Phase-space analysis of double ionization
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Abstract: We use the Wigner transformation to study the electronic
center-of-mass motion in phase-space for double ionization in a strong
laser field. The rescattering mechanism is clearly visible in the evolution
of the fully correlated two-electron system. In a mean-field calculation,
on the other hand, the signatures of rescattering are missing. Some
properties of the Wigner function in two-particle systems are reported.
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1 Introduction

The discovery of the anomalously large double-ionization probabilities for laser-driven
atoms [1, 2] initiated lively discussions about the mechanism of laser-induced multiple
ionization. It was quickly accepted that the electron-electron correlation plays an im-
portant role in the process because it was not possible to reproduce the experimental
findings within uncorrelated model calculations. The “knee structure” in the intensity
dependence of the double-ionization yield indicated that a correlated “non-sequential”
process dominates at lower intensities while uncorrelated “sequential” ionization takes
over at higher intensities, for He at about I ~ 10> W/cm?. Non-sequential double
ionization was soon found in a number of calculations [3-10] using a variety of different
approaches, but the physical picture has remained controversial until recently. A series
of new experiments [11-14] and calculations [15—21] was initiated by measurements of
the recoil-ion momentum spectra by Weber et al. [11] and Moshammer et al. [12]. These
are very much in favor of the rescattering picture [22]: After a first single-ionization step,
the outer electron is accelerated by the laser and returns to the core where energy can be
transferred to the second electron by recollision. In essence, this is a classical picture and
classical dynamics is usually visualized in phase space. Hence, the most appropriate way
to confirm that rescattering actually leads to double ionization is the inspection of the
phase-space motion. In quantum mechanics, the distribution in phase-space is obtained
via the Wigner transformation [23]. However, for a wave function depending on two
coordinates, the Wigner function has already four dimensions, which is too many to be
easily analyzed. Therefore, in order to study the phase-space dynamics of both electrons,
we consider the dynamics of the electronic center-of-mass. Its momentum P = p; + po
is related to the recoil-ion momentum p*) by P = —p(?t) as a consequence of the
approximate momentum conservation: The laser photons carry negligible momentum.
Hence, the center-of-mass motion has a direct relation to the recoil-ion momentum
distributions which have become very important in the experimental study of double
ionization. In our previous work, we have shown that rescattering shows up clearly in
the electronic center-of-mass phase-space motion [20]. In the present work we investigate
the center-of-mass phase-space dynamics in more detail. For the one-dimensional model
of the helium atom, we explore the exact time evolution and compare with the result
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of a time-dependent Hartree-Fock (HF) calculation. We find that the typical signatures
of rescattering are absent in the HF approach, showing that the mean-field level of
electron-electron interaction cannot properly describe non-sequential double ionization.
On the way we will encounter some interesting properties of the Wigner transformation.

2 Model

We use the 1D two-electron model atom with soft-core Coulomb potentials [24]. The
length-gauge Hamiltonian in atomic units reads

19> 102 2 2 N 1
2 0z12 2 0292 \/Z%—Fl \/Z%—I—l \/(21—22)2+1

Here, z; and z5 are the electron coordinates along the direction of the laser polarization,
and E(t) = Eysinwt is the electric field of the laser. The coordinates can assume positive
and negative values, so that the electrons may pass by the nucleus. Numerically, we rep-
resent the time-dependent two-electron wave function W(z1, 29, t) on a two-dimensional
grid extending at least 300 a.u. in each dimension. The separation between the grid
points is 0.2 a.u. The initial state is the singlet ground state which we obtain by propa-
gation of an arbitrary symmetric wave function in imaginary time. The time evolution
under the influence of the laser field is calculated through numerical integration of the
time-dependent Schrédinger equation, using the split-operator method [25] with 2000
time steps per optical cycle. At the grid boundary, an optical potential is added to the
external potential to ensure that outgoing flux is absorbed rather than reflected from the
boundary. The width of this absorbing mask is one tenth of the total grid size. For the
results shown in this work, a 780 nm laser with intensity 10*®> W/cm? is employed. The
classical oscillation amplitude for these parameters is a = Eg/w? = 49 a.u., i.e., the grid
is large enough to account for recollision events. In our previous work, we have demon-
strated [9] that the laser pulse shape does not play an important role for the ionization
mechanism. Considering a certain time during the action of the pulse, single and double
ionization depend only on the intensity at that time, no matter if the laser has been
turned on smoothly or not. Therefore, when we investigate the ionization mechanism,
we may switch on the laser without using an envelope function. This has the advantage
that the observed processes are not clouded by superposition of the phase-space density
with wave packets from ionization during previous optical cycles.

Besides the exact time evolution we will consider the time-dependent Hartree-Fock
approximation. Our two-electron system remains in a singlet state for all times, so the
HF wave function simply reads

H=—

+E()(z +2). (1)

U (21, 29,8) = @(21, 1) p(22, 1) (2)

The time evolution of the orbital ¢ is governed by the one-particle Schrédinger equation
.0 1 02

z%@(zvt) = {_5@ +Us(zat):| @(Zat), (3)

with the single-particle potential vs given by
2 lp(2', 1)? /
vs(z,t) = — —|—/ dz' + E(t) z. 4
(1) V2241 ViE—2)2+1 () @

3 The Wigner transformation for a two-electron system

The Wigner function corresponding to a one-particle wave function (z) is given by
w® (z,p) = /w* (:r - %) w(w + %) e dy. (5)
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This quantity is always real, but can be positive or negative. The integration of w(!) over
the momentum p correctly yields the coordinate probability distribution |p(x)|? (except
for a prefactor 27). Likewise, the integration over z yields the momentum distribution.
Therefore, and despite the fact that the Wigner transform may assume negative values,
it is usually interpreted as the probability distribution in the one-particle phase space
spanned by the coordinate x and the momentum p.

For a many-body wave function such as U(z1, 23), the Wigner transformation may be
carried out for each coordinate. The number of dimensions is thereby doubled. As in [20],
we avoid the large number of dimensions by introducing the Wigner transformation with
respect to the electronic center-of-mass coordinate Z = (21 + z2)/2; we do not transform
with respect to the relative coordinate z = z9 — 2z7:

— (g Y _ 25 Y E) ( y_z Y E) —iPy

w(Z, P, 2) /qf (Z S5l Uz -5z g) ey (6)
Subsequently, we integrate over the relative coordinate z to obtain the phase-space
distribution for the center of mass:

w(Z,P):/w(Z,P,z) dz. (7)

Concerning the numerical evaluation of w(Z, P), it is more efficient (yet equivalent) to
first integrate over z and then carry out the Fourier transformation. In this way, we
do not need to handle the complicated integrand in Eq. (6), which depends on four
variables.

Below we will apply the phase-space analysis to a time-dependent HF calculation.
In this case, the time-dependent wave function is a product wave function, see Eq. (2),
and it is straightforward to prove that the center-of-mass phase-space distribution takes

the simple form
HF Ll af, P 2

where w() (z, p) is the one-particle Wigner function as defined in Eq. (5). From Eq. (8)
we see that w™ exhibits some peculiarities. Obviously, w"¥ (Z, P) is always greater
or equal to zero, contrary to a general Wigner function. This is a nice feature since it
simplifies the interpretation. Consider now the case that ¢(x) is a superposition of two
wave packets, centered at x = *+a, i.e., p(x) = @q(x) + p_q(z). The Wigner function
wM (z,p) then contains maxima at x = +a. Therefore, by Eq. (8), the two-particle
quantity w¥ (Z, P) contains maxima at Z = +a as well, corresponding to the case where
both electrons are located at —a or where both electrons are located at 4+a. However,
the HF wave function WHF (21, 20) = ¢4 (21)0a(22) + @a(21)0—a(22) + 0—_a(21)@a(22) +
©_a(2z1)p—a(22) also contains the possibility that the electrons are located on opposite
sides, corresponding to phase-space density around Z = 0. By Eq. (8), the one-particle
distribution then contains density at x = 0; thinking classically, this should not be
the case. The solution to the paradox is that the one-particle distribution exhibits
rapid oscillations between positive and negative values in the region at = 0. These
oscillations would average to zero if the Wigner function was convoluted with some
smoothing window function. By applying the square in Eq. (8), we obtain a positive
function which cannot average to zero.

We conclude this section by giving the generalization of the upper relation to a sym-
metrized /antisymmetrized product of two different one-particle wave functions ¢4, 2,

U2 (21, 20) = @1(21)p2(22) £ @1 (22)p2(21). 9)
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The center-of-mass phase-space density as defined by Eq. (7) then reads

2
s/a * Y Y\ P P
U)/ (Zap):‘/QOQ(Z_'_i) <)01(Z_§)epy/2dy‘ + Wiy (ng) w<P2<Z55>7 (10)

where wy,, and w,, are the Wigner distributions for ¢1, ¢2. The second term in Eq. (10)
arises from the symmetrization of the wave function.

4 Results

The center-of-mass phase-space motion for the exact temporal evolution of the model
system is shown in the animation Fig. 1. The second animation, Fig. 2, is the result
of the HF calculation. The time covered by the movies is 37/2 where T is one optical
cycle, and the still images in Figs. 1, 2 are the final frames at ¢ = 37/2. Both movies
include audio tracks explaining the time-dependent processes. We look at the exact
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Fig. 1. (2.3 MB) The time evolution of the center-of-mass phase-space distribution.

calculation first. The system starts out from the ground state which, on the scale of
our figures, has a narrow phase-space density around Z = 0 extending from about
P=-2a.u. to P=+42 a.u. In the first half optical cycle, the external electric field is
positive so that the electrons are accelerated towards negative coordinates. At ¢t = T'/2,
a very broad wave packet has appeared in the region Z <0 and P < 0. Since double
ionization is negligible during the first half cycle [9, 10], we can ascribe this density to
pure single ionization. This is confirmed by the value of P at the lower end of the wave
packet which agrees well with the maximum momentum that one electron can receive
classically, namely the momentum after a half cycle of free acceleration in the electric
field, |Ppax|=2Ep/w=>5.8 a.u. This means that the wave packet must be interpreted as
one electron at z =27 with momentum p= P, while the second electron remains close
to z=0, p=0. Part of this density can return to the core after acceleration into the
opposite direction during the second half cycle. When the electron collides with the core,
i.e., when the density crosses the vertical axis Z = 0, we find that structures appear in
the wave packet. See, e.g., the oscillations in 0 < Z <20 a.u., 3 a.u. < P <5 a.u. at the
time t=T. They are due to the superposition of scattered and unscattered density. At
lower P we observe a strong second single-ionization wave packet. The fast oscillations
for Z > 20 a.u. result from the overlap of the two single-ionization wave packets. The
snapshot at t =T clearly shows why the phase-space pictures are much more informative
than snapshots in configuration or momentum space: There is very little overlap between
the wave packets corresponding to ionization at different times; they can be clearly
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separated. Projection either onto the Z or P axis would lead to considerable overlap, and
we could not observe the time evolution of the individual wave packets. With increasing
time, we find that tails evolve out of the scattered density. For T' <t < 3T/2 the field
accelerates the electrons towards negative coordinates. The tails are accelerated more
strongly than the broad remainder of the wave-packet. A close examination reveals that
the acceleration is about twice as large, indicating that this is density corresponding
to two electrons freely accelerated by the laser. At ¢ = 3T /2, the rescattering process
is completed and the double-ionization wave packet at (Z, P) ~ (—80,—7.5) a.u. has
become essentially isolated from the rest. The ponderomotive momentum shift that the
two electrons will receive when the laser field is adiabatically switched off amounts to
Ey/w=2.9 a.u. per electron. Therefore, a center-of-mass momentum of P = —7.5 a.u. at
t = 3T'/2 leads to a final recoil-ion momentum of —(—7.5a.u.+2x2.9a.u.) =1.7 a.u.. This
is in good agreement with experiment [11] and other calculations [15, 21]. Of course,
rescattering will recur every half cycle. Also, multiple returns of the outer electron are
possible, but no effect of multiple scattering can be distinguished in the movie.
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Fig. 2. (2.5 MB) Same as Fig. 1 in the Hartree-Fock approximation.

We compare now with the evolution of the system in the HF approximation, Fig. 2.
From the beginning, there is a substructure in the phase-space density which was not
present in the exact calculation. These oscillations are specific to the HF product wave
function and have been discussed in Section 3. Apart from this effect, the observed
wave packets are similar to the ones of Fig. 1. However, we find a long and thin double-
ionization wave packet at t =T'/2. This remarkable presence of uncorrelated ionization is
consistent with [6], where it was found that at I =10 W /cm?, the HF double-ionization
yield is already 1.4 times larger than the exact double-ionization yield. The most striking
difference is that the single-ionization density does not suffer a noticeable change when
it crosses Z = 0. Le., rescattering does not affect the wave packet. Consistently, no tails
corresponding to non-sequential double ionization appear within T'<t<3T'/2, contrary
to the exact calculation. Except for the density due to uncorrelated double ionization
(mainly at P<—5.5 a.u.), all density at t=37T/2 arises from single ionization.

We conclude that double ionization by rescattering only occurs in the fully correlated
two-electron system, but is not found in the Hartree-Fock approach where the electron-
electron interaction is included only at the mean-field level.
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