz.

We finally introduce two quantities that play an important role in the calculation of ionization and dissociation

probabilities. These are the electronic density qðz; tÞ and the nuclear density NðR; tÞ defined by
qðz; tÞ ¼
Z

dRjWðR; z; tÞj2; ð8Þ

NðR; tÞ ¼
Z

dzjWðR; z; tÞj2: ð9Þ
The quantity qðz; tÞ gives a probability distribution of finding an electron at the position z as measured from the

nuclear center of mass, whereas NðR; tÞ gives a probability distribution of finding the internuclear distance R. These
quantities are easily evaluated for our model wavefunctions. For the simple Hartree or mean-field approach, Eq. (6)

leads to
NðR; tÞ ¼ jvðR; tÞj2; ð10Þ
qðz; tÞ ¼ juðz; tÞj2; ð11Þ
whereas, from the correlated variational approach, we obtain from Eq. (7)
NðR; tÞ ¼ jvðR; tÞj2
Z

dz /1 zðj � R=2; tÞ þ /2 zð þ R=2; tÞj2; ð12Þ

qðz; tÞ ¼
Z

dRjvðR; tÞj2 /1 zðj � R=2; tÞ þ /2 zð þ R=2; tÞj2: ð13Þ
By integrating these probability distributions over space we will later define the ionization and dissociation proba-

bilities of the molecule in the presence of a laser field.
2.2. The equations of motion

Let us start out by deriving the equations of motion for our approximate wavefunctions. Inserting the Hartree

ansatz (6) into the stationary action principle (5) we find the equations of motion [39]
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iotvðR; tÞ ¼
�
� 1

M
d2

dR2
þ WnnðRÞ þ

Z
dzjuðz; tÞj2Wenðz;RÞ

�
vðR; tÞ; ð14Þ

iotuðz; tÞ ¼
�
� 1

2le

d2

dz2
þ qezEðtÞ þ

Z
dRjvðR; tÞj2Wenðz;RÞ

�
uðz; tÞ: ð15Þ
In this mean field approximation the potentials of the nuclear and electronic wavefunctions are thus found by averaging

the electronic and nuclear densities over the electron–nuclear interaction Wen. Let us now discuss the more sophisticated
correlated ansatz. By employing the time-dependent variational principle (5), we again determine the variationally best

wavefunction of the form (7). To this end, the trial wavefunction (7) is inserted into the action functional (5). This yields
A½v;/1;/2� ¼
Z

dt
Z

dR dz juRðz; tÞj
2vHðR; tÞ iot

��
� T̂n � Ŵnn

�
vðR; tÞ

þ 1

ln

vHðR; tÞ d

dR
vðR; tÞ

� �
uH

R ðz; tÞ
d

dR
uRðz; tÞ

� �
þ jvðR; tÞj2uH

R ðz; tÞ iot

�
� T̂n � Ĥe

�
uRðz; tÞ

�
; ð16Þ
where uRðz; tÞ :¼ /1ðz� R=2; tÞ þ /2ðzþ R=2; tÞ and Ĥe :¼ T̂e þ Ŵen þ V̂laserðtÞ. Note that, due to the dependence of

uRðz; tÞ on special combinations of the nuclear and electronic coordinate, the action of the nuclear momentum operator

on uRðz; tÞ is easily expressed in terms of the electronic momentum operator.

The equations of motion which determine the optimized orbitals v, /1, and /2 are obtained by requiring the action

functional (16) to be stationary with respect to variations of all orbitals, i.e.,
dA½v;/1;/2�
dvHðR; tÞ ¼ 0; ð17Þ

dA½v;/1;/2�
d/H

1 ðz; tÞ
¼ 0; ð18Þ

dA½v;/1;/2�
d/H

2 ðz; tÞ
¼ 0: ð19Þ
At this point it is important to note that the ansatz (7) for the full wavefunction W is invariant under the transfor-

mation
v ! cðtÞ � v; /1=2 !
1

cðtÞ � /1=2; ð20Þ
where cðtÞ is a purely time-dependent but otherwise arbitrary complex function. As a consequence of this invariance

property (20) of the wavefunction, Eqs. (17)–(19) are not sufficient to uniquely determine the time evolution of the

orbitals v, /1, and /2. To fix the freedom expressed in Eq. (20), we need an additional constraint. As a convenient

choice, we may require
hvjotvi ¼ 0; ð21Þ

which fixes the norm and the phase of vðR; tÞ and hence the purely time-dependent function cðtÞ (a similar technique is

used in the so-called time-dependent extended Hartree–Fock method [33,34]). Together with the constraint (21), the

equations of motion (17)–(19) now have a unique solution. We should note that a similar invariance applies to the

Hartree approximation (6), but since within this approximation the equations of motion, Eqs. (14) and (15), for v and

u are hermitian and hence conserve the norm of these orbitals, the function cðtÞ is completely determined by the choice

of the initial wavefunctions. By performing the variations in Eqs. (17)–(19), we obtain
dA
dvHðR; tÞ ¼

Z
dz juRðz; tÞj

2
iot

��
� T̂n � WnnðRÞ

�
vðR; tÞ þ 1

ln

uH

R ðz; tÞ
d

dR
uRðz; tÞ

� �
d

dR
vðR; tÞ

þ uH

R ðz; tÞ iot

��
� T̂n � Ĥe

�
uRðz; tÞ

�
vðR; tÞ

�
; ð22Þ

dA

d/H

1 ðz; tÞ
¼
Z

dR vHðR; tÞ iot

���
� T̂n � Ŵnn

�
vðR; tÞ

�
/1ðz; tÞð þ/2ðzþ R; tÞÞ � 1

2ln

vHðR; tÞ d

dR
vðR; tÞ

� �
d

dz
/1ðz; tÞð

�/2ðzþ R; tÞÞ þ jvðR; tÞj2 iot

�
þ 1

2~le

d2

dz2
�Wenðzþ R=2;RÞ � Vlaser;eðzþ R=2; tÞ

�

� /1ðz; tÞð þ/2ðzþ R; tÞÞ
�
; ð23Þ
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dA

d/H

2 ðz; tÞ
¼
Z

dR vHðR; tÞ iot

��
� T̂n � Ŵnn

�
vðR; tÞ

�
/1ðzð � R; tÞ þ /2ðz; tÞÞ �

1

2ln

vHðR; tÞ d

dR
vðR; tÞ

� d

dz
/1ðzð � R; tÞ � /2ðz; tÞÞ þ jvðR; tÞj2 iot

�
þ 1

2~le

d2

dz2
� Wenðz� R=2;RÞ � Vlaser;eðz� R=2; tÞ

�

� /1ðzð � R; tÞ þ /2ðz; tÞÞ
�
; ð24Þ
where the action of the nuclear kinetic-energy operator on the atomic orbitals is reflected in the change of the electronic
reduced mass le to ~le ¼ 4lnle=ð4ln þ leÞ. For the ease of notation, we introduce the following abbreviations:
hÔie � hÔieðR; tÞ :¼
huRjÔjuRie
huRjuRie

; ð25Þ

hÔin � hÔinðz; tÞ :¼
hvjÔjvin
hvjvin

; ð26Þ
where Ô denotes an arbitrary operator in the relevant Hilbert space and the subscripts ‘‘e’’ or ‘‘n’’ indicate the inte-

gration over the electronic or nuclear coordinate, respectively. Of course, the dependence of (26) on z vanishes if the
operator Ô only depends on the nuclear coordinate.

Employing Eq. (22) in the variation (17) subject to the condition (21) we obtain the nuclear equation of motion:
iotvðR; tÞ ¼ ĥnðR; tÞ
�

� KðtÞ
�
vðR; tÞ ð27Þ
with the effective nuclear Hamiltonian
ĥnðR; tÞ :¼ � 1

2ln

d2

dR2
� 1

ln

d

dR

� 	
e

ðR; tÞ d

dR
þ hĤ � iotieðR; tÞ ð28Þ
and
KðtÞ ¼ hĥninðtÞ: ð29Þ

The purely time-dependent, in general, complex function KðtÞ is introduced to satisfy the constraint (21). From the
nuclear equation of motion (27), it is easily seen that the change in v is always orthogonal to v, as required by

(21).

Analogously, by inserting Eqs. (23) and (24) in Eqs. (18) and (19), we obtain the equations of motion for the elec-

tronic atomic orbitals:
iot/1ðz; tÞ ¼ ĥe;1/1ðz; tÞ þ Q1ðz; tÞ; ð30Þ
iot/2ðz; tÞ ¼ ĥe;2/2ðz; tÞ þ Q2ðz; tÞ; ð31Þ
where
ĥe;1 :¼ � 1

2~le

d2

dz2
þ 1

2ln

d

dR

� 	
n

ðtÞ d
dz

þ Ĥ z
��

þ R
2
;R
�
� T̂e � iot

	
n

ðz; tÞ; ð32Þ

ĥe;2 :¼ � 1

2~le

d2

dz2
� 1

2ln

d

dR

� 	
n

ðtÞ d
dz

þ Ĥ z
��

� R
2
;R
�
� T̂e � iot

	
n

ðz; tÞ ð33Þ
represent the effective electronic Hamiltonians and
Q1ðz; tÞ :¼ hðĤðzþ R=2;RÞ � iotÞ/2ðzþ R; tÞinðz; tÞ; ð34Þ

Q2ðz; tÞ :¼ hðĤðz� R=2;RÞ � iotÞ/1ðz� R; tÞinðz; tÞ ð35Þ
denote the inhomogeneity terms in Eqs. (30) and (31).

Eqs. (27), (30) and (31) constitute the time-dependent variational scheme which governs the (approximate) time

evolution of the Hþ
2 molecule considered here. It appears well suited for a theoretical description of the strong-field

dynamics of molecular systems since, first of all, it provides a non-perturbative approach which allows one to treat the

strong external fields and the intramolecular forces on the same footing. Furthermore, the method properly accounts

for the quantum nature of both the electronic and the nuclear degrees of freedom. In this respect, the proposed
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variational approach goes beyond mixed classical-quantum mechanical methods where the nuclear dynamics is treated

only classically. On the other hand, in contrast to methods employing wavepacket propagations on few BO potential

energy surfaces, the influence of the strong laser field on the time evolution of the electrons is consistently incorporated,

too. Still, although an explicitly correlated ansatz for the total wavefunction is used, it is important to notice that the

time evolution of the system is governed by (a set of coupled) single-particle equations. Therefore, the numerical effort
to solve the above equations stays manageable.

Considering the above equations of motion individually, we observe the following features: The electronic dynamics

is determined by a coupled set of time-dependent Schr€odinger equations with additional inhomogeneity terms. This is a

consequence of the fact that the time evolution of the system is determined from atomic rather than molecular orbitals.

Correspondingly, the inhomogeneities Q1=2 have a clear physical interpretation: They act as source or sink terms and

are thus responsible for the (laser-induced) transfer of electronic charge between the two nuclei. Considering the ef-

fective electronic potentials, the contribution arising from the electron–nuclear interaction is given by
hWenðz� R=2;RÞinðz; tÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �e

p � 1

hvjvi

Z
dR

jvðR; tÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� RÞ2 þ �e

q : ð36Þ
Accordingly, the electron feels the bare Coulomb force of its reference nucleus and a Hartree-type potential from the
second nucleus. Due to the dependence of (36) on the time-dependent orbital vðR; tÞ, the electronic potential imme-

diately reacts on changes of the internuclear separation. Therefore, we can expect the variational scheme to properly

describe typical strong-field effects such as charge resonance enhanced ionization (CREI) [40,41] followed by Coulomb

explosion or the dynamical Stark shift. To elucidate this statement, consider a dissociating molecule: In this case, part

of the nuclear density is represented by wavepackets which travel to larger internuclear separations. This enlargement

of the internuclear separation is subsequently reflected in changes of the electronic potentials, lowering the binding

forces on the electron. As a consequence, enhanced ionization occurs for some critical internuclear distance. The

ionization process acts back on the nuclei by changing the nuclear effective potential. In the BO language, this amounts
to non-adiabatic transitions between different BO potential energy surfaces. Specifically, for the Hþ

2 molecule, the

nuclear potential only consists of the nuclear–nuclear interaction once the electron is ionized, such that the molecule

explodes due to Coulomb repulsion. Therefore, the CREI followed by Coulomb explosion should be naturally in-

cluded within the time-dependent variational approach.

Turning towards the nuclear equation of motion (27), we find that it resembles the one used in traditional wave-

packet propagation schemes. However, due to the time-dependence of the effective potential, given by the expectation

value of Ĥ � iot with respect to uRðz; tÞ, the dynamics is not restricted to a fixed potential energy surface, but non-

adiabatic processes can be described even by employing only one (time-dependent) nuclear potential. Furthermore, due
to the Heitler–London-type form of uR, the nuclear potential has the correct asymptotic (R ! 1) limit. Additionally,

Eq. (27) contains a term proportional to the nuclear momentum operator which acts as a vector potential.
3. Normalization, symmetry and ground state

We now turn to some questions that play a role when we want to propagate the equations of motion, such as the

conservation of the norm of the wavefunction. It is important to realize that the property of norm conservation is

preserved for any approximate wavefunction, provided it obeys the variational equation of motion. This is most easily

seen by considering an approximate wavefunction ~W which makes the action stationary. Then, a variation ~W ! eiaðtÞ ~W
with aðt0Þ ¼ aðt1Þ ¼ 0 does not change the action
0 ¼ dA ¼ A½eiaðtÞ ~W� �A½ ~W� ¼ �
Z t1

t0

dth ~Wj ~WiotaðtÞ ¼
Z t1

t0

dtaðtÞoth ~Wj ~Wi: ð37Þ
Since aðtÞ is arbitrary for t0 < t < t1, we find
oth ~Wj ~Wi ¼ 0 ð38Þ

for an arbitrary approximate wavefunction ~W which obeys the equations of motion derived from the stationary-action

principle – although no normalization constraint or Lagrange multiplier had been used. For this reason the norms of
our approximate wavefunctions (Eqs. (6) and (7)) are conserved since the equations of motion are derived from the

action principle. For the Hartree ansatz this is also easily seen from the corresponding equations of motion since they

are hermitian. Norm conservation is less obvious for the correlated ansatz but can, of course, also be directly verified

from the equations of motion. To that end, we first observe that
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Z
dz /H

1 ðz; tÞ
dA½v;/1;/2�
d/H

1 ðz; tÞ
þ /H

2 ðz; tÞ
dA½v;/1;/2�
d/H

2 ðz; tÞ
¼ 0; ð39Þ
where we explicitly used the electronic equations of motion (18) and (19). The left-hand side of Eq. (39) is the La-

grangian corresponding to the approximate wavefunction (7), L :¼ hWjiot � Ĥ jWi. Therefore, L vanishes identically
L ¼ hWjiot � Ĥ jWi ¼ 0: ð40Þ

We note in passing that, as a consequence of Eq. (40), the action vanishes at the solution point, too. This is true for the

exact solution of the time-dependent Schr€odinger equation as well as for any approximate wavefunction which makes
the action stationary. Hence, the value of the action does – in contrast to, e.g., the energy in the static case – not

provide any valuable quantity to assess the quality of the approximation employed.

Furthermore, Eq. (40) implies that
hWjiot � Ĥ jWi � hWjiot � Ĥ jWiH ¼ iothWjWi ¼ 0; ð41Þ

since Ĥ is an hermitian operator. Therefore, the conservation of the norm of the full time-dependent wavefunctionW is

automatically guaranteed, provided the orbitals v, /1, and /2 obey the equations of motion (27), (30) and (31).
The norm of the single-particle orbitals is, on the other hand, not necessarily conserved. This is due to the fact that

the equations of motion are, in general, not hermitian. In fact, considering the norm of the electronic atomic orbital,

one obtains
ot lnh/1=2j/1=2i ¼ �2i Im
h/1=2jQ1=2i
h/1=2j/1=2i

; ð42Þ
which confirms our previous observation that the inhomogeneity Q1=2 acts as a source or sink term. Thus, they may

induce the flow of electronic charge from one orbital to the other, reflecting the transfer of electronic charge between

the two nuclei, which leads to variations of the single-particle norms. For the nuclear single-particle orbitals vðR; tÞ, the
corresponding orbital norm is again conserved
othvjvi ¼ 0; ð43Þ

which immediately follows from the constraint (21). We note that other choices to fix the invariance (20) could change

Eqs. (42) and (43), of course, without affecting the norm of the full wavefunction.

We now turn towards a brief discussion of some symmetry properties of the proposed ansatz. Let us first discuss

parity transformations. In the ansatz (7), we did not impose any specific behavior of the wavefunction under parity

transformations. However, once the external fields vanish, parity is a good quantum number and it is advantageous to

choose the wavefunction as an eigenfunction of the parity operator. Consequently, the total ground-state wavefunction

then behaves with respect to parity transformations according to
W0ðR;�zÞ ¼ W0ðR; zÞ: ð44Þ

A similar symmetry must be obeyed by our approximate wavefuntions. A quick investigation of the Hartree expression

shows that it obeys this symmetry. We then turn to the correlated wavefunction. In order to find the equations which

determine the ground state of the system, we consider the following time-dependence of the orbitals:

/1=2ðz; tÞ ! e�i�et/1=2ðzÞ and vðR; tÞ ! vðRÞ. The nuclear orbital does not carry any time-dependent exponential, since

the phase of v is already fixed by the constraint (21). We therefore obtain using Eqs. (27) and (28) the nuclear ei-

genvalue equation
�
� 1

2ln

d2

dR2
� 1

ln

d

dR

� 	
e

ðRÞ d

dR
þ hĤieðRÞ � �n

�
vðRÞ ¼ 0; ð45Þ
where �n ¼ �e þ K. It is further readily verified that �n ¼ hĤi i.e., the lowest eigenvalue of Eq. (45) is equal to the

ground-state energy of the system, defined as the expectation value of our variation ansatz with respect to the full

ground-state Hamiltonian of Eq. (1) in the absence of the laser field. For the ground-state electronic atomic orbitals,

we further find
/1ðzÞ ¼ /ðzÞ; /2ðzÞ ¼ /ð�zÞ; ð46Þ

where /ðzÞ obeys
�
� 1

2~le

d2

dz2
þ 1

2ln

d

dR

� 	
n

d

dz
þ hĤðzþ R=2;RÞ � T̂einðzÞ � �e

�
/ðzÞ ¼ hðĤðzþ R=2;RÞ � �eÞ/ð�z� RÞin: ð47Þ
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By virtue of Eq. (47), the electron is described by a hydrogen-type Schr€odinger equation with additional terms arising

from the influence of the second nucleus. Hence, the orbital /ðzÞ corresponds to a polarized hydrogenic orbital. The

atomic orbital itself does not possess a definite symmetry with respect to parity transformations. Nevertheless, the total

wavefunction is an even (gerade) state, since, as a consequence of Eq. (46), /1ðzÞ ¼ /2ð�zÞ. Therefore, the full ground-
state wavefunction has the correct symmetry property.
4. Numerical considerations

In this section, we shall describe the main aspects of our numerical implementation. For the solution of the exact

Schr€odinger equation (4) and the Hartree mean field equations (14) and (15) the equations are expressed numerically

on a finite difference grid and propagated using the split-operator method. Since this is a standard procedure we will

not go into the details. The equations of motion for the correlated variational ansatz have a rather different nature. In
particular, they are non-hermitian and contain source and sink terms. The solution of these equations requires non-

standard methods. The main purpose of this section is to outline the main features of our procedure.

Considering the electronic problem, we have to deal with the set of coupled non-hermitian integro-differential

equations (30) and (31) which, in particular, contain complex potentials and inhomogeneity terms. In order to solve

these equations the electronic atomic orbitals are expanded according toX

/1ðz; tÞ ¼

n

anðtÞfnðz; tÞ; ð48Þ

/2ðz; tÞ ¼
X
n

bnðtÞfnðz; tÞ: ð49Þ
We note that both atomic orbitals are expanded in the same set of basis functions. Naturally, if heteronuclear mol-

ecules are to be considered, different basis functions corresponding to the different nuclei could be employed.

Inserting Eqs. (48) and (49) in the electronic equations of motion (30) and (31), one obtains the following matrix

equation:
i
X
m

SnmðtÞ
_amðtÞ
_bmðtÞ

� �
¼ �

X
m

AnmðtÞ
amðtÞ
bmðtÞ

� �
: ð50Þ
Here
SnmðtÞ :¼
Z

dRjvðR; tÞj2 hn� jm�ie hn� jmþie
hnþ jm�ie hnþ jmþie

� �
ð51Þ
and
AnmðtÞ :¼
Z

dR vHðR; tÞ T̂n
��(

þ Ŵnn � iot

�
vðR; tÞ

� hn� jm�ie hn� jmþie
hnþ jm�ie hnþ jmþie

� �

� 1

ln

vHðR; tÞ d

dR
vðR; tÞ

� � hn� j d
dR jm�ie hn� j d

dR jmþie
hnþ j d

dR jm�ie hnþ j d
dR jmþie

 !

þ jvðR; tÞj2 hn� jT̂n þ Ĥe � iotjm�ie hn� jT̂n þ Ĥe � iotjmþie
hnþ jT̂n þ Ĥe � iotjm�ie hnþ jT̂n þ Ĥe � iotjmþie

 !)
ð52Þ
denote the overlap and action matrix, respectively, and the corresponding matrix elements hn� jÔjm�ie are defined by
hn� jÔjm�ie � hn� jÔjm�ieðR; tÞ :¼
Z

dzfHn z
�

� R
2
; t
�
OðR; zÞfm z

�
� R

2
; t
�
: ð53Þ
By virtue of Eq. (50), the time evolution of the electronic degree of freedom is now governed by a system of coupled

first-order differential equations. For given matrices S and A, the time derivatives of the coefficients, _amðtÞ and _bmðtÞ,
are obtained by solving the set of linear equation (50). Subsequently, the coefficients are evolved in time by employing

the Adams–Bashford–Mouton predictor–corrector scheme of fourth order [45]. The numerical effort is essentially

determined by the properties of the overlap matrix S, which depend on the actual choice of the basis functions. The
preferred choice of basis functions depends on the physical situation. To study the ground-state solution of Eq. (47) it

is convenient to expand in localized orbitals. For this situation we choose the basis functions of the form
fnðzÞ :¼ zmj/H
j ðzÞ; ð54Þ
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where /H
j is a hydrogenic orbital of the soft-Coulomb Schr€odinger equation
�
� 1

2

d2

dz2
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ �e
p � �j

�
/H

j ðzÞ ¼ 0 ð55Þ
and n ¼ ðj; mjÞ is a cumulative index. For the description of ionization processes in strong laser fields, localized basis

functions are not a particularly well-suited choice. Instead, for our time-dependent work we employ delocalized

momentum space wavefunctions:
fkðzÞ ¼
1

2p
eikz: ð56Þ
(The discrete index n has been changed to the continuous variable k and the expansion coefficients an and bn are re-

placed by ~/1ðkÞ and ~/2ðkÞ, respectively.) Besides its evident flexibility, the momentum space basis (56) leads to a re-

duction of the numerical effort, since the overlap matrix SðtÞ acquires a particularly simple structure. By employing
hkrjk0r0ie ¼
1

2p
eikðr�r0ÞR=2dðk � k0Þ; r; r0 ¼ þ1;�1; ð57Þ
we immediately find that SðtÞ is block diagonal in momentum space. Accordingly, the left-hand side of the electronic

equation of motion (50) decouples in momentum space, and only a two-dimensional sub-system of linear equations has

to be solved in each time step
i
hvjvin hvjeikRjvin

hvje�ikRjvin hvjvin

� � _~/1ðk; tÞ
_~/2ðk; tÞ

 !
¼ f1ðk; tÞ

f2ðk; tÞ

� �
ð58Þ
with
f1ðk; tÞ
f2ðk; tÞ

� �
:¼ �

Z
dk0Aðk; k0; tÞ

~/1ðk0; tÞ
~/2ðk0; tÞ

� �
: ð59Þ
For k 6¼ 0, Eq. (58) is readily solved, yielding
i
_~/1ðk; tÞ ¼

1

detðSÞ hvjvinf1ðk; tÞ



� hvjeikRjvinf2ðk; tÞ
�
; ð60Þ

i
_~/2ðk; tÞ ¼

1

detðSÞ


� hvje�ikRjvinf1ðk; tÞ þ hvjvinf2ðk; tÞ

�
ð61Þ
with
detðSÞ ¼ jhvjvinj
2 � jhvjeikRjvinj

2
: ð62Þ
For k ¼ 0, Eq. (58) is not invertible. Physically speaking, this is due to the fact that, for zero momentum, one cannot

distinguish between plane waves moving in the different directions. However, one can show that all relevant quantities

only depend on the combination ~/1ð0Þ þ ~/2ð0Þ, which can be determined from
i
_~/1ð0; tÞ

�
þ _~/2ð0; tÞ

�
¼ 1

hvjvin
f1ð0; tÞ ¼

1

hvjvin
f2ð0; tÞ: ð63Þ
Eqs. (60), (61) and (63) now govern the time evolution of the Fourier components of the atomic orbitals /1 and /2. All

quantities depending on the electronic orbitals, i.e., effective potentials like the terms on the right-hand side of Eq. (58)
or the effective nuclear Hamiltonian (28) as well as various observables can be efficiently evaluated by means of fast

Fourier transform (FFT) methods. In particular, for the calculation of matrix elements involving the interaction

potential Wenðz;RÞ, the atomic orbitals are first transformed into configuration space, then multiplied with the inter-

action potential, and subsequently transformed back to Fourier space. Thus, we circumvent the problem of calculating

the Fourier transform of the (soft-) Coulomb potentials, which diverges at k ¼ 0. All other terms are directly expressed

in terms of the momentum space basis functions.

The nuclear equation of motion, Eq. (27), on the other hand, is represented on a finite-difference grid and integrated

by employing the implicit Crank–Nicholson algorithm. In order to account for the dependence of the effective nuclear
Hamiltonian ĥnðR; tÞ on the time-derivatives of the electronic orbitals at time t, a predictor–corrector scheme is ad-

ditionally employed.
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5. Results

5.1. Ground state

In order to solve the ground-state Eqs. (45) and (47), we proceed as in the previous section. Accordingly, the nuclear
equation is represented on a finite-difference grid, while the electronic orbitals are expanded in a set of basis functions.

Thus, Eq. (47) is rewritten as a (generalized) eigenvalue problem. The resulting equations are then iterated until self-

consistency is achieved. For that purpose, the basis set was most conveniently chosen as in Eq. (54). We find excellent

convergence for five basis functions (j ¼ 0; m0 ¼ 0; . . . ; 4). In Fig. 1, we have plotted the effective nuclear potential

VnðRÞ ¼ hĤieðRÞ obtained from a self-consistent solution of the variational equations. For comparison, we have added

the nuclear potentials resulting from the BO, and the Hartree approximation. Evidently, the nuclear potential of the

variational scheme is almost identical to the exact one in the region of non-vanishing nuclear density, i.e., for

1 KRK 4.5 a.u. Correspondingly, the ground-state energy E0 ¼ �0:7764 a.u. and the equilibrium internuclear sep-
aration hRi ¼ 2:643 a.u. obtained from the lowest eigenvalue of Eq. (45) and the R-expectation value of the corre-

sponding wave function vðRÞ, nicely agree with the exact results of E0 ¼ �0:7764 and hRi ¼ 2:645 as displayed in Table

1. For larger internuclear distances, we observe small deviations from the Born–Oppenheimer curve. The Hartree

approach, on the other hand, performs significantly worse. The equilibrium distance and ground-state energy are still

reasonable (see Table 1) but, as displayed in Fig. 1 the effective nuclear potential starts to deviate strongly from the BO

curve for distances larger than the equilibrium distance. The reason for this large deviation is, a explained in [39,42],

related to the simple uncorrelated structure of the Hartree wavefunction. In this approximation the conditional

probability distribution of the electrons for a given internuclear separation, which may be defined as
Fig. 1.
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hRi
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qcondðz; tjRÞ ¼
jWðR; z; tÞj2

NðR; tÞ ; ð64Þ
is independent of the nuclear separation, i.e. in the Hartree approximation for the wavefunction we have

qcondðz; tjRÞ ¼ juðz; tÞj2. When the energy is optimized we find a conditional electron distribution that is reasonable for
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Effective nuclear potential VnðRÞ ¼ hĤieðRÞ obtained for the model Hþ
2 molecule from a self-consistent solution of the variational approach.
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the equilibrium separation but very unrealistic at large internuclear distances. This is the cause of the unrealistic shape

of the nuclear Hartree potential at large internuclear distances. One may expect that these deviations of the nuclear

Hartree potential will lead to severe errors in the description of the dissociation dynamics using the time-dependent

Hartree approach. We will see that this is indeed the case. The correlated variational scheme, on the other hand,

promises a much more adequate treatment of the strong-field dynamics. Moreover, the small remaining deviations of
the variational nuclear potential for large internuclear separations may not seriously harm, because the time-dependent

nuclear potential will adjust to the changes of the nuclear density. In this sense our approach is very different from

approaches of wavepacket propagation on fixed, i.e. time-independent, Born–Oppenheimer surfaces.

5.2. Time propagation

In the following, we solve the exact Schr€odinger equation and our models for the model-Hþ
2 molecule in a k ¼ 228

nm laser field corresponding to a photon energy of x ¼ 0:2 a.u. This energy has been chosen to give substantial
ionization as well as dissociation probabilities and therefore to give a strong interplay between electronic and nuclear

dynamics. The radiation field is linearly ramped to its maximum strength over 10 optical cycles and subsequently held

constant for an additional 15 laser cycles, corresponding to a total propagation time of about 19 fs. We have per-

formed calculations employing four different peak intensities ranging from I0 ¼ 2:5� 1013 to I0 ¼ 2� 1014 W/cm2.

The numerical parameters for the exact Schr€odinger equation and the Hartree equations that are solved on a

numerical grid in R and z are given in Table 2. For the correlated ansatz the numerical parameters are given in Table 3.

For this system we use a grid in momentum space. Accordingly, electronic momenta up to k � 7:9 a.u. can be rep-

resented with a resolution of Dk � 0:04 a.u. on the chosen grid. In configuration space, this corresponds to a lattice
spacing of Dz ¼ 0:4 a.u. and a total extension of the grid of about 150 a.u., which allows for a proper description of the

strong-field dynamics. Depending on the peak intensity, a temporal resolution of 10,000–30,000 integration steps per

laser cycle is needed to obtain stable and converged results.

Before the laser field is turned on, the molecule is prepared in its ground state, which therefore serves as initial state

of the time propagation. The initial ground state is determined by imaginary-time propagation employing the same

numerical scheme as described for the full time-dependent problem. Therefore, spurious excited-state contaminations

are avoided.

In Figs. 2–4, we summarize the results obtained for the time evolution of the mean internuclear distance
Table
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384
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Table
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electro

distrib
hRiðtÞ ¼
R
grid

dRRNðR; tÞR
grid

dRNðR; tÞ ; ð65Þ
and the ionization probability and total dissociation probability
PdissðtÞ ¼ 1�
Z
boxn

dRNðR; tÞ; ð66Þ

PionðtÞ ¼ 1�
Z
boxe

dzqðz; tÞ; ð67Þ
2

eters used in the numerical solution of the exact and Hartree equations for the model Hþ
2 molecule

DR (a.u.) Rmax (a.u.) Nz Dz (a.u.) jzmaxj (a.u.) Ns

0.1 38.8 768 0.4 153.4 500

uclear finite-difference grid (characterized by the first three columns of the table displaying the number over grid points, the grid spacing and

ximum grid value), as well as an electronic finite difference grid (characterized by the next three columns of the table) is employed. The

ty Ns in the last column denotes the number of time steps per optical cycle s.

3

eters used in the numerical solution of the time-dependent variational equations for the model Hþ
2 molecule

DR (a.u.) Rmax (a.u.) Nk Dk (a.u.) jkmaxj (a.u.)

0.1 26.0 384 0.04 7.9

nuclear equation of motion is discretized on a finite-difference grid (characterized by the first three columns of the table), whereas the

nic equations of motion are represented in momentum space (characterized by the last three columns of the table) employing a uniform

ution of the k points.
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respectively, where the nuclear and electronic densities are obtained from Eqs. (8) and (9) for the exact wavefunction.

For the Hartree and the correlated approach they are evaluated using expressions (10)–(13). According to the above

prescription, ionization and dissociation probabilities are evaluated by means of a geometrical concept. It rests on the

assumption that the relevant bound states of the system under consideration are contained inside some suitably chosen
finite volume of the numerical grid. The continuum part of the wavefunction, on the other hand, will cross the

boundaries of this ‘‘analyzing volume’’ and – sooner or later – leave the total grid. As a result, the probability re-

maining inside the analyzing volume will decrease and the outgoing flux leaving the ‘‘electronic analyzing box’’ or

‘‘nuclear analyzing box’’ (boxe=n) is identified with ionized electrons or with a dissociated part of the molecule, re-

spectively. Evidently, such a prescription is only approximate. It is valid if the physical observables calculated that way

are insensitive to the chosen box sizes. Provided the volumes are reasonably large, this idea has been found useful in the

context of strong-field phenomena [33,34,43] (for a general discussion of the method applied to multiple ionization see

[44]). In the context of the present work, reasonable analyzing boxes are obtained by choosing boxn ¼ ½0; . . . ; 9� a.u.
and boxe ¼ ½�10; . . . ; 10 a:u:�.

To begin with, we consider the lowest intensity of I0 ¼ 2:5� 1013 W/cm2. Comparing the photon energy x ¼ 0:2
a.u. to the dissociation energy D0 ¼ 0:1066 a.u. of the model molecule, we shall expect that the molecule easily dis-

integrates via the photodissociation channel (Hþ
2 !H+Hþ), even for this comparatively low intensity. Indeed, in the

upper-left plot of Fig. 2, the mean internuclear distance is seen to increase during the propagation, indicating that the

molecule dissociates. Simultaneously, a low ionization probability is found in Fig. 3, which confirms the above con-

jecture that the molecule predominantly undergoes photodissociation. We note that, from the upper-left plot of Fig. 4,

the total dissociation probability appears quite small, too. However, we just see the onset of the dissociation process in
this plot. Since the nuclear motion is rather slow, most of the dissociative nuclear wavepackets have no yet reached

the boundaries of the nuclear analyzing box at R ¼ 9 a.u., which is also suggested by the small magnitude of hRiðtÞ.
A longer propagation confirms the above statement that photodissociation is the dominant process for the chosen

intensity.

In the mean-field approach, on the other hand, the molecule does neither ionize nor dissociate but only starts to

vibrate as seen from the oscillatory behavior of the mean internuclear distance in Fig. 5, thus showing the discussed

shortcomings of the time-dependent mean-field approach.
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Turning to the results obtained from the correlated variational approach, we find a significant improvement upon

the mean-field results. Although some deviations from the exact dynamics are still left, the time evolution of the mean

internuclear separation resulting from the variational approach indicates a dissociation process, too, as shown in the

upper-left plot of Fig. 2. Moreover, we also find reasonable agreement in the ionization behavior, as seen in the upper-

left plot of Fig. 3. Thus, we can infer that the variational scheme deals with the photodissociation process in a much

more realistic way than the mean-field approximation.

With increasing intensity, the differences between the exact and the variational solution in the time evolution of

hRiðtÞ become smaller. Moreover, the variational scheme consistently improves upon the mean-field approximation
and provides a reliable description for all intensities considered here. The same tendency is found for the ionization

behavior, which is displayed in Fig. 3. At least on a qualitative level, the variational approach reproduces the exact

behavior of PionðtÞ. Furthermore, for the two highest intensities, both approximate schemes perform similarly and lead

to satisfactory results. These observations thus suggest that the electronic and, in particular, the ionization dynamics is

properly treated within the time-dependent variational approach.

Despite these improvements, Fig. 4 still reveals considerable deviations for the dissociation probability PdissðtÞ. In
order to understand their origin, we consider the time evolution of the nuclear density NðR; tÞ, which is plotted in Fig. 6

for a peak intensity of 5� 1013 W/cm2. Evidently, the nuclear wavepackets obtained from the variational approach are
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Fig. 6. Time evolution of the nuclear density NðR; tÞ obtained for the model Hþ
2 molecule in a k ¼ 228 nm, I0 ¼ 5� 1013 W/cm2 laser field from the

exact solution, the time-dependent mean-field (Hartree) approximation, and the time-dependent correlated approach.
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superior to the mean-field ones. Most notably, the variational scheme also predicts a splitting of the nuclear wave-

packet, which is totally absent in the mean-field results. However, the densities are still too localized compared to the

exact curves. In particular, the variational method cannot reproduce the long-reaching tails of the exact nuclear

densities. Clearly, an integration of the various NðR; tÞ shown in Fig. 6 over the nuclear ‘‘analyzing box’’ results in the

differences depicted in Fig. 4. The deviations in the nuclear density can be traced back to deficiencies in the effective
nuclear potential. Those, in turn, are caused by the fact that only one atomic orbital (per atom) is used to evaluate the

nuclear potential in the entire range of internuclear distances. Since, by virtue of Eqs. (32) and (33), the atomic orbital

is determined by an averaged nuclear configuration, it is always ‘‘optimized’’ for, loosely speaking, the most probable

internuclear distance. Such a procedure will provide a reasonable description for densities which are rather narrow

functions in space. For the time-dependent situation shown in Fig. 6, the approach provides a reasonable description

of the mean dynamics, as seen from the upper-right plot of Fig. 2. Since, however, the atomic orbital is dominated (at

least up to t � 20s) by the small-R regime, the large-R behavior of the nuclear potential is less well represented, leading

to the too contracted nuclear densities found, e.g., in Fig. 6. Moreover, for strongly delocalized nuclear densities as,
e.g., for NðR; t ¼ 25sÞ in Fig. 6, the use of one and the same atomic orbital for the entire R range appears as a too severe

restriction and leads to the deviations observed in the results.
6. Outlook: larger molecules

Even for molecules as small as H2, the full three-dimensional solution of the time-dependent Schr€odinger equation
in the presence of a strong laser field represents a borderline case for present-day computer technology. In view of this
fact, there is a clear need for reliable, yet feasible ab initio techniques. The goal of the above-described work on the

one-dimensional model of Hþ
2 was to prepare the ground for treating larger molecules. Already the case of many-

electron diatomics (in three spatial dimensions) represents a formidable challenge. We therefore discuss this important

case in some detail below. At the end of this section, we proceed to polyatomic molecules.

Arbitrary many-electron diatomics exposed to laser fields of high (but still non-relativistic) intensities are described

by the Hamiltonian
ĤðtÞ ¼ � 1

2M1

r2
R1

� 1

2M2

r2
R2

þ
XN
i¼1

� 1

2
r2

ri
þ Ŵnn þ Ŵee þ Ŵen þ V̂laserðtÞ; ð68Þ
where ri are the N electronic variables and R1 and R2 denote the positions of the two nuclei with massesM1 and M2 and

charges Z1 and Z2. Both nuclear and electronic positions refer to an inertial (‘‘laboratory’’) frame. The terms Wnn, Wen

and Wee describe the nuclear–nuclear, electron–nuclear and electron–electron interactions, and V̂laserðtÞ represents the
interaction of the electrons and the nuclei with the external laser field in dipole approximation
V̂laserðtÞ ¼
XN
i¼1

ri

 
� Z1R1 � Z2R2

!
EðtÞ: ð69Þ
EðtÞ is the electric field of the laser which is assumed here to be linearly polarized. A major complication, compared to

the one-dimensional model discussed in the previous sections, is the fact that in three dimensions the molecule need not
be oriented parallel to the polarization axis of the laser. In fact, the time evolution of the molecular orientation is an

important observable to be investigated. To deal with this problem we first perform a suitable coordinate transfor-

mation: clearly, the total center-of-mass position RCM ¼ ðM1R1 þM2R2 þ
PN

i¼1 riÞ=ðM1 þM2 þ NÞ of the whole mol-

ecule and the internuclear vector R ¼ R1 � R2 represent a favourable choice. Furthermore, the electronic coordinates

are transformed such that they refer to a frame attached to the nuclei. To this end we define an orthogonal matrix D
which rotates the internuclear vector R into a position parallel to the z-axis of the laboratory frame, i.e. DR ¼ Rez,
where R ¼ jRj. This matrix can be parametrized by two angles h and u describing the orientation of R with respect to

the laboratory z-axis. For the electronic coordinates we then introduce the new variables
r0i ¼ Dðri � RCMNÞ; ð70Þ

where RCMN ¼ ðM1R1 þM2R2Þ=ðM1 þM2Þ is the center of mass of the nuclei. This means that the electronic coordi-

nates are centered on the nuclear center of mass and rotated with the same transformation that takes the internuclear

vector into a position parallel to the z-axis. Thus, the complete set of new coordinates is ðRCM;R; h;u; r0iÞ. In terms of

these coordinates, the transformed Hamiltonian has the following form:
ĤðtÞ ¼ ĤCMðtÞ þ ĤmolðtÞ; ð71Þ
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where
ĤCMðtÞ ¼ � 1

2Mtot

r2
RCM

� QtotRCMEðtÞ: ð72Þ
Here Mtot ¼ M1 þM2 þ N is the total mass and Qtot ¼ Z1 þ Z2 � N the total charge of the molecule. The ‘‘internal’’

molecular Hamiltonian is given by
ĤmolðtÞ ¼ � 1

2ln

r2
R þ WnnðRÞ þ

XN
i¼1

�
� 1

2
r2

r0i
þ Wenðr0i;RÞ

�
þ
XN
i>j

Weeðr0i � r0jÞ þ T̂MPðr01; r02; . . . ; r0N Þ

þ T̂Cðr01; r02; . . . ; r0N ;RÞ �D�1 qnRez

 
� qe

XN
i¼1

r0i

!
EðtÞ; ð73Þ
where ln ¼ M1M2=ðM1 þM2Þ is the nuclear reduced mass and
qn ¼ ðZ1M2 � Z2M1Þ=ðM1 þM2Þ; ð74Þ
qe ¼ ðZ1 þ Z2 þM1 þM2Þ=Mtot: ð75Þ
The interaction potentials Wnn, Wen and Wee are given by
WnnðRÞ ¼
Z1Z2

R
; ð76Þ

Weeðr0i � r0jÞ ¼
1

jr0i � r0jj
; ð77Þ

Wenðr0i;RÞ ¼ � Z1

jr0i � M2

M1þM2
Rezj

� Z2

jr0i þ M1

M1þM2
Rezj

: ð78Þ
The mass-polarization term T̂MP has the explicit form
T̂MP ¼ � 1

2ðM1 þM2Þ
XN
i;j¼1

rr0i
� rr0j

: ð79Þ
The term T̂C represents the Coriolis forces which appear as a consequence of the fact that the electrons are now viewed
from a non-inertial frame. It is given by [46]
T̂C ¼ � 1

2lnR2

o

oR
R2 o

oR

(
þ 1

sinh
o

oh

�
� iL̂e;y

�
sinh

o

oh

�
� iL̂e;y

�
þ 1

sin2 h

o

ou

�
þ iL̂e;x sinh� iL̂e;z cosh

�2
)
þ 1

2ln

r2
R;

ð80Þ

where L̂e denotes the total electronic angular momentum operator.

Our next task is to find a variational form of the full wavefunction W that leads to equations of motion with a

sufficiently simple one-particle structure. In this way our method will stay computationally manageable, even for

general diatomics. We choose the form
Wðr01 � � � r0N ;R;RCM; tÞ ¼ WCMðRCM; tÞvðR; tÞUðr01 � � � r0N ;R; tÞ: ð81Þ
Here WCM describes the center-of-mass motion, vðR; tÞ represents an internal nuclear wavefunction and U is a Slater

determinant of electronic molecular orbitals given by
Uðr01 � � � r0N ;R; tÞ ¼
1ffiffiffiffiffi
N !

p j/1ðr01;R; tÞ � � �/N ðr0N ;R; tÞj: ð82Þ
Similar to the case of Hþ
2 we will write each of the molecular orbitals as a sum over atomic-like orbitals attached to the

two nuclei
/iðr0;R; tÞ ¼ /i;1 r0
�

� M2

M1 þM2

Rez; t
�
þ /i;2 r

�
þ M1

M1 þM2

Rez; t
�
; ð83Þ
where R ¼ jRj. If we insert the Hamiltonian of Eq. (71) and the approximate form for the wavefunction of Eq. (81) in

the variational equation (5) we obtain 2N þ 2 equations of motion with effective one-particle Hamiltonians. These

equations have the form
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iotWCMðRCM; tÞ ¼ ĤCMðRCM; tÞWCMðRCM; tÞ; ð84Þ
iotvðR; tÞ ¼ ĥnðR; tÞvðR; tÞ; ð85Þ
iot/i;jðr0; tÞ ¼ ĥe;i;jðr0; tÞ/i;jðr0; tÞ þ Qi;jðr0; tÞ: ð86Þ
The detailed form of these equations will be presented elsewhere. For the case N ¼ 1 in one dimension these equations

reduce to the equations of motion for the model Hþ
2 molecule that we obtained before. We should further note that the

approximate wavefunction of Eq. (81) is invariant under the transformation
v !
YN
i¼1

ciðtÞ
 !

v; ð87Þ

/i !
1

ciðtÞ
/i; ð88Þ
where ciðtÞ are arbitrary complex functions of time. As a consequence we need N additional complex constraints to

provide a unique solution to the equations of motion. These can be chosen to one’s convenience. One choice could be

to require that
h/ijot/ii ¼ 0 ð89Þ

which would lead to Lagrange multipliers KiðtÞ in Eq. (86) analogous to the KðtÞ of Eq. (27). We further note that we

did note introduce a time-dependent factor for the center-of-mass wave functionWCM. This is because WCM satisfies the
equation of motion, Eq. (84), with the hermitian Hamiltonian of Eq. (72) and therefore its norm is conserved and its

phase is completely determined by its initial state.

We have now completely defined the equations of motion for a general diatomic molecule. Let us now discuss the

applicability and validity of these equations. They are of similar structure as those of the Hþ
2 molecule and can hence be

solved by the same numerical techniques. A notable difference to the one-dimensional model of Hþ
2 is the presence of

the electron–electron interactions Wee; TMP and TC. Within the approximate form of the wavefunction given in Eq. (81),

all these interactions are treated in a Hartree–Fock manner. We emphasize that the mass-polarization and Coriolis

terms do not present a serious obstacle in this context. The expectation value with respect to the above determinantal
wavefunction is straightforwardly calculated, yielding
hTMPi ¼ � 1

2ðM1 þM2Þ
X
jk

Z
dr dr0/�

j ðrÞrr/jðrÞ/�
kðr0Þrr0/kðr0Þ

(
�
X
jk

Z
dr dr0/�

j ðrÞrr/kðrÞ/�
kðr0Þrr0/jðr0Þ

)

ð90Þ

and �� �
hTCi ¼
Z

dRv�ðRÞ 1

2lnR2
ihL̂e;yie cot hþ 2

o

oh
� 2hL̂e;xL̂e;zie cot hþ hL̂2

e;x þ L̂2
e;yie þ hL̂2

e;zie cot2 h

þ 2i hL̂e;zie cot h
�

� hL̂e;yie
� 1

sin h
o

ou

�
vðRÞ; ð91Þ
where the subscript ‘‘e’’ indicates that the integration is over electronic coordinates only. Whether this mean-field

treatment of the electronic interactions is sufficiently accurate depends on the laser intensity and frequency regime, as
well as on the physical property one is interested in. Since little is known about electron correlation in strong laser fields

it would therefore be desirable to test the variational wavefunction (81) first for a model H2 that can be solved exactly

[35]. If necessary, it is possible to extend the ansatz of Eq. (81) to explicitly include electronic correlations without

destroying the effective one-particle structure of the equations of motion. One could, for instance, variationally op-

timize a wavefunction of the form
Wðr01 � � � r0N ;R;RCM; tÞ ¼ WCMðRCM; tÞvðR; tÞUðr01 � � � r0N ;R; tÞ
YN
i>j

f ðr0i � r0j; tÞ; ð92Þ
where U is defined as before and where f represents an electronic correlation factor. When we optimize this wave-

function with the stationary action principle we then obtain an additional effective equation for the correlation factor

f . However, for molecules with a large number of electrons the construction of the effective Hamiltonians will now
require a large computational effort due to the repeated integrations over the electronic coordinates. Nevertheless, with

this method few-electron diatomics are still within reach of current computational technology.

We finally consider polyatomic molecules having K nuclei with charges Z1; . . . ; ZK and masses M1; . . . ;MK . As

before, N denotes the number of electrons. The first question to be addressed is the proper choice of coordinates in
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terms of which the variational wavefunction is being formulated. As in the diatomic case, we represent the electronic

degrees of freedom in a body-fixed coordinate frame attached to the nuclear center of mass
r0i ¼ Dða; b; cÞðri � RCMNÞ; ð93Þ

where RCMN ¼ ð

PK
m¼1 MmRmÞ=ð

PK
m¼1 MmÞ. D is an orthogonal matrix which rotates the principal axes of the nuclear

inertia tensor into the axes of the laboratory frame and a; b; c are the Euler angles associated with this three-dimen-

sional rotation. a; b; c are functions of the nuclear coordinates R1; . . . ;RK . Other choices for the body-fixed coordinate
frame have been employed in the literature [46]. Apart from this definition of the electronic coordinates, we use the

total center of mass RCM of all electrons and nuclei, and a set of suitably chosen collective coordinates

Q ¼ ðQ1; . . . ;Q3K�3Þ describing the nuclear degrees of freedom. The Euler angles a; b; c and hence the rotational matrix

D then become functions ofQ. In terms of this set of new coordinates, the interaction of the laser with all electrons and

nuclei can be written as
V̂laserðtÞ ¼ �QtotRCMEðtÞ þD�1ðQÞ
 

�
XK
a¼1

ZaR
0
aðQÞ þ qe

XN
i¼1

r0i

 !!
EðtÞ; ð94Þ
where
R0
aðQÞ ¼ DðQÞðRaðQÞ � RCMNðQÞÞ: ð95Þ
Here Qtot ¼ ð
PK

a¼1 Za � NÞ is the total charge of the molecule and qe ¼ ðQtot=Mtot þ 1Þ with Mtot ¼ ð
PK

a¼1 Ma þ NÞ
being the total mass. The first term on the right-hand side of Eq. (94) and the center-of-mass kinetic energy operator

are the only terms in the total Hamiltonian containing RCM, which shows that the motion of the total center of mass

can again be separated off from the wavefunction. The electron–nuclear interaction, in terms of the new coordinates, is

given by
Wenðr0i;QÞ ¼ �
XK
a¼1

Za

jr0i � R0
aðQÞj : ð96Þ
This suggests the following ansatz for the total wave function:
Wðr01 � � � r0N ;Q;RCM; tÞ ¼ WCMðRCM; tÞX ðQ; tÞUðr01 � � � r0N ;Q; tÞ: ð97Þ
As in the diatomic case, U is a determinant (82) of electronic single-particle orbitals /i. The latter are expressed as

superpositions of atomic-like orbitals, each of which is centered on one nucleus
/iðr0;Q; tÞ ¼
XK
a¼1

/i;aðr0 � R0
aðQÞ; tÞ: ð98Þ
The nuclear wave function X ðQ; tÞ is approximated as a Hartree product
X ðQ; tÞ ¼ v1ðQ1; tÞv2ðQ2; tÞ � � � v3K�3ðQ3K�3; tÞ ð99Þ
or, better, as a finite linear combination of Hartree products. Such linear combinations are routinely employed in the

multi-configuration time-dependent Hartree (MCTDH) method [47–49]. However, in standard MCTDH, the nuclei

are propagated on given potential energy surfaces, which have to be determined in a separate calculation. The key

feature of our formulation is that the forces on the nuclei (i.e. the effective potentials appearing in the nuclear

Schr€odinger equation) are calculated ‘‘on the fly’’. The accuracy of the nuclear wave function (99) crucially depends on

the choice of the collective coordinates Q. Usually the proper choice requires some prior knowledge of the physical

processes to be expected. For small-amplitude vibrations, standard normal coordinates should be an adequate choice,
while for fragmentation, Jacobi coordinates may be preferred. An interesting alternative, not requiring any prior

knowledge of the nuclear dynamics, may result from coordinates Q which, themselves, are determined variationally.

This idea was recently explored in time-independent situations [50].
7. Conclusions

The time-dependent variational scheme presented in this contribution provides a novel approach to the description
of molecular strong-field phenomena. By construction, it allows for a treatment of non-perturbative as well as non-

adiabatic processes and it properly accounts for the quantum mechanical nature of electronic and nuclear degrees of

freedom. Employing the explicitly correlated ansatz (7) for the full time-dependent wavefunction, the variational
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approach enables us to handle electron–nuclear correlation effects in the presence of strong laser pulses. It provides a –

at least qualitatively – correct description of photodissociation processes. Similarly, the main aspects of strong-field

electronic dynamics, including the strong R-dependence of the ionization rates or the CREI mechanism followed by

dissociative Coulomb explosion, are reproduced within the variational scheme as well. Despite all these features, the

variational scheme still leads to – sometimes substantial – deviations from the exact results. They are traced back to the
fact that one and the same atomic orbital is used to describe the entire range of nuclear configurations – which appears

reasonable for rather localized nuclear densities. However, for delocalized nuclear density distributions, this approach

seems to impose a too severe restriction. While, in this communication, we restricted ourselves mainly to the Hþ
2

molecule, the generalization to larger molecules, as indicated in the last section, is particularly promising due to the

simple orbital structure of the method. Work along these lines is in progress.
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