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Abstract

We present a density-functional scheme for calculating the frequency-
dependent linear response of superconductors. The central result is a set
of integral equations determining the linear response of the normal and
anomalous densities to external perturbations. Analytic solutions of these
integral equations are obtained for homogeneous systems with separable
effective interactions. For inhomogeneous superconductors, the formalism
leads to a scheme for calculating the critical temperature without explicitly
solving the gap equation.

1 Introduction

Many experimental data, such as the photoabsorption spectrum or the frequency-
dependent conductivity, can be calculated from the linear response of a system
to time-dependent external perturbations. The traditional density functional for-
malism of Hohenberg, Kohn and Sham [1, 2] is a ground-state theory. In principle,
the response functions, being ground-state expectation values of the unperturbed
system, are functionals of the ground-state density by virtue of the Hohenberg-
Kohn (HK) theorem. However, due to the lack of reliable approximations, the
frequency-dependent response is not readily accessible in ordinary (ground-state)
density functional theory.

A suitable theoretical framework for the treatment of time-dependent situ-
ations is provided by the theory of Runge and Gross [3], which can be viewed
as the time-dependent counterpart of the traditional Hohenberg-Kohn-Sham for-
malism. When applied to the linear-response regime [4, 5, 6], this formalism leads



to an exact representation of the linear density response ni(r,t) in terms of the
response function x; of the (unperturbed) Kohn-Sham (KS) system:
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v1(r, t) denotes the external perturbation and f,.(r,t;r',¢') is an exchange-correla-

tion (xc) kernel formally defined as the functional derivative of the time-dependent

xc potential with respect to the time-dependent density,

dvge[n](r, )
on(r',t')

, (2)
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to be evaluated at the unperturbed ground-state density n,. Given an approx-
imation of f,., the linear density response n; can be obtained from eq. (1) by
iteration. This scheme has proven to be remarkably successful. Using either the
static local-density approximation (LDA)
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or an approximation of f,. with memory [4, 5, 7], the scheme was applied to the
photoresponse of atoms [8, 9, 10] and molecules [11, 12], metallic [13, 14, 15, 16,
17, 18, 19] and semiconductor surfaces [20], bulk semiconductors [21] and metal
clusters [22, 23, 24, 25]. For a broad review of applications, the reader is referred
to the textbook by Mahan and Subbaswamy [26].

The purpose of this paper is to generalize the above formalism to supercon-
ducting systems at finite temperature. After a short introduction to the time-
independent density functional theory of superconductors in section 2, we shall
develop the linear response-formalism in section 3. Subsequently, in section 4, the
formalism will be applied to homogeneous superconductors, where the response
equations can be solved analytically for a certain class of effective interactions.
Finally, in section 5, the formalism is used to derive a scheme for calculating the
transition temperature of inhomogeneous superconductors.

2 Density Functional Theory for Superconduc-
tors

Before investigating the linear response of superconducting systems to an exter-
nal perturbation we shall, in this section, briefly review the density-functional



description [27, 28, 29] of the unperturbed superconductor, which is decribed by
the following Hamiltonian:
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Atomic (Hartree) units are used throughout. U is the mutual Coulomb repulsion
of the electrons,
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and W is a phonon-induced electron-electron interaction
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v(r) is the Coulomb potential of the periodic lattice and D(r,r’) is a nonlocal
pairing field, which can be interpreted as being induced through the proximity
effect.

Starting from this Hamiltonian, Oliveira, Gross and Kohn (OGK) [27] devel-
oped a density-functional formalism describing superconductors at finite temper-
ature. The basic variables in this formalism are the normal density

n(r) = () do (x)) (7)

g

and the anomalous density

Ar,r') = (4y(r)9, () (8)

which, in the appropriate limits, reduces to the Ginzburg-Landau order param-
eter. Following Mermin’s [30] finite-temperature extension of ordinary density-
functional theory, OGK established a 1-1 mapping between the pair of equilib-
rium densities {n(r), A(r,r’)} and the pair of potentials {v(r) — pu, D(r,r’)}. The
grand-canonical potential is then a unique functional of the densities

Qln,A] = Fln,A] + /d37" v(r) n(r) + /dsr /d3r’ (D*(r,r)A(r,r') + c.c.)  (9)

where F[n, Al is a free-energy functional which depends only on the interactions
U and W, but not on the particular external potentials of the system consid-
ered. As a consequence of the Gibbs variational principle, the exact equilibrium
densities minimize the grand-canonical potential (9). This fact can be exploited
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to establish a KS theorem for superconductors which ensures that the densities
n(r) and A(r, ') of the interacting system can be calculated from the following
single-particle equations:
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In terms of the particle and hole amplitudes, ux(r) and wvg(r), the densities are
given by
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is the Fermi distribution function. Eqs. (10) and (11) have the same algebraic
structure as the conventional Bogoliubov - de Gennes equations. However, in
contrast to the latter, the effective potentials, given by

0(r) = v@y+ﬁfwﬁ?3y+ﬁumAKﬂ (15)
Dy(r,r') = D(r, r')-i—/d?’x/d?’x'w(r, r';x,x') A(x,x')
+D? [n, A](r, ') (16)

contain the xc contributions

4 n

i Al = el (1
Bln

DL allrr) = gl (19)

which, in principle, include all superconducting correlations exactly. The exchange-
correlation functional F2[n, A] is formally defined by

Fln, A] = Toln, A] - S [n, A] + 2/d3 [ ) n(r')
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where 75 and S are the kinetic-energy and entropy functionals of the non in-
teracting system. Equations (10) - (18) define the self-consistent KS scheme for
superconductors. In practice, of course, the xc functional FZ[n, A] has to be
approximated. Most recently an LDA-type approximation has become available
(28, 31].

3 Linear Response Formalism

The Hamiltonian (1) of the unperturbed system contains three real-valued ex-
ternal potentials: v(r), Re[D(r,r’)] and Im[D(r,r')]. In the present context,
however, it is more convenient to work, instead, with v(r), D(r,r’) and D*(r,r’),
which couple to the following conjugate density operators:

W) A = S, P,
D*(r,r') Alr,r') = (r)¢y ('), (20)
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Since a perturbation added to any of these potentials can affect all three densities,
we have to define nine response functions. The linear response of the normal
density, for instance, is given by

ni(r;t) = /d3x /dt'x(r, x;t —t') v (x;t')
+ /d3a: /d3a:' /dt'A* (r,x,x';t —t') Dy(x,x';t')
+ /d3x /d3x' /dt'A(r, x,x';t —t') D} (x,x';t), (21)

where v; and D; are external time-dependent perturbations.

From now on we will use a formal operator notation where the symbol of each
response function is to be interpreted as an integral operator such as the ones on
the right hand side of eq. (21). With this convention the full system of response
equations reads:

nn = xn1n + A*Dy + ADj,
Ay = Tw, + ED; + EDi, (22)
Ar = T*y, + E*D; + E*D:

To further simplify the notation we introduce a vector of density responses and
a vector of external perturbations:

nq U1
ﬁl = Al 5 _‘1 = D1 . (23)
Al Dy



With these conventions, the response equations can be written as
il = X, (24)

where Y represents the 3 x 3 matrix

A
g . (25)
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where the index H denotes operators in the real-time Heisenberg picture.

The unperturbed superconducting system is assumed to be in thermal equilib-
rium, i.e. (---) denotes a grand canonical ensemble average over the eigenstates
of the full interacting Hamiltonian (1). The full response functions (26) - (30)
of the interacting system are very hard to calculate. On the other hand, the
corresponding response functions y; of the (non-interacting) Kohn-Sham system
are easily expressed in terms of the particle and hole amplitudes, ug(r) and vg(r),
respectively. Explicit expressions for the nine KS response functions are given in
the appendix.

We now define a 3 x 3 matrix of xc kernels fxc by the Dyson-type equation

X = Xs T Xs (w+fmc) X (31)
where @ is given by
u 0 0
w=|0 w 0 (32)
0 0 w

u and w are shorthand notations for the bare Coulomb interaction and the
phonon-induced interaction. Inserting (31) in the response equation (24), one
obtains

i = Xy (T + (0 + fre)7ir) (33)




Given an approximation for the xc kernels f,e, €q. (33) can be solved numerically
by iteration. If the unperturbed system is homogeneous, eq. (33) can, under
certain conditions, be solved analytically, as will be shown in the next section.
In the case of static perturbations, the Hohenberg-Kohn-Sham formalism de-
veloped in section 2 implies that the xc kernels can be written as functional

derivatives,
0Vpe  OUpe  OUge

on 0A  OA*

2 5ch (SD:EC 5ch
f:cc = s (34)
on 0A  JA*

0D, o0D;, 0D;,
on VAN VAN No,Ao, AL

to be evaluated at the unperturbed equilibrium densities n,, A, and A*. For
eq. (34) to be valid in the case of time-dependent perturbations, a time-dependent
extension of the density functional theory for superconductors is required. In par-
ticular a Runge-Gross theorem [3], ensuring the fundamental 1-1 correspondence
between time-dependent densities and potentials, has to be established for super-
conductors. A theorem of this kind was recently proposed by Wacker, Kiimmel
and Gross [32]. However, the densities used in that work are different from the
ones employed in the response formalism developed here. At present, eq. (34) is
to be regarded as a postulate in the time-dependent case.

Eq. (33) can be viewed as the superconducting version of the density-functional
formulation of linear response theory described in the introduction. In view of
the great success this method has had for normal systems, we expect eq. (33) to
be a very efficient tool for calculating the linear response of superconductors. As
a first shot, the xc kernel f,. can be approximated by eq. (34) using the static
LDA-type xc potentials derived in [28, 31].

4 Homogeneous system

In this section we will consider a case where eq. (33) can be solved analytically,
namely homogeneous superconductors with a model effective interaction R =
W+ fwc which is assumed separable.

To keep the formulas readable we will present detailed calculations only for
the RPA-limit, i.e. for f,. = 0. Generalizations are given without explicit calcu-
lations.

In homogeneous systems a Fourier transformation to momentum space greatly
facilitates the calculation. The Fourier transforms of the response functions and
the interactions are defined as follows:

d3k d3q ikr —igx
XS(I',X, (.d) = /(27'(')3 /W € € Xs(ka Qaw)a (35)
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Using the fact, that

2m)3
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)%
om)3
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3
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the response equations (33) take the form:
n1(k;w) = ny(k;w)
+ xs(k;w) u(k) ng(k;w)
&g b
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d3b -
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d*b
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ToE 2=k, -k, —w) V*(=k, -k'; =b) A (=b,b — k — k'; —w).
n3, A} and Aj° are the density responses of the non-interacting system:
ni(kw) = xs(kw)vi(k;w)
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We now consider systems with a separable phonon-induced interaction, i.e.
V(k k'5q) =V g(k, k) h(k + X' q), (54)

where the functions g(k,k’) and h(k;q) are arbitrary. A prominent example is
the traditional BCS interaction [33],

12
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where wp is the Debye-frequency. With interactions of the form (54) the response

equations (48)-(50) can be written as:

m(kw) =njkw) + ; )
+ VAN(kw)z(k;w)
+ V*A(kw) 2 (kw), (56)
2(kiw) = 2°(kw) + D(kw)uk)n (kw)
+ VE(kw)z(kw)
+ Vv é(k; w) 21 (k;w), (57)

+ VE (kw)2(kw)
+ V' El(Kkw) 2 (k w), (58)

where the following definitions have been used

dkw) = / (;1:3 h(k; b) Ay (b,k — b;w), (59)
How) = fats (-l —b) Ai(-bb — ki) (60)
Pw) = /(;1:;3 h(k;b)T,(b,k — b; w), (61)
iow) = fgs h°(-k—b) I3(-b.b— ki ). (62
Akiw) = % As(bk — b:w) g*(—b,b — k), (63)
At w) = /(;:;3 A*(=b,b — k; —w) g(b,k — b), (64)
Ak w) = / é:;?) h(k;b) E,(b,k — b;w) g(b, k — b), (65)
Btk w) = /(;:3 h*(—k; —b) Z*(—b,b — k; —w) g*(~b,b — k). (66)

Omitting the momentum and frequency variables, eqgs. (56)-(58) can be written
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In matrix notation:

ny ny UXs VA:[ Vé n
c = 2 |+| of ve VvE 2 (67)
2! 2 ot veE e )\ A

=X
or simply
This equation can be solved for 2} by inversion of (1 — X):
a=01-X)"%. (69)
—_——

Inserting this result back into the response equations (56)-(58) and collecting
those terms which contain the external perturbation v; and give a contribution to
the change of the normal density n; we can identify the density-density response
function of the interacting system as

XFPA(K; w) = My (ks w)xs(k; w) + Mg (k; w)T(k; w) + Mys(k; w)I (k;w). (70)

This result can be generalized in two ways. First we will go beyond the RPA
by explicitly taking into account the matrix fxc Since fxc is not diagonal, each of
the eqgs. (48), (49), (50) gains six additional terms. Similar to the ansatz (54) we
will now consider systems where the effective interaction R=u+ fxc is separable,
i.e. the elements of the matrix

. R’un R’uA RvA*
R=1| Rp, Rpa Rpa- (71)
RD*n RD*A RD*A*

are assumed to have the form:

Ryn(k,qsw) = (27m)*6(k — Q)R n(k; w), (72)
Ra(kiq,q5w) = (21)°0(k —q—q') Rya(q, q';w), (73)
Rpn(k,kK';qw) = (27r)35(k+k —q) Rpn(k, K;w), (74)

Rpa(k,X;q,q5w) = (21)°6(k+k —q—q') x
RDA(k,k ;w) Rpa(g, k+ k' — q;w). (75)

With this effective interaction the calculation can be carried out in analogy to
the RPA case. Defining

(kW) = /% Roa(b,k — b:w) Ay (b, k — b;w) (76)
2k w) = /(;1%1;3 Roax(b,k — b;w) A (=b,b — k; —w) (77)
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where o = {v, D, D*}, the set of response equations again reduces to a set of linear
equations for the z,(k;w), 2! (k;w) and n;(k;w). This set of linear equations can
be written as a 7 X 7 matrix equation which has to be solved by matrix inversion.
The matrix elements are generalized in the same way as the z(k):

X0 Xs /A\L /:\A Xs Al /}A*
Xv F’U EvA EvA F'v EvA* EvA* ™
N ~ B ~ ~ B z
Xp T'p Zpa Zpa TI'p Epar Epa- Z;
X =| Xp I'pr Epa Ep:a I'p- Epar Zpea- || 72=| 2zp |. (78)
1 AT =t .3.1_ AT =t .3.1- ZT
X’U F’U ‘:"UA :‘Q,FA F’U ‘:"UA* \:,(.FA* ZQ'F
2 = = e e = D
XL 0, B, 2 pa I, 2. E pa- o
Xh. T4, 8h.a Bpea The Ehiae Epeas
The definitions of some representative matrix elements are:
Xo(k;w) = xs(k;w) Ron(k;w) + Ay (k; w) + /A\L(k; w) (79)
~ d3q . ~
Msw) = [z Ni-aa=1-u) Fosa k- o) (80)
) d3q s
Ag(ksw) = /(271')3 As(a,k — q;w) Rp-s(a,k — qyw) (81)
Xo(k;w) = To(k;w)Run(k; w) + Ean (k5 w) + Ean (k; w) (82)
N d3q
Fo(k;w) = /W Roala, k — qyw)ls(a, k — q;w) (83)

s d3q —_ ~
Eapkjw) = [-—5 Rea(a,k — q;w) Es(q, k — q;w) Rps(q, k — q;w) (84)
(2m)

where oo = {v, D, D*} and 8 = {n, A, A*}. The result for the density-density
response function is again obtained by applying M = (1- X )71 to 7°:
x(kiw) = My (k;w)xs(k;w) + Mig(k; )Ty (ks w) + Mys(k; w)p(k; w
+ Mu(k;w)l'p- (k;w) + Mis(k; w)f‘l(k; w) + Mig(k; w)I' (k; w)
+ Mir(k;w)Th (ks w) (85)
A further generalization is to allow effective interactions which are given by
a finite sum over separable terms:

RpalkX;qqw) = (21)*%0(k+K —q—q) x
N
Z RZDA (k7 kl; w) %A(qv k + kl —q, w)' (86)
=1

The calculation is analogous to the one presented above, but all quantities have
to be supplemented by the index % of the corresponding part of the interaction.
This leads to a 7N X 7N matrix equation which has to be solved by inversion.
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5 Determination of the critical temperature

As a possible application of the above formalism we now present a method of
calculating the critical temperature of superconductors without explicitly solving
the gap equation. For this purpose we consider the system to be in the normal
phase, i.e. T > T, and thus D(r,r’) = 0. If the system is now cooled slowly below
T. an infinitesimal pairing field D (r,r') will immediately take the system into
the superconducting phase. In other words, the response of the system in the
normal phase to an external pairing field must diverge for temperatures below
T.,.

In the normal phase the off-diagonal elements of the KS response matrix
vanish, i.e.

xs 0 0
=10 = 0 |. (87)
0 0 E

S

To simplify the discussion we will restrict ourselves to the RPA in this section, i.e.
we set fr. = 0. Since the matrix w is diagonal too, the set of response equations
(33) decouples into one equation per density. The equation of interest is

Auex') = A3(r, ) (55)
+ /d3a: /d3ac' /d3y d*y B, (r, v x, x50 = 0) w(x, x;y,¥) Ay, y').

The anomalous density can be expanded in the Bloch orbitals of the unperturbed
periodic system:

A(r,r') = % Ak, k') pr(r) o (x'). (89)

The indices k,q denote the complete set of quantum numbers for the system.
The response function (see appendix) has the form:

> S ) 0 ) ) (90

=t D E(k, q) pr(r)eq(r') i (x) 5 (x). (91)

E(r, v, x, x| w)

With the phonon-induced interaction transformed as

wir,r'sx,x) = > wk,k;q,q) or(r) o (r') ¢ (x) g5 (x') (92)

kk'qq’
equation (88) reads:

Av(k, k) = AJ(k, K') + E(k, Kw =0) 3 w(k,k5q,¢) Ai(g,q)  (93)

q,q'

13



where the orthonormality of the Bloch-functions ¢y (r) has been used.
In the vicinity of the critical temperature, the matrix A;(k, k') is dominated
[34] by the elements with k& + & = 0, i.e. we can approximately set

A (k, k') = Aq (k) Ok+k,0- (94)

Insertion of (94) in (93) then leads to

Ai(k) = AL (k) + E(k, —k) D w(k, —k,q, —q)Ai(q). (95)
q
Assuming a separable interaction of the form
N
w(k, k', q,q¢) = Vigi(k, k') hi(g, ¢') (96)
i=1

equation (95) can be solved by defining the quantities

N

zi =Y hi(qg, —q) A1(q). (97)

=1

which satisfy the following set of linear equations:

zi =2+ hi(g,—q) E(q, —q) i Vigi(a,—q) z(q) (98)
with
% =Y hi(g,—q) E(q, —q) D1(q). (99)

This set of equations can be rewritten in matrix form:
s 4Ys, (100)
where the matrix Y is defined by

Yi; =V; > hi(a,—q) E(a, —q) 9;(¢, —q). (101)

z is obtained by inverting (1 — Y):

z=1-Y)"'2 (102)

Inserting this in eq. (95) one ends up with

Ay(k) = E(k,—F) Dy(k) (103)
+ E(k,—k) X Vigi(k, k) 2_:1 (@-17),, X ke, ~0) (g, ~4) Di(9)



and the response function in RPA is readily identified as:

ERPAE,q) = E(k,—k)0r, (104)
+ Sk —k) 3 Vigilk, k) (A-Y)"), 2 hyle,—) Ea, ).

Since the response function of the non-interacting system has no singularities as a
function of temperature, Z#4 diverges when the matrix (1 —Y) is not invertible.
Thus the equation to determine the critical temperature is:

det(1-Y)=0 = T=T, (105)

As a test for this formalism we apply it to the BCS interaction, as obtained by
insertion of eq. (55) in eq. (46),

wpes(k, k' q,¢') = Vo O(wp — |ex — p]) ©(wp — ew — p1]) Optrr,0 Okt g+~ (106)
In this case eq.(105) reduces to the scalar equation
1-2=0 (107)
with

- 1tanh(ZFE
E=>V, # O(wp — |eq — 1]) and E,=¢,—p.  (108)
q Eq

This is exactly the BCS equation for 7:

1 tanh Be Ek)

1_VZ—

lexr— u\<wD

(109)

Appendix

In order to calculate the response functions of the Kohn-Sham system we first
define the spectral densities S4p(w) by

Sap(w) = [ d(t =) ([A(t) . BI) ) (A1)

where (---)s denotes a grand canonical ensemble average over the eigenstates of
the (non-interacting) Kohn-Sham system (10)-(18). In terms of these spectral
densities, the KS response functions can be written as
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Spn (T, %; W)

i) =y [ S X
Ay(r,x, x5w) = 61_i)r(1)rl+ duw' Sncj(_r’;’f;;),) (A 3)

Al (r,x,x';—w) = 61_i>1(§l+ duw' S"f(_r:,c’fl;;ﬂ) (A 4)
Cy(r, ', x;w) = 51i%l+ dw' ij’;‘:’f;?) (A 5)
Li(r,r',x, —w) = 61_i>1(§1+ dw' SA;”ETZUI;I’_:_;I) (A 6)
Es(r, v x,x5w) = 6l_i)r(1)rl+ dw' SAA;(I: I:,): z{(;’ W) (A7)
Ey(r, v, x,xjw) = 61_i)r(1)rl+ dw' SAAQET_’I;:I):’_}Z; ) (A 8)
Eir, ', x,x;—w) = 61_i>1(§l+ dw' SN?}(I: 1:/): 2;’ W) (A 9)
= (r, v x, %) —w) = 51ir(1;1+ dw' SNAL:(?::; j_’;;l;wl) (A 10)

The spectral densities, in turn, are calculated by substituting the Bogoliubov-
Valatin transformation [35]

di(r) = 3 (wn(r) ey — vi(x)AL,) (A 11)
Yy(r) = ;(uk(r)m + 0 (r)7hy) (A 12)

for the field operators 9, (r) appearing in the density operators (20). Hence one is
left with matrix elements involving four quasi-particle operators 4x,. Employing
the fermionic anticommutation relations of these operators one obtains after a
lengthy but straightforward calculation
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Spn(r, x,w) =

S { (£ + £(E) 1)

kyq

Sn,A(I', X, le w) =

S{ (B0 + 1(B) - 1)

[ 0(w = (B + By) ) (i () () + g (r) (1)) (Y ()
=0(w + (B + By)) (e (r)y (x) + uy ()i (r) ) v (<)o ()|

+(F(Bx) — f(By))x

[ 0(w = (B~ By)) (vi(x)vg(r) — w5 (r)ugx)) v () ()
=60+ (B = Ey)) (v ()0,() = w6y (0)) 05 () un(x)] b (A 14)
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Spat(rt,x, %X, w) =
S (st + £ - 1)
[ 6(w — (Bx+ E,)) (ui(r)vy (v) + u; (r) i (x)) e (x) v, (x)
—0(w + (B + By)) (u(r)vg(r) + ug(r)vg(r)) up(x)u; (x')
+(f(Bx) = f(By))x
[6(w + (B — Ey)) (vh(x)vg(r) — g (r)ug(r) ) ug(x)vs(x')
+6(w = (B — B) (07)0a(r) = u,(0)ug(1) e ()n(x)] | (A 15)

San(r, v’ x,w) =
x {(#(B0) + £(E,) — 1)
[ 5(w = (Bx + By)) i (r)v; (r') (un(3)vg(x) + ug(x)vp(x) )
~0(w + (By + Ey)) ug(r)ug(r') (ur(x)v5 (%) + uy(x)vi(x) )|
+(f(Ex) - £(B,))x
[ 6(w+ (B = Ey)) v (x")ug(r) (v (%)vr(x) — uj(x)ur(x))
—8(w — (B = By)) vi(x)ug(r') (v (x)ve(x) — uj(x)us(x))] } (A 16)

Satn(r, 1, x,w) =
) {(#(B0) + £(E) - 1)
[0(w— (Bx+ )) *(1")“2(1") (e (%), (x)

|
[«
N
€
_|_
—~
=
_|_
=
\‘_3
?
=
(=)
=
S
S
™ *
XaJ
S
(=)
~—~
b
SN—
+ +
S
[l=)
~—~
b
SN—
=
ol
—~
X
—
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Saa(r,r',x,x"\w) =
S (78 + 7(8) ~ 1)<
[5(w = (B + Ey)) v (x) v (x g (X g (x)
—0(w + (Bx + Ey)) v (x) 0} () ug (r)u, (x')
+(F(Br) — £(B,)) x
[5(w+ (B — By)) v (x')v; (X )u(x)ug(r)
~6(w = (B~ B)) vi () (<)un (X yug ()]}

Satat(r,r',x,x w) =
3 {(#B0 + 1(B) ~ 1)
[0(w = (Bx + E,)) ui (') () vi (%), (%)
—0(w + (Bx + Ey)) up(x)ug(x)vg (x') vy ()]
+(F(B) - f(B))x
[ 6(w + (B — Ey) ) up(r)ug (x) g (x ) v (x')
~6(w = (B — B))) i) (¢ o (), ()]}

Sant(t,r,x, %, w) =
S { (s + 1(5) - 1)
[ 0(w = (B + Eq) ) vr (%) (r)vg(x' )} (r')
(w0 (Bt ) e 0 (i o)
+(F(B) — F(By))x
[5(w+ (B — Ey)) ug(r)uj(x)v(x' )z (r')
—5(w — (Bx— By)) () (< ) (x)v;;(r)]}

19
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(A 20)



SAT,A (ra I',, X, Xla w) =

S { (£ + £(E) - 1)

[5(w = (B + Ep) ) () up (r g (x) g (x)
=0 (w + (B + By)) vk (x')j (') (x) v ()
+(/(Bx) = f(E))
[0(w+ (B — By) ) ui(3)up (r)vg(r')v; (x')
—6(w = (B = B)) (i (1), ()0 (0]} (A 21)

These formulas were generated with MATHEMATICA [36].
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