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1.1 Introduction

In this chapter, we explore how concepts of time-dependent density functional
theory can be useful in the search for more accurate approximations of the
ground-state exchange-correlation (xc) energy functional.

Within stationary density functional theory, all observables related to
the ground-state of an interacting many-electron system can be written as
functionals of the ground-state density n(r) by virtue of the Hohenberg-Kohn
theorem [Hohenberg 1964]. Using the Kohn-Sham approach [Kohn 1965],
one considers a non-interacting many-electron system with the same ground-
state density as the interacting system. The total energy E of the interacting
system is then split into

E = TKS + Vext + EHxc = TKS + Vext + EH + Exc . (1.1)

Here TKS is the kinetic energy of the Kohn-Sham system, the second contri-
bution,

Vext =

∫

d3r n(r)vext(r) , (1.2)

is the potential energy due to the external potential vext(r), and

EH =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′|
(1.3)

is the Hartree energy. The xc energy Exc as well as the Hartree-xc energy
EHxc are defined by Eq. (1.1). In the stationary theory, one usually tries to
find approximate expressions for the xc energy in terms of the density or
the Kohn-Sham orbitals. A different approach is presented in the following.
We outline the derivation of the adiabatic-connection fluctuation-dissipation
formula which links the ground-state energy to the dynamical response func-
tion (cf. [Langreth 1975, Gunnarsson 1976]). We then use TDDFT to relate
the correlation energy to the exchange-correlation kernel fxc, and we test the
resulting formula by applying it to the uniform electron gas using various
approximate exchange-correlation kernels (cf. [Lein 2000b]).
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1.2 Adiabatic connection

The principle of adiabatic connection refers to a smooth turning-on of the
electron-electron coupling constant λ from zero to unity while keeping the
ground-state density fixed, i.e., for each value of λ, the external potential
vλ(r) is chosen such that the ground-state density of the system with electron-
electron interaction λvee(r, r′) = λ/|r − r

′| equals the ground-state density
of the fully interacting system. The Hamiltonian

Ĥ(λ) = T̂ + V̂ (λ) + λV̂ee , (1.4)

with V̂ (λ) =
∫

d3r n̂(r)vλ(r), thus interpolates between the Kohn-Sham

Hamiltonian ĤKS = Ĥ(0) and the fully interacting Hamiltonian Ĥ = Ĥ(1).
We first rewrite the Hartree-xc energy as

EHxc = E − Vext − TKS = E − Vext − EKS + VKS

=

∫ 1

0

dλ
d

dλ
[E(λ) − V (λ)] . (1.5)

According to the Raleigh-Ritz principle, the ground state Ψ(λ) minimizes the
expectation value of Ĥ(λ) so that we have

dE(λ)

dλ
=

d

dλ
〈Ψ(λ)|Ĥ(λ)|Ψ(λ)〉 = 〈Ψ(λ)|

dĤ(λ)

dλ
|Ψ(λ)〉 . (1.6)

Similarly, the fact that the density is independent of λ leads to

dV (λ)

dλ
=

∫

d3r n(r)
dvλ(r)

dλ
= 〈Ψ(λ)|

dV̂ (λ)

dλ
|Ψ(λ)〉 . (1.7)

After inserting dĤ(λ)/dλ = dV̂ (λ)/dλ + V̂ee into Eq. (1.6) and substituting
Eqs. (1.6) and (1.7) into Eq. (1.5), we arrive at the adiabatic-connection
formula

EHxc =

∫ 1

0

dλ 〈Ψ(λ)|V̂ee|Ψ(λ)〉 =

∫ 1

0

dλ Vee(λ) . (1.8)

To relate this energy to the response function (cf. Section 1.4), we first writeCross Chap.1
the electron-electron interaction

V̂ee =
1

2

N
∑

j 6=k

1

|rj − rk|
=

1

2

N
∑

j 6=k

∫

d3r

∫

d3r′
δ(r − rj) δ(r′ − rk)

|r − r′|
(1.9)

in terms of the density operator n̂(r) =
∑

j δ(r − rj),

V̂ee =
1

2

∫

d3r

∫

d3r′
1

|r − r′|
{n̂(r)n̂(r′) − n̂(r)δ(r − r

′)} . (1.10)
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We then find

Vee(λ) =
1

2

∫

d3r

∫

d3r′
1

|r − r′|

× {〈Ψ(λ)|n̂(r)n̂(r′)|Ψ(λ)〉 − n(r)δ(r − r
′)} . (1.11)

The expectation value of the product of density operators can be written as

〈Ψ(λ)|n̂(r)n̂(r′)|Ψ(λ)〉 = n(r)n(r′) + Sλ(rt, r′t′)
∣

∣

t=t′
, (1.12)

where the direct correlation function

Sλ(rt, r′t′) = 〈Ψ(λ)|ˆ̃n(r, t)H ˆ̃n(r′, t′)H|Ψ(λ)〉 (1.13)

characterizes the density fluctuations in the system. Here, ˆ̃n(r, t)H = n̂(r, t)H−
n(r) is the density deviation operator in the Heisenberg picture. The direct
correlation function can be expressed in terms of its temporal Fourier trans-
form as

Sλ(rt, r′t′) =

∫ ∞

0

dω

2π
Sλ(r, r′, ω)e−iω(t−t′) . (1.14)

The lower boundary of the integration in Eq. (1.14) has been set to zero be-
cause Sλ(r, r′, ω) vanishes for ω < 0. The direct correlation function is related
to the response function χλ(r, r′, ω) by the zero-temperature fluctuation-
dissipation theorem [Pines 1966],

−2={χλ(r, r′, ω)} = Sλ(r, r′, ω), ω > 0 . (1.15)

Equation (1.12) can therefore be transformed into

〈Ψ(λ)|n̂(r)n̂(r′)|Ψ(λ)〉 = n(r)n(r′) −
1

π
=

∫ ∞

0

i du χλ(r, r′, iu) , (1.16)

where we have moved the integration path onto the imaginary axis in the
complex-frequency plane. For numerical evaluations, the integration over
imaginary frequencies is more suitable than the real-frequency integration
because it avoids the poles in the response function related to the excita-
tion energies of the system. By combining Eqs. (1.8), (1.11), and (1.16) and
exploiting that χλ(r, r′, iu) is real-valued, we obtain the xc energy

Exc = −
1

2

∫ 1

0

dλ

∫

d3r

∫

d3r′
1

|r − r′|

×

{

n(r)δ(r − r
′) +

1

π

∫ ∞

0

du χλ(r, r′, iu)

}

. (1.17)

One can verify by explicit evaluation that the exchange energy is recovered
by inserting the response function χKS(r, r′, iu) of the non-interacting KS
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system into Eq. (1.17),

Ex = −
1

2

∫ 1

0

dλ

∫

d3r

∫

d3r′
1

|r − r′|

×

{

n(r)δ(r − r
′) +

1

π

∫ ∞

0

du χKS(r, r′, iu)

}

. (1.18)

Comparing Eqs. (1.17) and (1.18), we obtain an expression for the correlation
energy,

Ec = −
1

2π

∫ 1

0

dλ

∫

d3r

∫

d3r′
1

|r − r′|

×

∫ ∞

0

du
{

χλ(r, r′, iu) − χKS(r, r′, iu)
}

. (1.19)

In order to use the last equation for practical calculations, we have to ap-
proximate the response function χλ(r, r′, iu). A possible route to such ap-
proximations is provided by the Dyson-type equation (cf. Section 1.4)Cross Chap. 1

χλ(r, r′, ω) − χKS(r, r′, ω) =
∫

d3r1

∫

d3r2 χKS(r, r1, ω) fλ
Hxc(r1, r2, ω)χλ(r2, r

′, ω) , (1.20)

where

fλ
Hxc(r1, r2, ω) =

λ

|r1 − r2|
+ fλ

xc(r1, r2, ω) . (1.21)

One way of calculating Ec is to approximate χλ and fλ
xc independently of

each other on the right-hand side of Eq. (1.20) and then substitute into
Eq. (1.19). In another approach, one chooses a given approximation for fλ

xc

and solves the integral equation (1.20) for χλ. The solution of the Dyson-type
equation is demanding in general. In the uniform electron gas, however, the
translational invariance dictates that the response functions and the xc kernel
do not depend independently on two positions but only on the difference
between the two coordinates. These quantities can then be expressed in terms
of their Fourier transforms:

χλ(r, r′, ω) =

∫

d3q

(2π)3
χλ(q, ω)ei(r−r

′)q , (1.22a)

fλ
xc(r, r′, ω) =

∫

d3q

(2π)3
fλ
xc(q, ω)ei(r−r

′)q . (1.22b)

The integral in the Dyson equation is then transformed into a simple product,
and the solution is found to be

χλ(q, ω) =
χKS(q, ω)

1 − χKS(q, ω)fλ
Hxc(q, ω)

. (1.23)
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The response function χKS(q, ω) of the non-interacting electron gas is the
well-known Lindhard function. At imaginary frequency iu, it is given by [von
Barth 1972]

χKS(q, iu) =
kF

2π2

{

Q2−ũ2−1

4Q
ln

ũ2 + (Q+1)2

ũ2 + (Q−1)2

− 1 + ũ arctan
1+Q

ũ
+ ũ arctan

1−Q

ũ

}

, (1.24)

with
Q =

q

2kF
, ũ =

u

qkF
, k3

F = 3π2n . (1.25)

The correlation energy per electron εc follows from Eq. (1.19) and Eq. (1.23):

εc = −
1

π2n

∫ ∞

0

dq

∫ 1

0

dλ

∫ ∞

0

du
[χKS(q, iu)]

2
fλ
Hxc(q, iu)

1 − χKS(q, iu)fλ
Hxc(q, iu)

. (1.26)

Since the Lindhard function is known, only the xc kernel has to be approxi-
mated in Eq. (1.26).

1.3 Scaling properties

In the following, we show that the evaluation of the correlation energy is
simplified by a scaling property of the xc kernel: given an approximation for
the xc kernel in the fully interacting non-uniform system, the xc kernel for
any value of the coupling constant follows immediately.

We are interested in the xc kernel of an interacting system in its ground
state. This quantity describes the infinitesimal change of the xc potential due
to the influence of a small perturbation. Provided that the time evolution of
the slightly perturbed system starts from the ground state, and that we also
choose the initial Kohn-Sham state to be the ground state of the Kohn-
Sham system, the xc potential can be written as a functional of the time-
dependent density only. The xc potential then obeys a scaling relation in the
form [Hessler 1999]

vλ
xc[n](r, t) = λ2 vxc[n

′](λr, λ2t) , (1.27)

with
n′(r, t) = λ−3 n(r/λ, t/λ2) . (1.28)

A similar relation for the xc kernel follows by taking the functional derivative
of Eq. (1.27) with respect to the density:

fλ
xc[n] (rt, r′t′) = λ4fxc[n

′] (λr λ2t, λr
′ λ2t′) . (1.29)
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As we are dealing with the linear-response regime, the xc kernel depends on
the difference (t − t′) only. Hence we can evaluate the Fourier transform of
Eq. (1.29) with respect to (t − t′):

fλ
xc[n] (r, r′, ω) = λ2 fxc[n

′] (λr, λr
′, ω/λ2) . (1.30)

In the uniform electron gas, the density is constant in space and the xc
kernel depends only on the difference (r − r

′). Then Fourier transformation
of Eq. (1.30) with respect to (r − r

′) yields

fλ
xc[n] (q, ω) = λ−1 fxc[n/λ3] (q/λ, ω/λ2) . (1.31)

The electron-gas literature often uses the local-field factor G(q, ω) instead of
the xc kernel. At coupling constant λ the two quantities are related by

Gλ(q, ω) = −
q2

4πλ
fλ
xc(q, ω) . (1.32)

The scaling law for the local-field factor reads

Gλ[n] (q, ω) = G[n/λ3] (q/λ, ω/λ2) . (1.33)

Equation (1.33) shows that the limit λ → 0 is closely connected to the high-
density limit of G(q, ω). This becomes even more apparent if we write the
local-field factor as a function of the Wigner-Seitz radius rs, the reduced wave
vector q/kF, and the reduced frequency ω/ωF, with

4π

3
rs

3 =
1

n
, ωF =

k2
F

2
. (1.34)

We then obtain

Gλ(rs, q/kF, ω/ωF) = G (λrs, q/kF, ω/ωF) . (1.35)

1.4 Approximations for the xc kernel

In the uniform electron gas, a number of approximations are available for the
xc kernel. Denoting the exact wave-vector dependent and frequency depen-
dent xc kernel of the uniform gas as fhom

xc (q, ω), we consider the following
approximations:

Random Phase Approximation (RPA) : fxc(q, ω) ≡ 0.

Adiabatic Local Density Approximation (ALDA) : This is the long-wavelength
limit of the static xc kernel:

fALDA
xc (q, ω) = lim

q→0
fhom
xc (q, 0) . (1.36)

It can readily be expressed in terms of the xc energy per electron εxc:

fALDA
xc (q, ω) =

d2

dn2
[nεxc(n)] . (1.37)
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Parametrization by Corradini et al. (see [Corradini 1998]): This approxi-
mation for the static xc kernel of the uniform electron gas is a fit to the
quantum Monte Carlo data published by Moroni, Ceperley, and Senatore
[Moroni 1995]. It satisfies the known asymptotic small-q and large-q limits.
Since it interpolates between different values of rs, it can be evaluated for
arbitrary values of the density, in contrast to the original parametrization
given in [Moroni 1995].

Parametrization by Richardson and Ashcroft (RA) (see [Richardson 1994];
see also [Lein 2000b] for corrections of typographical errors in the original
parametrization): This approximation for the xc kernel at imaginary fre-
quencies is based not upon Monte Carlo data but upon results of numerical
calculations by Richardson and Ashcroft. It is constructed to satisfy many
known exact conditions. The xc kernel is constructed from Richardson and
Ashcroft’s local-field factor contributions Gn and Gs via

fRA
xc (q, iu) = −

4π

q2

[

Gs(Q, iU) + Gn(Q, iU)
]

, (1.38)

with
Q =

q

2kF
, U =

u

4ωF
. (1.39)

For the present application, we are fortunate that the RA kernel was derived
for imaginary frequencies. Due to its complicated structure near the real axis,
the analytic continuation of the xc kernel between imaginary and real axis
is not straightforward [Sturm 2000], although it was demonstrated that the
continuation of the RA kernel into the complex plane yields good results for
the plasmon excitation of the homogeneous electron gas [Tatarczyk 2001].
We also test the static limit of the RA kernel,

f static RA
xc (q, iu) = fRA

xc (q, 0) , (1.40)

in order to compare with the static Corradini approximation. (For a com-
parison of the RA and Monte Carlo fxc in the static limit, see Fig. 3 of
[Moroni 1995].) As a dynamic but spatially local approximation we may use
the long-wavelength limit of fRA

xc (q, iu),

f local RA
xc (q, iu) = fRA

xc (0, iu) , (1.41)

which we refer to as “local RA”.

An approximate xc kernel that is readily applicable to inhomogeneous sys-
tems is given by the Petersilka-Gossmann-Gross (PGG) kernel (see [Petersilka
1996a]). This frequency-independent exchange-only approximation was de-
rived in the context of the time-dependent optimized effective potential method
[Ullrich 1995a]. Its real-space version reads

fPGG
x (r, r′, ω) = −

2

|r−r′|

|
∑

i niϕi(r)ϕ∗
i (r

′)|2

n(r)n(r′)
, (1.42)
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Fig. 1.1. Difference between approximate correlation energies and the exact cor-
relation energy per electron in the uniform electron gas.

where ϕi(r) and ni are the ground-state KS orbitals and their occupation
numbers (0 or 1). In the uniform gas, transformation to momentum space
yields:

fPGG
x (q, ω) = −

3π

10k2
F

{

(

2

Q
−10Q

)

ln
1+Q

|1−Q|

+
(

2Q4−10Q2
)

ln

[

(1+
1

Q
)
∣

∣

∣
1−

1

Q

∣

∣

∣

]

+ 11 + 2Q2

}

, (1.43)

where Q = q/(2kF). Due to its exchange-only nature, the PGG kernel, taken
at coupling constant λ, is simply proportional to λ.

In the following, we evaluate the correlation energy of the uniform electron-
gas, Eq. (1.26), for the different xc kernels. We expect that RA’s parametriza-
tion is close to the exact uniform-gas xc kernel and that the Corradini
parametrization is close to the exact static limit. The ALDA is the exact
long-wavelength limit of the static xc kernel. Hence, a comparison between
these three cases will clarify the importance of both wave-vector and fre-
quency dependence of the xc kernel (for the correlation energy).

Accurate correlation energies are given for example by the parametriza-
tion of Perdew and Wang in [Perdew 1992a]. We refer to these values as
the “exact” correlation energy εexact

c . For each choice of xc kernel, the differ-
ence between the correlation energy εc and the exact value εexact

c is shown in
Fig. 1.1 as a function of the density parameter rs in the range rs = 0 . . . 15.

The RA results differ by less than 0.02 eV from the exact values, i.e.,
the RA kernel reproduces the exact correlation energy nearly perfectly. With
a deviation of less than 0.1 eV, the Corradini approximation gives a good
estimate as well. We note that the result of the static version of the RA
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Fig. 1.2. Wave-vector analysis [Eq. (1.44)] of the correlation energy per electron of
the uniform gas at rs = 4. Approximations are compared to the “exact” wave-vector
analysis of [Perdew 1992b].

formula lies almost on top of the Corradini curve. From this we infer that the
small error produced by the Corradini parametrization is in fact due to its
static nature. We conclude that neglecting the frequency dependence causes
an error typically smaller than 0.1 eV.

It is clearly seen in Fig. 1.1 that the RPA approximation, which neglects
the xc kernel completely, makes the correlation energy too negative. The
inclusion of the simplest possible choice of kernel, the ALDA kernel, severely
over-corrects εc, so that the absolute deviation from the exact correlation
energy remains about the same as in RPA. Furthermore, Fig. 1.1 shows that
the local RA (dynamic approximation) performs better than ALDA, but
worse than Corradini or static RA. Therefore, it seems that the wave-vector
dependence of the xc kernel should be taken into account in order to obtain
accurate correlation energies. In other words, the xc kernel is very non-local.

The PGG approximation behaves somewhat differently in that it yields
an underestimate of the absolute value of εc for small rs and an overestimate
for large rs. It is a very good approximation in the range rs=5 . . . 10. The
behavior near rs = 0 indicates that the PGG kernel differs from the exact
exchange-only kernel, since exchange effects should dominate over correlation
effects in the high-density limit.

To gain further insight into the effects of the q-dependence and the u-
dependence of fxc(q, iu) in Eq. (1.26), we analyze the correlation energy into
contributions from density fluctuations of different wave vectors q and imag-
inary frequencies iu. Equation (1.26) naturally defines a wave-vector analysis
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Fig. 1.3. Imaginary-frequency analysis [Eq. (1.47)] of the correlation energy per
electron of the uniform gas at rs = 4 in various approximations (low-frequency
regime).

εc(q) if only the q-integration is written explicitly while the other integrations
are incorporated in εc(q):

εc =

∞
∫

0

d

(

q

2kF

)

εc(q) . (1.44)

The exact wave-vector analysis is essentially given by the Fourier transform
of the exact coupling-constant averaged correlation-hole density nḡc(r):

εexact
c (q) =

2kF

π
nḡc(q) , (1.45)

where

ḡc(q) =

∫

d3r ḡc(r) exp(−iqr) . (1.46)

A parametrization of ḡc(r) has been given by Perdew and Wang [Perdew
1992b]. (Although this parametrization misses the non-analytic behavior of
ḡc(q) at q=2kF, it is otherwise almost “exact”.)

In Fig. 1.2 we compare approximate and “exact” wave-vector analyses for
rs=4. While the RPA curve is too negative for all q, we note that ALDA
is rather accurate for small q. The ALDA over-correction to εc comes from
positive contributions at large q. To a much smaller extent, the Corradini
curve also exhibits this behavior. In general, however, it is close to the exact
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Fig. 1.4. Imaginary-frequency analysis [Eq. (1.47)] of the correlation energy per
electron of the uniform gas at rs = 4 in various approximations (high-frequency
regime).

wave-vector analysis, as are RA and static RA. In the case of PGG, we note
a substantial error cancellation between small and large q-values.

From the last three equations, it is apparent that the large-q behavior of
εc(q), and therefore fxc(q, iu), is intimately related to the limit of ḡc(r) at
small inter-electron distances r (“on-top” limit). An unphysical divergence
for r → 0 is implied by the ALDA kernel and other semilocal approximations
as was emphasized by Furche and Van Voorhis [Furche 2005b].

As a complement to the wave-vector analysis, we define the imaginary-
frequency analysis εc(u) of the correlation energy by writing Eq. (1.26) as an
integral over u:

εc =

∞
∫

0

d

(

u

ωp

)

εc(u) , (1.47)

with the plasma frequency ωp given by

ω2
p = 4πn . (1.48)

Since εc(u) is not known exactly, we must restrict ourselves to a compari-
son among different approximations, as displayed in Fig. 1.3 (low imaginary
frequencies) and Fig. 1.4 (high imaginary frequencies) for rs=4. In all cases,
εc(u) starts with a finite negative value at u=0 and then smoothly approaches
zero. Assuming that the RA result is the most accurate one, we may assess
the performance of the other kernels. Similar to the wave-vector analysis,



12 M. Lein and E. K. U. Gross

RPA is too negative over the whole frequency range. For small frequencies,
ALDA, Corradini, and RA are practically equal; the differences are located
at u & ωp. In ALDA, εc(u) becomes positive at u ≈ ωp. PGG exhibits a
slight error cancellation between small and high u. Yet, it appears to have
a very accurate frequency analysis in the high-u regime. In consistency with
the integrated energies, the Corradini curve is very close to the static RA
curve. The latter starts to deviate from the dynamic RA at about u ∼ ωp.

1.5 Concluding remarks

We have seen that the non-locality of the xc kernel, i.e., the non-zero spatial
range of fxc(r, r′, ω), is essential for the calculation of accurate correlation
energies via the adiabatic-connection formula, while the frequency depen-
dence is less important. An analysis of several kernels in the two-dimensional
electron gas has been carried out by Asgari et al. [Asgari 2003]. Similar to the
three-dimensional case, the frequency dependence was found to be of minor
relevance. Contrary to the 3D gas, the over-correction by the ALDA kernel
turned out to be less severe.

Recently, the approach based on the fluctuation-dissipation theorem has
been applied to a variety of molecules, employing xc kernels derived from
standard xc potentials that are used in quantum chemistry [Furche 2005b].
The results indicate that improvement over conventional DFT methods is
achieved only with non-local xc kernels.

In analogy to the method described here, one may express the exchange-
correlation energy by an adiabatic-connection formula within the framework
of time-dependent current-density functional theory [Dion 2005]. This ap-
proach still awaits its systematic application to real systems.

While this chapter has focussed on the correlation energy, the next chap-
ter will analyze the xc potentials derived within the adiabatic-connectionCross Chap. 28
fluctuation-dissipation framework.
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