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I. INTRODUCTION

Density functional theory (DFT) is a successful theory to calculate the electronic structure

of atoms, molecules, and solids. Its goal is the quantitative understanding of materials

properties from the fundamental laws of quantum mechanics.

Traditional electronic structure methods attempt to find approximate solutions to the

Schrödinger equation of N interacting electrons moving in an external, electrostatic poten-

tial (typically the Coulomb potential generated by the atomic nuclei). However, there are

serious limitations of this approach: (i) the problem is highly nontrivial, even for very small

numbers N and the resulting wave-functions are complicated objects, (ii) the computational

effort grows very rapidly with increasing N , so the description of larger systems becomes

prohibitive.

A different approach is taken in density functional theory where, instead of the many-

body wave-function, the one-body density is used as fundamental variable. Since the density

n(r) is a function of only three spatial coordinates (rather than the 3N coordinates of the

wave-function), density functional theory is computationally feasible even for large systems.

The foundations of density functional theory are the Hohenberg-Kohn and Kohn-Sham

theorems which will be reviewed in the following section. In section III, we will discuss vari-

ous levels of approximation to the central quantity of DFT, the so-called exchange-correlation

energy functional. Section IV will present some typical results from DFT calculations for

various physical properties that are normally calculated with DFT methods. The original

Hohenberg-Kohn and Kohn-Sham theorems can easily be extended from its original formula-

tion to cover a wide variety of physical situations. A number of such extensions is presented

in section V, with particular emphasis on time-dependent DFT (section VC).

II. HOHENBERG-KOHN AND KOHN-SHAM THEOREMS

In ground-state DFT one is interested in systems of N interacting electrons described by

the Hamiltonian

Ĥ = T̂ + V̂ + V̂ee

= −
N∑

i=1

∇2
i

2
+

N∑
i=1

v(ri) +
1

2

N∑
i=1

N∑
j=1

i6=j

1

|ri − rj|
, (1)
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with the kinetic, potential and interaction energy operators T̂ , V̂ and V̂ee, respectively.

The central statement of formal density functional theory is the celebrated Hohenberg-

Kohn theorem which, for non-degenerate ground states, can be summarized in the following

three statements:

1. The ground state electron density n(r) of a system of interacting electrons uniquely

determines the external potential v(r) in which the electrons move and thus the Hamil-

tonian and all physical properties of the system.

2. The ground-state energy E0 and the ground-state density n0(r) of a system char-

acterized by the potential v0(r) can be obtained from a variational principle which

involves only the density, i.e., the ground state energy can be written as a functional

of the density, Ev0 [n], which gives the ground-state energy E0 if and only if the true

ground-state density n0(r) is inserted. For all other densities n(r), the inequality

E0 = Ev0 [n0] < Ev0 [n] (2)

holds.

3. There exists a functional F [n] such that the energy functional can be written as

Ev0 [n] = F [n] +
∫

d3r v0(r) n(r) . (3)

The functional F [n] is universal in the sense that, for a given particle-particle interac-

tion (the Coulomb interaction in out case), it is independent of the potential v0(r) of

the particular system under consideration, i.e., it has the same functional form for all

systems.

The proof of the Hohenberg-Kohn theorem is based on the Rayleigh-Ritz variational

principle and will not be repeated here. The interested reader is referred to excellent reviews

given in the Bibliography.

From the Hohenberg-Kohn variational principle, i.e., the second statement given above,

the ground-state density n(r) corresponding to the external potential v(r) can be obtained

as solution of the Euler equation

δEv[n]

δn(r)
=

δF [n]

δn(r)
+ v(r) = 0 , (4)
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The formal definition of the Hohenberg-Kohn functional F [n] is well known,

F [n] = T [n] + Vee[n] = 〈Ψ[n]|T̂ |Ψ[n]〉 + 〈Ψ[n]|V̂ee|Ψ[n]〉 , (5)

where Ψ[n] is that N -electron wave-function which yields the density n and minimizes

the expectation value of T̂ + V̂ee. However, the explicit density dependence of F [n] re-

mains unknown. Approximations have been suggested, the oldest one being the well-known

Thomas-Fermi approximation (which precedes the Hohenberg-Kohn theorem historically).

Unfortunately, the accuracy of known approximations to F [n] is rather limited in practical

calculations. Therefore Eq. (4) is rarely used in electronic structure calculations today.

Instead, the Hohenberg-Kohn theorem provides the basic theoretical foundation for the

construction of an effective single-particle scheme which allows the calculation of the ground-

state density and energy of systems of interacting electrons. The resulting equations, the

so-called Kohn-Sham equations, are at the heart of modern density functional theory. They

have the form of the single-particle Schrödinger equation[
−∇2

2
+ vs(r)

]
ϕi(r) = εiϕi(r) . (6)

The density can then be computed from the N single-particle orbitals occupied in the ground

state Slater determinant

n(r) =
occ∑
i

|ϕi(r)|2 . (7)

The central idea of the Kohn-Sham scheme is to construct the single-particle potential vs(r)

in such a way that the density of the auxiliary non-interacting system equals the density of

the interacting system of interest. To this end one partitions the Hohenberg-Kohn functional

in the following way

F [n] = Ts[n] + U [n] + Exc[n] , (8)

where

U [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
(9)

is the classical electrostatic energy of the charge distribution n(r), and Exc[n] is the so-called

exchange-correlation energy which is formally defined by

Exc[n] = T [n] + Vee[n] − U [n] − Ts[n] . (10)

From the above definitions one can derive the form of the effective potential entering Eq. (6)

vs[n](r) = v(r) +
∫

d3r′
n(r′)

|r − r′|
+ vxc[n](r) , (11)
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where the exchange-correlation potential vxc is defined by

vxc[n](r) =
δExc[n]

δn(r)
. (12)

Since vs[n](r) depends on the density, Eqs. (6), (7) and (11) have to be solved self-

consistently. This is known as the Kohn-Sham scheme of density functional theory.

III. APPROXIMATIONS FOR THE EXCHANGE-CORRELATION ENERGY

Clearly, the formal definition (10) of the exchange-correlation energy is not helpful for

practical calculations and one needs to use an approximation for this quantity. Some of

these approximations will be discussed in the following.

While DFT itself does not give any hint on how to construct approximate exchange-

correlation functionals, it holds both the promise and the challenge that the true Exc is a

universal functional of the density, i.e., it has the same functional form for all systems. On

one hand this is a promise because an approximate functional, once constructed, may be

applied to any system of interest. On the other hand this is a challenge because a good

approximation should perform equally well for very different physical situations.

Both the promise and the challenge are reflected by the fact that the simplest of all func-

tionals, the so-called local density approximation (LDA) has remained the approximation of

choice for quite many years after the formulation of the Kohn-Sham theorem. In LDA, the

exchange-correlation energy is given by

ELDA
xc [n] =

∫
d3r n(r)eunif

xc (n(r)) (13)

where eunif
xc (n) is the exchange-correlation energy per particle of an electron gas with spatially

uniform density n. It can be obtained from quantum Monte Carlo calculations and simple

parameterizations are available. By its very construction, the LDA is expected to be a good

approximation for spatially slowly varying densities. Although this condition is hardly ever

met for real electronic systems, LDA has proved to be remarkably accurate for a wide variety

of systems.

In the quest for improved functionals, an important breakthrough was achieved with the

emergence of the so-called generalized gradient approximations (GGAs). Within GGA, the

exchange-correlation energy for spin-unpolarized systems is written as

EGGA
xc [n] =

∫
d3r f(n(r),∇n(r)) . (14)
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While the input eunif
xc in LDA is unique, the function f in GGA is not and many different

forms have been suggested. When constructing a GGA one usually tries to incorporate a

number of known properties of the exact functional into the restricted functional form of

the approximation. The impact of GGAs has been quite dramatic, especially in quantum

chemistry where DFT is now competitive in accuracy with more traditional methods while

being computationally less expensive.

In recent years, still following the lines of GGA development, a new class of “meta-GGA”

functionals has been suggested. In addition to the density and its first gradient, meta-GGA

functionals depend on the kinetic energy density of the Kohn-Sham orbitals,

τ(r) =
1

2

occ∑
i

|∇ϕi(r)|2 , (15)

The meta-GGA functional then takes the form

EMGGA
xc [n] =

∫
d3r g(n(r),∇n(r), τ(r)) . (16)

The additional flexibility in the functional form gained by the introduction of the new

variable can be used to incorporate more of the exact properties into the approximation.

In this way it has been possible to improve upon the accuracy of GGA for some physical

properties without worsening the results for others.

Unlike LDA or GGA, which are explicit functionals of the density, meta-GGAs also depend

explicitly on the Kohn-Sham orbitals. It is important to note, however, that we are still in

the domain of DFT since, through the Kohn-Sham equation (6), the orbitals are functionals

of the Kohn-Sham potential and therefore, by virtue of the Hohenberg-Kohn theorem, also

functionals of the density.

Orbital functionals, or implicit density functionals, constitute a wide field of active re-

search. Probably the most familiar orbital functional is the exact exchange energy functional

(EXX)

EEXX
x [n] = −1

2

∑
σ

∫
d3r

∫
d3r′

occ∑
i,j

ϕiσ(r)ϕ∗
iσ(r′)ϕjσ(r′)ϕ∗

jσ(r)

|r − r′|
. (17)

At this point, some remarks about similarities and differences to Hartree-Fock theory are in

order. If one uses the exact exchange functional (17) and neglects correlation, the resulting

total energy functional is exactly the Hartree-Fock functional. However, in exact-exchange

DFT this functional is evaluated with Kohn-Sham rather than Hartree-Fock orbitals. Fur-

thermore, the Hartree-Fock orbitals are obtained from a minimization without constraints
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(except for orthonormality) which leads to the nonlocal Hartree-Fock potential. The exact-

exchange Kohn-Sham orbitals, on the other hand, are obtained by minimizing the same

functional under the additional constraint that the single-particle orbitals come from a local

potential. Therefore the total Hartree-Fock energy is always lower than the total energy in

exact-exchange DFT but the difference has turned out to be very small. However, single-

particle properties such as orbitals and orbital eigenvalues can be quite different in both

approaches. For example, Kohn-Sham exact exchange energy spectra are usually much

closer to experiment than Hartree-Fock spectra, indicating that exact-exchange DFT might

be a better starting point to include correlation than Hartree-Fock.

In order to go beyond exact-exchange DFT one might be tempted to use the exact

exchange functional in combination with a traditional approximation such as LDA or GGA

for correlation. Since both LDA and GGA benefit from a cancellation of errors between their

exchange and correlation pieces, an approach using LDA or GGA for only one of these energy

components is bound to fail. The obvious alternative are approximate, orbital-dependent

correlation energy functionals. One systematic way to construct such functionals is known as

Görling-Levy perturbation theory. Structurally, this is similar to what is known as Møller-

Plesset perturbation theory in quantum chemistry. However, it is only practical for low

orders. A more promising route uses the fluctuation-dissipation theorem which establishes

a connection to linear response theory in time-dependent DFT.

A final class of approximations to the exchange-correlation energy are the so-called hybrid

functionals which mix a fraction of exact exchange with GGA exchange,

EHYB
x [n] = aEEXX

x [n] + (1 − a)EGGA
x [n] , (18)

where a is the (empirical) mixing parameter. This exchange functional is then combined

with some GGA for correlation. Hybrid functionals are tremendously popular and successful

in quantum chemistry but much less so in solid-state physics.

This last fact highlights a problem pertinent to the construction of improved functionals:

available approximations are already very accurate and hard to improve upon. In addition,

and this makes it a very difficult problem, one would like to have improved performance

not only for just one particular property or one particular class of systems but for as many

properties and systems as possible. After all, the true exchange-correlation energy is a

universal functional of the density.

7



IV. RESULTS FOR SOME SELECTED SYSTEMS

Over the years, a vast number of DFT calculations has been reported and only the

scantiest of selections can be given here. Results are given for different functionals in order

to illustrate the performance of the different levels of approximation. It should be kept in

mind, however, that while there is only one LDA functional there are several GGA, meta-

GGA, or hybrid functionals which have been suggested and whose results for a given system

will vary.

In solid-state physics, typical quantities calculated with ground-state DFT are structural

properties. In table I, we present equilibrium lattice constants and bulk moduli for a few

solids. LDA lattice constants are usually accurate to within a few percent. On average,

GGA and meta-GGA give some improvement. For bulk moduli, the relative errors are much

larger and improvement of GGA and meta-GGA as compared to LDA is statistical and not

uniform. There are however some properties that are systematically improved by GGA. For

example, GGA cohesive energies for transition metals are on average better by almost half

an order of magnitude than the LDA values.

Possibly the best known success of GGA is the correct prediction of the ferromagnetic

bcc ground state of iron for which LDA incorrectly gives a non-magnetic fcc ground state.

The calculated magnetic moments shown in table II illustrates the improved performance

of GGA also for this quantity.

One of the standard uses of DFT in solid state physics is the calculation of band struc-

tures. Usually one interprets and compares the Kohn-Sham band structure directly with

experimental energy bands. Strictly speaking this interpretation has no sound theoretical

justification since the Kohn-Sham eigenvalues are only auxiliary quantities. Experience has

shown, however, that LDA or GGA band structures are often rather close to experimental

ones, especially for simple metals. On the other hand, a well-known problem in semicon-

ductors and insulators is that both LDA and GGA seriously underestimate the band gap.

This deficiency is corrected when using the exact exchange functional (see Table III).

Since DFT also has gained a tremendous popularity in the world of quantum chemistry

we finally present some results for the atomization energies of small molecules in Table IV.

Similar to the cohesive energy of solids one sees a clear improvement as one goes from LDA

to GGA. Further improvement is achieved on the meta-GGA level but, for this particular
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quantity, the accuracy of the hybrid functional is truly remarkable. Unfortunately, however,

the accuracy of hybrid functionals for molecular properties does not translate into an equally

good performance for solids.

V. EXTENSIONS OF DFT

The original theory of Hohenberg, Kohn and Sham can only be applied to quantum

systems in their (non-degenerate) ground-state. Over the years a number extensions have

been put forth (with varying degree of success). In fact, density functional theories have been

formulated for relativistic systems, superconductors, ensembles, etc. Here we only review a

small selection of extensions of DFT. We will pay special attention to time-dependent DFT,

as this theory is becoming particularly popular in the calculation of excited-state properties.

A. Spin Density Functional Theory

Most practical applications of DFT make use of an extension of the original theory which

uses the partial densities of electrons with different spin σ as independent variables,

nσ(r) =
occ∑
i

|ϕiσ(r)|2 , (19)

rather than using the total density of Eq. (7). Again, the single-particle orbitals are solu-

tions of a non-interacting Schrödinger equation (6), but the effective potential Eq. (11) now

becomes spin-dependent by using the exchange-correlation potential

vxcσ[n↑, n↓](r) =
δExc[n↑, n↓]

δnσ(r)
(20)

instead of the one given in Eq. (12). Spin-density functional theory (SDFT) relates to

the original formulation of DFT as spin-unrestricted Hartree-Fock relates to spin-restricted

Hartree-Fock theory. It allows for a straightforward description of systems with a spin-

polarized ground state such as, e.g., ferromagnets.

B. Density functional theory for superconductors

In 1988, triggered by the remarkable discovery of the high-Tc materials, Oliveira, Gross

and Kohn proposed a density functional theory for the superconducting state. Their theory
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uses two independent variables, the ”normal” density, n(r), and a non-local “anomalous”

density χ(r, r′). This latter quantity reduces, under the appropriate limits, to the order-

parameter in Ginzburg-Landau theory. With these two densities it is straightforward to

derive a Hohenberg-Kohn-like theorem and a Kohn-Sham scheme. The resulting equations

are very similar to the traditional Bogoliubov-de Gennes equations for inhomogeneous su-

perconductors, but include exchange and correlation effects through a “normal”,

vxc[n, χ](r) =
δExc[n, χ]

δn(r)
, (21)

and an “anomalous” exchange-correlation potential,

∆xc[n, χ](r, r′) = −δExc[n, χ]

δχ∗(r, r′)
. (22)

Unfortunately, only few approximations to the exchange-correlation functionals have been

proposed so far. From these we would like to mention an LDA-like functional aimed at

describing electron-electron correlations, and the development of an OEP-like scheme that

incorporates both strong electron-phonon interactions and electron screening. In this frame-

work it is now possible to calculate transition temperatures and energy gaps of supercon-

ductors from first principles.

C. Time-dependent density functional theory

Several problems in physics require the solution of the time-dependent Schrödinger equa-

tion

i
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ(r, t) , (23)

where Ψ is the many-body wave-function of N electrons with coordinates r = (r1, r2 · · · rN),

and Ĥ(t) is the operator (1) generalized to the case of time-dependent external poten-

tials. This equation describes the time evolution of a system subject to the initial condition

Ψ(r, t = t0) = Ψ0(r). The initial density is n0.

The central statement of time-dependent density functional theory (TDDFT), the Runge-

Gross theorem, states that, if Ψ0 is the ground state of Ĥ(t = t0), there exists a one-to-

one correspondence between the time-dependent density n(r, t) and the external potential,

v(r, t). All observables of the system can then be written as functionals of the density only.

The Runge-Gross theorem provides the theoretical foundation of TDDFT. The practical
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framework of the theory is given by the Kohn-Sham scheme. We define a system of non-

interacting electrons, obeying the one-particle Schrödinger equation

i
∂

∂t
ϕi(r, t) =

[
−∇2

2
+ vs(r, t)

]
ϕi(r, t) . (24)

Similar to static Kohn-Sham theory, the Kohn-Sham potential is usually written as

vs[n](r, t) = v(r, t) +
∫

d3r′
n(r′, t)

|r − r′|
+ vxc[n](r, t) , (25)

where v(r, t) includes both the static Coulomb potential of the nuclei and the explicitly

time-dependent contribution of an external electromagnetic field. The exchange-correlation

potential, vxc, is chosen such that the density of the Kohn-Sham electrons,

n(r, t) =
occ∑
i

|ϕi(r, t)|2 , (26)

is equal to the density of the interacting system. Clearly, vxc is a very complex quantity –

it encompasses all non-trivial many-body effects – that has to be approximated. The most

common approximation to vxc(r, t) is the adiabatic local density approximation (ALDA).

In the ALDA we assume that the exchange-correlation potential at time t is equal to the

ground-state LDA potential evaluated with the density n(r, t), i.e

vALDA
xc [n](r, t) = vunif

xc (n(r, t)) . (27)

Following the same reasoning it is simple to derive an adiabatic GGA or meta-GGA.

Two regimes can usually be distinguished in TDDFT (or more generally in time-

dependent quantum mechanics), depending on the strength of the external time-dependent

potential. If this potential is “weak”, the solution of the time-dependent Kohn-Sham equa-

tions can be circumvented by the use of linear (or low-order) response theory. In linear

response, we look at the linear change of the density produced by a small (infinitesimal)

change in the external potential – information which is contained in the so-called linear

density response function χ. Within TDDFT, χ can be calculated from the Dyson-like

equation

χ(rt, r′t′) = χs(rt, r′t′) +
∫

d3x
∫

d3x′
∫

dτ
∫

dτ ′ (28)

χs(rt,xτ)

[
δ(τ − τ ′)

|x − x′|
+ fxc(xτ,x′τ ′)

]
χ(x′τ ′, r′t′) ,
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where χs is the (non-interacting) Kohn-Sham response function. The exchange-correlation

kernel fxc is defined as

fxc(rt, r′t′) =
δvxc(r, t)

δn(r′, t′)

∣∣∣∣∣
n0

(29)

where the functional derivative is evaluated at the initial ground state density n0. If we

put fxc = 0 in (28) we recover the well-known random phase approximation (RPA) to the

excitation energies. Knowledge of χ allows for the calculation of linear absorption spectra.

Here we have to distinguish between finite and extended systems. The optical absorption

spectrum of a finite system is essentially given by the poles of χ. For an extended system,

the spectrum is obtained from the imaginary part of the dielectric function, which can be

written (in frequency space) as

ε−1(r, r′, ω) = δ(r − r′) +
∫

d3x
χ(x, r′, ω)

|r − x|
. (30)

Most calculations performed within this scheme approximate the exchange-correlation kernel

by the ALDA. For finite systems, excitation energies are of excellent quality for a variety

of atoms, organic and inorganic molecules, clusters, etc. Unfortunately, the situation is

different for extended systems, especially for large gap semiconductors. In Fig. 1 we show

the ALDA optical absorption spectrum of silicon together with an RPA calculation, a Bethe-

Salpeter calculation (a method based on many-body perturbation theory), and experimental

results. It is clear that ALDA fails to give a significant correction over RPA. In momentum

space, the Coulomb interaction is simply 1/q2. It is then clear from (28) that if fxc is to

contribute for small q – which is the relevant regime for optical absorption – it will have

to behave asymptotically as 1/q2. The ALDA kernel approaches a constant for q → 0 and

is therefore uncapable to correct the RPA results. Recently several new kernels have been

proposed that overcome this problem. In the figure we show one of them, the RORO kernel,

which has the simple form

fRORO
xc (r, r′) = − α

4π

1

|r − r′|
, (31)

where α is a phenomenologically determined parameter. Taking α = 0.12 yields the curve

shown in Fig. 1, which is already very close to the experimental results.
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VI. CONCLUSIONS

There is no doubt that DFT has become a mature theory for electronic structure calcu-

lations. The success of DFT is based on the availability of increasingly accurate approx-

imations to the exchange-correlation energy. Research into the development of still more

accurate approximations continues. In static DFT, orbital functionals seem to be promising

candidates to achieve this goal. In time-dependent DFT as well as in other extensions of

DFT, development of approximations is still at a much earlier stage.

Applications of DFT abound. In solid state physics, DFT is the method of choice for

the calculation materials properties from first principles. While traditional, static DFT cal-

culations have mainly focussed on structural ground state properties such as, e.g., lattice

parameters, TDDFT also allows for the calculation of excited state properties such as, e.g.,

absorption spectra. In quantum chemistry, the decade-long dream of electronic structure

calculations with “chemical accuracy” appears within reach with DFT. Due to the favorable

scaling of the computational effort with increasing system size and also to the ever-increasing

computational power of modern computers, DFT calculations are now feasible for systems

containing several thousand atoms. This opens the way for applications of DFT to biologi-

cally relevant systems.
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FIG. 1: Optical absorption spectrum of siliconc. The curves are: thick dots – experimentc; dotted

curve – RPA; dot-dashed curve – TDDFT using the ALDA; solid curve – TDDFT using the RORO

kernelc; dashed curve – Bethe-Salpeter equation.

aFigure reproduced from G. Onida, L. Reinig, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
bP. Lautenschlager, M. Garriga, L. Viña, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
cL. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett. 88, 066404 (2002).
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TABLE I: Equilibrium lattice constants a (in Å) and bulk moduli B0 (in GPa) for some solids

calculated with LDA, GGA, and meta-GGA approximations in comparison to experimental results.

m.a.e. is the mean absolute error. a

Solid aLSD aGGA aMGGA aexp BLSD
0 BGGA

0 BMGGA
0 Bexp

0

Na 4.05 4.20 4.31 4.23 9.2 7.6 7.0 6.9

NaCl 5.47 5.70 5.60 5.64 32.2 23.4 28.1 24.5

Al 3.98 4.05 4.02 4.05 84.0 77.3 90.5 77.3

Si 5.40 5.47 5.46 5.43 97.0 89.0 93.6 98.8

Ge 5.63 5.78 5.73 5.66 71.2 59.9 64.6 76.8

GaAs 5.61 5.76 5.72 5.65 74.3 60.7 65.1 74.8

Cu 3.52 3.63 3.60 3.60 191 139 154 138

W 3.14 3.18 3.17 3.16 335 298 311 310

m.a.e. 0.078 0.051 0.043 - 12.8 7.0 7.6 -

aLattice constants from J.P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82 2544 (1999),

ibid. 82, 5179 (1999)(E); bulk moduli from S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem.

75, 889 (1999).

TABLE II: Magnetic moments (in µB) for some ferromagnetic solids. a

Solid MLSD MGGA M exp

Fe 2.01 2.32 2.22

Co 1.49 1.66 1.72

Ni 0.60 0.64 0.61

afrom J.H. Cho and M. Scheffler, Phys. Rev. B 53, 10685 (1996).
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TABLE III: Fundamental band gaps (in eV) of some semiconductors and insulators.

Solid LSD EXX exp

Gea -0.05 0.99 0.74

Sia 0.66 1.51 1.2

Ca 4.17 4.92 5.50

GaAsb 0.49 1.49 1.52

AlNa 3.2 5.03 5.11

BeTeb 1.60 2.47 2.7

MgSeb 2.47 3.72 4.23

afrom W.G. Aulbur, M. Städele, A. Görling, Phys. Rev. B 62, 7121 (2000).
bfrom A. Fleszar, Phys. Rev. B 64, 245204 (2001).

TABLE IV: Atomization energies (in units of 1 kcalmol−1 = 0.0434 eV) of 20 small molecules.

Zero-point vibration has been removed from experimental energies. a

Molecule ∆ELSD ∆EGGA ∆EMGGA ∆EHYB ∆Eexp

H2 113.2 104.6 114.5 107.5 109.5

LiH 61.0 53.5 58.4 54.7 57.8

CH4 462.3 419.8 421.1 420.3 419.3

NH3 337.3 301.7 298.8 297.5 297.4

H2O 266.5 234.2 230.1 229.9 232.2

CO 299.1 268.8 256.0 256.5 259.3

N2 267.4 243.2 229.2 226.5 228.5

NO 198.7 171.9 158.5 154.3 152.9

O2 175.0 143.7 131.4 125.6 120.5

F2 78.2 53.4 43.2 37.1 38.5

m.a.e. 34.3 9.7 3.6 2.1 -

aLSD, GGA, and meta-GGA results from S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem.

75, 889 (1999); results for the hybrid functional from A.D. Becke, J. Chem. Phys. 98, 5648 (1998).
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