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6.1 Introduction

The coupling between electronic and nuclear motion plays an essential role in
a wide range of physical phenomena. A few important research fields in which
this is the case are superconductivity in solids, quantum transport where
one needs to take into account couplings between electrons and phonons, the
polaronic motion in polymer chains, and the ionization-dissociation dynamics
of molecules in strong laser fields. Our goal is to set up a time-dependent
multicomponent density-functional theory (TDMCDFT) to provide a general
framework to describe these diverse phenomena. In TDMCDFT the electrons
and nuclei are treated completely quantum mechanically from the outset.
The basic variables of the theory are the electron density n, which will be
defined in a body-fixed frame attached to the nuclear framework, and the
diagonal of the nuclear N-body density matrix Γ , which will depend on all
the nuclear coordinates. The chapter is organized as follows: We start out
by defining the coordinate transformations to obtain a suitable Hamiltonian
for defining our densities to be used as basic variables in the theory. We
then discuss the basic one-to-one correspondence between TD potentials and
TD densities, and subsequently, the resulting TD Kohn-Sham equations, the
action functional, and linear response theory. As an example we discuss a
diatomic molecule in a strong laser field.

6.2 Fundamentals

We consider a system composed of Ne electrons with coordinates {r} and Nn

nuclei with masses M1 . . .MNn , charges Z1 . . . ZNn , and coordinates denoted
by {R}. By convention, the subscripts “e” and “n” refer to electrons and
nuclei, respectively, and atomic units are employed throughout this chapter.
In non-relativistic quantum mechanics, the system described above is char-
acterized by the Hamiltonian

Ĥ(t) = T̂n({R}) + V̂nn({R}) + Ûext, n({R}, t) + T̂e({r}) + V̂ee({r})
+ Ûext, e({r}, t) + V̂en({r}, {R}) , (6.1)
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where

T̂n = −1
2

Nn∑

α=1

∇2
α

Mα
and T̂e = −1

2

Ne∑

j=1

∇2
j (6.2)

denote the kinetic-energy operators of the nuclei and electrons, respectively,

V̂nn =
1
2

Nn∑

α,β=1
α�=β

ZαZβ

|Rα − Rβ |
, V̂ee =

1
2

Ne∑

i,j=1
i�=j

1
|ri − rj |

, (6.3)

and

V̂en = −
Ne∑

j=1

Nn∑

α=1

Zα

|rj − Rα|
(6.4)

represent the interparticle Coulomb interactions. Truly external potentials
representing, e.g., a laser pulse applied to the system, are contained in

Ûext, n(t) =
Nn∑

α=1

uext, n(Rα, t) (6.5a)

Ûext, e(t) =
Ne∑

j=1

uext, e(rj , t) . (6.5b)

Defining electronic and nuclear single-particle densities conjugated to the true
external potentials (6.5a) and (6.5b), a multicomponent density-functional
theory (MCDFT) formalism can readily be formulated on the basis of the
above Hamiltonian [Capitani 1982, Gidopoulos 1998]. However, as discussed
in [Kreibich 2000, Kreibich 2001a, Kreibich 2005], such a MCDFT is not
useful in practice because the single-particle densities necessarily reflect the
symmetry of the true external potentials and are therefore not characteristic
of the internal properties of the system. In particular, for all isolated systems
where the external potentials (6.5a) and (6.5b) vanish, these densities are
constant, as a consequence of the translational invariance of the respective
Hamiltonian. A suitable MCDFT is obtained by defining the densities with
respect to internal coordinates of the system [Kreibich 2001a, van Leeuwen
2004b]. To this end, new electronic coordinates are introduced according to

r′
j = R(α, β, γ) (rj − RCMN) j = 1 . . . Ne , (6.6)

where the nuclear center-of-mass is defined as

RCMN :=
1

Mnuc

Nn∑

α=1

MαRα , where Mnuc =
Nn∑

α=1

Mα . (6.7)

The quantity R is a three-dimensional orthogonal matrix representing the
Euler rotations. The Euler angles (α, β, γ) are functions of the nuclear coor-
dinates {R} and specify the orientation of the body-fixed coordinate frame.
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They can be determined in various ways. One way is by requiring the in-
ertial tensor of the nuclei to be diagonal in the body-fixed frame. The
conditions that the off-diagonal elements of the inertia tensor are zero in
terms of the rotated coordinates R(Rα − RCMN) then give three deter-
mining equations for the three Euler angles in terms of the nuclear coor-
dinates {R} [Villars 1970]. A common alternative to determine the orien-
tation of the body-fixed system is provided by the so-called Eckart con-
ditions [Eckart 1935, Louck 1976, Bunker 1998] (for recent reviews see
[Sutcliffe 2000, Meyer 2002]) which are suitable to describe small vibrations
in molecules and phonons in solids [van Leeuwen 2004b]. A general and very
elegant discussion on the various ways the body-fixed frame can be chosen is
given in reference [Littlejohn 1997] . In this work we will not make a specific
choice, as our derivations are independent of such choice. The most important
point is that, by virtue of (6.6), the electronic coordinates are defined with
respect to a coordinate frame that is attached to the nuclear framework and
rotates as the nuclear framework rotates. The nuclear coordinates themselves
are not transformed any further at this point, i.e.,

R′
α = Rα α = 1 . . . Nn . (6.8)

Of course, introducing internal nuclear coordinates is also desirable. However,
the choice of such coordinates depends strongly on the specific situation to be
described: If near-equilibrium situations in systems with well-defined geome-
tries are considered, normal or – for a solid – phonon coordinates are most ap-
propriate, whereas fragmentation processes of molecules are better described
in terms of Jacobi coordinates [Meyer 2002, Schinke 1993]. Therefore, to keep
a high degree of flexibility, the nuclear coordinates are left unchanged for the
time being and are transformed to internal coordinates only prior to actual
applications of the final equations that we will derive.

As a result of the coordinate changes of (6.6), the Hamiltonian (6.1) trans-
forms into

Ĥ(t) = T̂n({R}) + V̂nn({R}) + Ûext, n({R}, t) + T̂e({r′}) + V̂ee({r′})
+ T̂MPC({r′}, {R}) + V̂en({r′}, {R}) + Ûext, e({r′}, {R}, t) . (6.9)

Since we transformed to a noninertial coordinate frame a mass-polarization
and Coriolis (MPC) term

T̂MPC :=
Nn∑

α=1

− 1
2Mα



∇Rα
+

Ne∑

j=1

∂r′
j

∂Rα
∇r′

j




2

− T̂n({R}) (6.10)

appears. Obviously, this MPC term is not symmetric in the electronic and
nuclear coordinates. However, this was not expected since only the electrons
refer to a noninertial coordinate frame, whereas the nuclei are still defined
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with respect to the inertial frame. Therefore, all MPC terms arise solely from
the electronic coordinates, representing fictious forces due to the electronic
motion in noninertial systems (for a detailed form of these terms within the
current coordinate transformation see [van Leeuwen 2004b]). The kinetic-
energy operators T̂n and T̂e, the electron-electron and nuclear-nuclear inter-
actions, as well as the true external potential Ûext, n acting on the nuclei are
formally unchanged in (6.9) and therefore given by (6.2) and (6.3) with the
new coordinates replacing the old ones, whereas the electron-nuclear interac-
tion now reads

V̂en({r′}, {R}) = −
Ne∑

j=1

Nn∑

α=1

Zα

|r′
j −R(α, β, γ)(Rα − RCMN)| . (6.11)

The quantity
R′′

α = R(α, β, γ)(Rα − RCMN) (6.12)

that appears in (6.11) is a so-called shape coordinate [Littlejohn 1997, van
Leeuwen 2004b], i.e., it is invariant under rotations and translations of the
nuclear framework. This is, of course, precisely the purpose of introducing
a body-fixed frame: The attractive nuclear Coulomb potential (6.11) that
the electrons in the body-fixed frame experience is invariant under rotations
or translations of the nuclear framework. As a further consequence of the
coordinate transformation (6.6), the true external potential acting on the
electrons now not only depends on the electronic coordinates, but also on all
the nuclear coordinates:

Ûext, e({r′}, {R}, t) =
Ne∑

j=1

uext, e(R−1r′
j + RCMN, t) . (6.13)

Therefore, in the chosen coordinate system, the electronic external potential
is not a one-body operator anymore, but acts as an effective interaction.
Consequences of this fact are discussed later.

6.2.1 Definition of the Densities

As already mentioned above, it is not useful to define electronic and nuclear
single-particle densities in terms of the inertial coordinates r and R, since
such densities necessarily reflect the symmetry of the corresponding true ex-
ternal potentials, e.g., they are constant for vanishing external potentials.
Instead, we use the diagonal of the nuclear Nn-body density matrix

Γ ({R}, t) =
∑

{s},{σ}

∫
d3r′1 · · ·

∫
d3r′Ne

∣∣Ψ{s}{σ}({R}, {r′}, t)
∣∣2 , (6.14)

and the electronic single-particle density referring to the body-fixed frame:
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n(r′, t) = Ne

∑

{s},{σ}

∫
d3R′

1 · · ·
∫

d3R′
Nn

∫
d3r′1 · · ·

∫
d3r′Ne−1

∣∣Ψ{s}{σ}({R}, {r′}, t)
∣∣2 . (6.15)

Here Ψ{s}{σ}({R}, {r′}, t) represents the full solution of the TD Schrödinger
equation with the Hamiltonian (6.9). The quantities {s} and {σ} denote
the nuclear and electronic spin coordinates. The electronic density (6.15)
represents a conditional density. It is proportional to the probability density
of finding an electron at postion r′ as measured from the nuclear center-of-
mass, given a certain orientation of the nuclear framework. Therefore the
electronic density calculated through (6.15) reflects the internal symmetries
of the system, e.g., the cylindrical symmetry of a diatomic molecule, instead
of the Galilean symmetry of the underlying space.

6.3 The Runge-Gross Theorem
for Multicomponent Systems

In order to set up a density-functional framework, our next task is to prove
the analogue of the Runge-Gross theorem [Runge 1984] for multicomponent
systems. To this end, we slightly modify the Hamiltonian (6.9) to take the
form

Ĥ(t) = T̂n({R}) + V̂nn({R}) + T̂e({r′}) + V̂ee({r′}) + T̂MPC({r′}, {R})
+ V̂en({r′}, {R}) + Ûext, e({r′}, {R}, t) + V̂ext, n({R}, t) + V̂ext, e({r′}, t).

(6.16)

The potentials V̂ext, n({R}, t) and V̂ext, e({r′}, t), given by

V̂ext, n({R}, t) = vext, n({R}, t) and V̂ext, e({r′}, t) =
Ne∑

j=1

vext, e(r′
j , t) ,

(6.17)
are potentials conjugate to the densities Γ ({R}, t) and n({r′}, t) and are in-
troduced to provide the necessary mappings between potentials and densities.
In the special case V̂ext, n({R}, t) = Ûext, n({R}, t) and V̂ext, e({r′}, t) = 0, the
external potentials reduce to those of the Hamiltonian (6.9). It is important
to note that the potential Ûext, e({r′}, {R}, t) depends on both the electronic
and nuclear coordinates and is therefore treated as a fixed many-body term
in Hamiltonian (6.16). The mass-polarization and Coriolis terms in T̂MPC

are complicated many-body operators. They are treated here as additional
electron-nuclear interactions which ultimately enter the exchange-correlation
functional. For Hamiltonians of the form (6.16) we can apply the proof of the
basic 1−1 correspondence along the same lines as Li and Tong [Li 1986]. Two
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sets of densities {Γ ({R}, t), n(r′, t)} and {Γ ′({R}, t), n′(r′, t)}, which evolve
from a common initial state Ψ0 at t = t0 under the influence of two sets of po-
tentials {vext, n({R}, t), vext, e(r′, t)} and

{
v′ext, n({R}, t), v′ext, e(r

′, t)
}

always
become different infinitesimally after t0 provided that at least one component
of the potentials differs by more than a purely time-dependent function:

vext, n({R}, t) �= v′ext, n({R}, t) +C(t) or vext, e(r′, t) �= v′ext, e(r
′, t) +C(t)

(6.18)
Consequently a one-to-one mapping between time-dependent densities and
external potentials,

{vext, n({R}, t), vext, e(r′, t)} ↔ {Γ ({R}, t), n(r′, t)} (6.19)

is established for a given initial state Ψ0. We again stress that since the
external potential acting on the electrons Ûext, e({r′}, {R}, t) in the body-
fixed frame attains the form of an electron-nuclear interaction, the 1 − 1
mapping is still functionally dependent on uext, e(r′, {R}, t).

6.4 The Kohn-Sham Scheme
for Multicomponent Systems

On the basis of the multi-component Runge-Gross (MCRG) theorem we can
set up the Kohn-Sham equations. For this we consider an auxiliary system
with Hamiltonian

ĤKS(t) = T̂n({R}) + T̂e({r′}) + V̂KS, n({R}, t) + V̂KS, e({r′}, t) , (6.20)

where we introduced the potentials

V̂KS, n({R}, t) = vKS, n({R}, t) and V̂KS, e({r′}, t) =
Ne∑

j=1

vKS, e(r′
j , t) .

(6.21)
This represents a system in which the interelectronic interaction as well
as the interaction between the nuclei and the electrons has been switched
off. According to the MCRG theorem there is at most one set of poten-
tials

{
V̂KS, n({R}, t), V̂KS, e({r′}, t)

}
(up to a purely time-dependent func-

tion) that reproduces a given set of densities {Γ ({R}, t), n(r′, t)}. The po-
tentials determined in this way are therefore functionals of the densities n
and Γ and will henceforth be denoted as the Kohn-Sham potentials for the
multicomponent system. The corresponding Hamiltonian of (6.20) will be de-
noted as the multicomponent Kohn-Sham Hamiltonian. In the Kohn-Sham
Hamiltonian the electronic and nuclear motion have become separated. If we
therefore choose the initial Kohn-Sham wavefunction ΦKS, 0 to be a product
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of a nuclear and an electronic wavefunction then the time-dependent Kohn-
Sham wavefunction will also be such a product, i.e.,

ΦKS, {s}{σ}({R}, {r′}, t) = Φe, {σ}({r′}, t) Φn, {s}({R}, t) (6.22)

and the corresponding densities are given by

Γ ({R}, t) =
∑

{s}

∣∣Φn, {s}({R}, t)
∣∣2 (6.23a)

n(r′, t) = Ne

∑

{σ}

∫
d3r′1 · · ·

∫
d3r′Ne−1

∣∣Φe, {σ}({r′}, t)
∣∣2 . (6.23b)

The electronic and nuclear Kohn-Sham wavefunctions satisfy the equations
{

i
∂

∂t
− T̂n({R}) − V̂KS, n[n, Γ ]({R}, t)

}
Φn, {s}({R}, t) = 0 (6.24a)

{
i
∂

∂t
− T̂e({r′}) − V̂KS, e[n, Γ ]({r′}, t)

}
Φe, {σ}({r′}, t) = 0 . (6.24b)

Note that the potential V̂KS, n in the nuclear Kohn-Sham equation (6.24a) is
an Nn-body interaction, whereas the electronic Kohn-Sham potential V̂KS, e

is a one-body operator. Hence, by choosing the initial electronic Kohn-Sham
wavefunction as a Slater determinant consisting of orbitals ϕj , the electronic
Kohn-Sham (6.24b) attains the usual form

{
i
∂

∂t
−
[
−1

2
∇′2 + vKS, e[n, Γ ](r′, t)

]}
ϕj(r′, t) = 0 (6.25a)

n(r′, t) =
Ne∑

j

|ϕj(r′, t)|2 . (6.25b)

The nuclear (6.23a) and (6.24a), together with the electronic (6.25a) and
(6.25b), provide a formally exact scheme to calculate the electronic density
n and Nn-body nuclear density Γ . For practical applications it remains to
obtain good approximations for the potentials vKS, n[n, Γ ] and vKS, e[n, Γ ].
More insight into this question is obtained from the multicomponent action
functional to be discussed in the next paragraph.

6.5 The Multicomponent Action

We start by defining a multicomponent action functional

Ã[vext, e, vext, n] = i ln〈Ψ0|T̂C exp
{
−i
∫

C

dt Ĥ(t)
}
|Ψ0〉 (6.26)
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The Hamiltonian in this expression is the one of (6.16). Furthermore Ψ0 is the
initial state of the system and T̂C denotes time-ordering along the Keldysh
time contour C running along the real time-axis from t0 to t and back to t0.
The time-dependent potentials vext, e and vext, n are correspondingly defined
on this contour. The case discussed here is for an initial pure state. In case
the initial system is in thermodynamic equilibrium the expectation value with
respect to Ψ0 can be replaced by a thermodynamic trace and the contour can
be extended to include a final vertical stretch running from t0 to t0 − iβ,
where β is the inverse temperature of the initial ensemble. In that case the
functional is closely related to the grand potential as is extensively discussed
in Chap. 3. The main property of the action (6.26) which is important for
multicomponent density-functional theory is that

δÃ

δvext, e(r, t)
= n(r, t) and

δÃ

δvext, n({R}, t) = Γ ({R}, t) . (6.27)

(From now on, for ease of notation, we will remove the prime from the elec-
tronic coordinate.) We now do a Legendre transform to obtain a functional
of n and Γ and we define

A[n, Γ ] = −Ã[vext, e, vext, n] +
∫

C

dt
∫

d3r n(r, t) vext, e(r, t)

+
∫

C

dt
∫

d3R1 · · ·
∫

d3RNn Γ ({R}, t) vext, n({R}, t) , (6.28)

where in this equation vext, e and vext, n (by virtue of the MCRG theorem) are
now regarded as functionals of n and Γ . From the chain rule of differentiation
we then easily obtain

δA

δn(r, t)
= vext, e(r, t) and

δA

δΓ ({R}, t) = vext, n({R}, t) . (6.29)

For the Hamiltonian ĤKS(t) of (6.20) we can now further define an action
functional analogous to (6.26)

ÃKS[vKS, e, vKS, n] = i ln〈Φ0|T̂C exp
{
−i
∫

C

dt ĤKS(t)
}
|Φ0〉 (6.30)

where Φ0 is the initial state of the auxiliary system. By a Legendre transform
we then obtain the functional AKS[n, Γ ]. With A[n, Γ ] and AKS[n, Γ ] well-
defined we now can define the exchange-correlation part Axc[n, Γ ] of the
action through the equation
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A[n, Γ ] = AKS[n, Γ ] − 1
2

∫

C

dt
∫

d3r1

∫
d3r2 vee(r1, r2)n(r1, t)n(r2, t)

−
∫

C

dt
∫

d3r

∫
d3R1 · · ·

∫
d3RNn [ven(r, {R})

+ uext, e(r, {R}, t)]n(r, t)Γ ({R}, t)

−
∫

C

dt
∫

d3R1 · · ·
∫

d3RNn vnn({R})Γ ({R}, t) −Axc[n, Γ ] , (6.31)

where we subtracted the Hartree-like parts of the electron-electron and
electron-nuclear interaction and the internuclear repulsion, using the defi-
nitions

ven(r, {R}) = −
Nn∑

α=1

Zα

|r −R(R − RCMN)| (6.32a)

uext, e(r, {R}, t) = uext, e(R−1r + RCMN, t) . (6.32b)

These Hartree terms are treated separately because they are expected to be
the dominant potential-energy contributions whereas the remainder, Axc[n, Γ ],
is expected to be smaller. No such dominant contributions arise from the
mass-polarization and Coriolis terms which are usually rather small. The con-
tributions coming from T̂MPC are therefore completely retained in Axc[n, Γ ].
Differentiation of (6.31) with respect to n and Γ then yields

vKS, e(r, t) = vext, e(r, t) +
∫

d3r′ vee(r, r′)n(r′, t)

+
∫

d3R1 · · ·
∫

d3RNn [ven(r, {R})

+ uext, e(r, {R}, t)]Γ ({R}, t) + vxc, e(r, t) , (6.33)

and

vKS, n({R}, t) = vext, n({R}, t) + vnn({R})

+
∫

d3r [ven(r, {R}) + uext, e(r, {R}, t)]n(r, t) + vxc, n({R}, t) , (6.34)

where we have defined the electronic and nuclear exchange-correlation poten-
tials as

vxc, e(r, t) =
δAxc[n, Γ ]
δn(r, t)

and vxc, n({R}, t) =
δAxc[n, Γ ]
δΓ ({R}, t) . (6.35)

The main question is now how to obtain explicit functionals for the exchange-
correlation potentials. One of the most promising ways of obtaining these
may be the development of orbital functionals as in the OEP approach. Such
functionals can be deduced by a diagrammatic expansion of the action func-
tionals.
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6.6 Linear Response and Multicomponent Systems

We will now consider the important case of linear response in the multicom-
ponent formalism. Such approach will, for instance, be very useful in the
weak field problems such as the electron-phonon coupling in solids. For con-
venience we first introduce the notation i = (ri, ti) and i = ({R}, ti). Let us
then define the set of response functions:

χ12 =

(
χee(1, 2) χen(1, 2)
χne(1, 2) χnn(1, 2)

)
=

(
δn(1)
δve(2)

δn(1)
δvn(2)

δΓ (1)
δve(2)

δΓ (1)
δvn(2)

)
. (6.36)

Similarly for the Kohn-Sham system we have

χKS, 12 =

(
χKS, ee(1, 2) 0

0 χKS, nn(1, 2)

)
=

(
δn(1)

δvKS, e(2)
δn(1)

δvKS, n(2)
δΓ (1)

δvKS, e(2)
δΓ (1)

δvKS, n(2)

)
, (6.37)

in which the mixed response functions χKS, en = χKS, ne = 0 since in the
Kohn-Sham system the nuclear and electronic systems are decoupled. The
two sets of response functions are related by an equation that is very similar
to that of ordinary TDDFT

χ12 = χKS, 12 + χKS, 13 · (v34 + fxc, 34) · χ42 (6.38)

where “·” denotes a matrix product and integration over the variables 3 and
4, respectively. The matrices fxc and v are defined as

fxc, 12 =

(
fxc, ee(1, 2) fxc, en(1, 2)
fxc, ne(1, 2) fxc, nn(1, 2)

)
=

(
δvxc, e(1)

δn(2)
δvxc, e(1)

δΓ (2)
δvxc, n(1)

δn(2)
δvxc, n(1)

δΓ (2)

)
(6.39a)

v12 =

(
vee(1, 2) ven(1, 2) + uext, e(1, 2)

ven(2, 1) + uext, e(2, 1) 0

)
. (6.39b)

The (6.38) is the central equation of the multicomponent response theory
and is readily derived by application of the chain rule of differentiation. As
an example we calculate

χee(1, 2) =
δn(1)
δve(2)

=
∫

d3
δn(1)

δvKS, e(3)
δvKS, e(3)
δvext, e(2)

+
∫

d3
δn(1)

δvKS, n(3)
δvKS, n(3)
δvext, e(2)

=
δn(1)

δvKS, e(2)
+
∫

d3
δn(1)

δvKS, e(3)
δvHxc, e(3)
δvext, e(2)

, (6.40)

From which readily follows
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χee(1, 2) = χKS, ee(1, 2) +
∫

d3 χKS, ee(1, 3)

×
{∫

d4
δvHxc, e(3)

δn(4)
χee(4, 2) +

∫
d4

δvHxc, e(3)
δΓ (4)

χne(4, 2)
}

, (6.41)

where vHxc, e = vKS, e − ve. We further have

δvHxc, e(3)
δn(4)

= vee(3, 4) + fxc, ee(1, 2) (6.42a)

δvHxc, e(3)
δΓ (4)

= ven(3, 4) + uext, e(3, 4) + fxc, en(3, 4) . (6.42b)

Inserting these expressions into (6.41) we have established one entry in the
matrix (6.38). The other entries can be verified analogously. We finally note
that (6.39b) still contains the term uext, e, which is inconvenient in practice.
However, to calculate the linear response to the true external field we anyway
need to expand further in powers of uext, e. If we do this we obtain (6.38) with
uext, e = 0 in (6.39b) and two additional equations for the response functions
δn/δuext, e and δΓ/δuext, e which will not be discussed here [Butriy 2005].
From the structure of the linear response equation (6.38) it is readily seen that
electronic Kohn-Sham excitations (poles of χee, KS) and nuclear vibrational
Kohn-Sham excitations (poles of χnn, KS) will in general mix. The exchange-
correlation kernels in fxc will then have to provide the additional shift such
that the true response functions in χ will contain the true excitations of the
coupled electron-nuclear system.

6.7 Example

As an application of the formalism we discuss the case of a diatomic molecule
in a strong laser field. The Hamiltonian of this system in laboratory frame
coordinates is given by

Ĥ(t) = − 1
2M1

∇2
R1

− 1
2M2

∇2
R2

− 1
2

Ne∑

i=1

∇2
i +ven +vee +vnn +vlaser(t) (6.43)

where

vnn({R}) =
Z1Z2

|R1 − R2|
(6.44a)

ven({r}, {R}) = −
Ne∑

i=1

{
Z1

|ri − R1|
+

Z2

|ri − R2|

}
(6.44b)

vlaser({r}, {R}, t) =

{
Ne∑

i=1

ri − Z1R1 − Z2R2

}
· E(t) (6.44c)

and where E(t) represents the electric field of the laser.
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We now have to perform a suitable body-fixed frame transformation to
refer the electron coordinates to a nuclear frame. For the diatomic molecule a
natural choice presents itself: We determine the Euler angles by the require-
ment that the internuclear axis be parallel to the z-axis in the body-fixed
frame, i.e., R(R) = Rez, where R = R1 − R2 and R = |R|. For the special
case of the diatomic molecule only two Euler angles are needed to specify
the rotation matrix R. From (6.6) and (6.7) we see that the electron-nuclear
interaction and the external laser field transform to

ven({r′}, {R}) = −
Ne∑

i=1

{
Z1

|r′
i − M2

M1+M2
Rez|

+
Z2

|r′
i + M1

M1+M2
Rez|

}
(6.45a)

vlaser(t) =

{
NeRCMN − Z1R1 − Z2R2 +

Ne∑

i=1

R−1r′
i

}
· E(t) .

(6.45b)

With these expressions the Kohn-Sham potentials of (6.33) and (6.34) attain
the form

vKS, e(r, t) =
∫

d3r′ vee(r, r′)n(r′, t)

+
∫

d3R1 · · ·
∫

d3RNn

[
ven(r, {R}) + R−1r · E(t)

]
Γ ({R}, t) + vxc, e(r, t)

(6.46)

and

vKS, n({R}, t) = [NeRCMN − Z1R1 − Z2R2] · E(t) + vnn({R})

+
∫

d3r
[
ven(r, {R}) + R−1r · E(t)

]
n(r, t) + vxc, n({R}, t) . (6.47)

Since the rotation matrix R only depends on R the nuclear Kohn-Sham
potential is readily seen to be separable in terms of the coordinates R and
RCMN. The nuclear Kohn-Sham wavefunction can then be written as

Φn, s1,s2(R1,R2, t) = Υ (RCMN, t)ξ(R, t)θ(s1, s2) (6.48)

where θ is a nuclear spin function of the nuclear spin coordinates s1 and s2

and Υ and ξ satisfy the equations
{

i∂t −
[
− 1
Mnuc

∇2
RCMN

+ QtotRCMN · E(t)
]}

Υ (RCMN, t) = 0 (6.49a)
{
i∂t −

[
− 1

2µ
∇2

R + v̄KS, n[n, Γ ](R, t)
]}

ξ(R, t) = 0 , (6.49b)

where we defined the total nuclear mass Mnuc = M1 + M2, the total charge
Qtot = Ne − Z1 − Z2 and the reduced mass µ = M1M2/(M1 + M2). The
potential v̄KS, n has the form
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v̄KS, n(R, t) = [−qnR + d(R, t)] · E(t) +
Z1Z2

R

−
∫

d3r n(r, t)

{
Z1

|r − M2
M1+M2

Rez|
+

Z2

|r + M1
M1+M2

Rez|

}
+ vxc, n(R, t) ,

(6.50)

where we have defined

qn =
M2Z1 −M1Z2

M1 + M2
(6.51a)

d(R, t) = R−1

∫
d3r n(r, t)r . (6.51b)

We see that the nuclear center-of-mass motion has been decoupled from the
nuclear relative motion. The nuclear center-of-mass wavefunction corresponds
to a so-called Volkov plane wave. If it is normalized to a volume V then the
nuclear density matrix can be written as

Γ (R1,R2, t) =
1
VN(R, t) , (6.52)

where we defined the density of the relative nuclear “particle” as

N(R, t) = |ξ(R, t)|2. (6.53)

In terms of this quantity, the electronic Kohn-Sham potential (6.46) attains
the form

vKS, e(r, t) = D−1r · E(t) +
∫

d3r′
n(r′, t)
|r − r′|

−
∫

d3RN(R, t)

{
Z1

|r − M2
M1+M2

Rez|
+

Z2

|r + M1
M1+M2

Rez|

}
+ vxc, e(R, t) ,

(6.54)

where
D−1 =

∫
d3RN(R, t)R−1 . (6.55)

We have now completely defined the multicomponent Kohn-Sham equa-
tions for a diatomic molecule in a laser field in the dipole approxima-
tion. The next task is to develop appropriate functionals for the exchange-
correlaton potentials, particularly for the electron-nuclear correlation. The
simplest approach is to treat the electron-nuclear correlation in the Hartree
approach where we put vxc, n = 0 in (6.50). This approach has been tested
[Kreibich 2004] in a one-dimensional model system for H+

2 which is a suit-
able testcase since (i) it can be compared to the exact solution of the
Schrödinger equation and, (ii) there are no electron-electron correlations.
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Fig. 6.1. Time-evolution (in units of optical cycles τ) of the nuclear density
N(R, t) obtained for a one-dimensional model H+

2 -molecule in a λ = 228 nm,
I = 5×1013 W/cm2 laser field from the exact solution, the time-dependent Hartree
approximation and a time-dependent correlated variational approach

When the model molecule is exposed to a strong laser field, the nuclear den-
sity N(R, t) shows a time-dependence as shown in Fig. 6.1. In this plot we
can clearly see that the exact nuclear wavepacket splits, and part of the
nuclear wavepacket moves away and decribes a dissociating molecule. How-
ever, within the Hartree approach to the electron-nuclear correlation, the
nuclear wavepacket remains sharply peaked around the molecular equilib-
rium bond distance. This means that electron-nuclear correlation beyond the
Hartree approximation is very important (for a more extensive discussion
see [Kreibich 2001a, Kreibich 2004]). This is corroborated by the fact that a
variational ansatz for the time-dependent wavefunction in terms of correlated
orbitals (denoted as “variational” in Fig. 6.1) does yield the qualitatively cor-
rect splitting of the nuclear wavepacket.

6.8 Conclusions

We showed how to set up a multicomponent density-functional scheme for
general systems of electrons and nuclei in time-dependent external fields. The
basic quantities in this theory are the electron density referred to a body-fixed
frame and the nuclear density matrix. Important for future applications will
be the development of functionals for electron-nuclear correlations. The first
steps in this direction have already been taken in the MCDFT for stationary
systems [Kreibich 2001a, Kreibich 2004]. The development of such functionals
for the time-dependent case is an important goal for the future.


