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Reduced-density-matrix-functional theory is applied to open-shell systems. We introduce a spin-restricted
formulation by appropriately expressing approximate correlation-energy functionals in terms of spin-dependent
occupation numbers and spin-independent natural orbitals. We demonstrate that the additional constraint of
total-spin conservation is indispensable for the proper treatment of open-shell systems. The formalism is
applied to the first-row open-shell atoms. The obtained ground-state energies are in very good agreement with
the exact values as well as other state of the art quantum chemistry calculations.
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The proper description of electronic correlation is the cen-
tral problem in theoretical material science. Density func-
tional theory �DFT� deals with this problem by considering
the electronic density as the fundamental variable. DFT is
built upon the Hohenberg-Kohn theorem �1�, which ensures
that the expectation value of every observable, including the
total energy, is a unique functional of the electronic ground-
state density. The many-electron problem is then mapped
onto an auxiliary, noninteracting system, the so-called Kohn-
Sham system �2�, whose density reproduces the interacting
density. In practice, the so-called exchange and correlation
part of the Kohn-Sham potential needs to be approximated.
DFT is tremendously successful in describing properties of
real materials and that success is proved by its general ac-
ceptance as one of the major tools in exploring theoretically
the world of real materials. Nevertheless, there are certain
materials, termed collectively as highly correlated materials,
for which the results of DFT, at least with standard function-
als for exchange and correlation, deviate significantly from
the experimental values.

Reduced-density-matrix-functional theory �RDMFT� is an
alternative way to deal with the many-electron problem. It is
based on Gilbert’s theorem �3�, which guarantees that the
expectation value of any observable of the system in the
ground state is a unique functional of the one-body reduced-
density matrix �1-RDM�,

��r,r�� = N� d3r2 ¯ d3rN�*�r�,r2 ¯ rN���r,r2 ¯ rN� ,

�1�

where � is the many-body ground-state wave function. The
advantage of this approach, compared to DFT, is that the
exact many-body kinetic energy is easily expressed in terms
of �. Although the properties of 1-RDM functionals had been
the subject of theoretical studies for a long time �3–6�, there
were few practical applications of RDMFT until recently.

We emphasize that it is not possible to construct a Kohn–
Sham-like independent electron scheme in RDMFT: Due to
its nonidempotency, the 1-RDM of an interacting system
cannot be reproduced by a noninteracting system because the
latter always has an idempotent 1-RDM. This is reflected in

the eigenvalues of the 1-RDM, which are equal to zero or 1
for a noninteracting system, while in the interacting case
some of them are fractional.

An implicit functional of the 1-RDM was presented in
1984 by Müller �6�. This functional was later derived from
modeling the correlation hole, by Buijse and Baerends �7�.
Goedecker and Umrigar �8� presented a self-interaction cor-
rection to this functional. Other functionals have been pro-
posed more recently �9–14�. Implicit 1-RDM functionals de-
pend explicitly on the so-called natural orbitals �a and the
corresponding occupation numbers na, which are defined as
the eigenfunctions and the eigenvalues of the 1-RDM

� dr�3��r,r���a�r�� = na�a�r� . �2�

The total energy can be minimized with respect to the natural
orbitals and the occupation numbers, instead of the 1-RDM
itself, by considering the appropriate subsidiary conditions,
namely the conservation of the total number of electrons, the
N-representability constraint and the orbital orthonormality.
Goedecker and Umrigar �8� calculated the correlation energy
of small atomic systems including the open-shell lithium and
carbon atoms. Despite their simplicity, 1-RDM functionals
are able to provide a good approximation of the correlation
energy of small systems �7–12,15,16�. Generally, the corre-
lation energy of finite systems is improved by removing the
self-interaction terms �15,16�. However, the correct dissocia-
tion limit of the H2 molecule is found only if self-interaction
is retained �7,15,16�.

In the present paper, we demonstrate how natural orbital
functionals in RDMFT can be applied to open-shell systems.
For that purpose, we employ the Müller functional �6� with
the self-interaction correction proposed by Goedecker and
Umrigar �8�. Our formulation is spin restricted, i.e., we have
spin-dependent occupation numbers but spin-independent
natural orbitals. The advantage of this approach is that par-
ticular spin configurations are prescribed, in the same man-
ner as in the restricted open-shell Hartree-Fock �ROHF�
method �17�. We discuss the necessity of a spin-dependent
constraint for the conservation of both the total number of
electrons as well as the spin.
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We start with the 1-RDM functional described in Refs.
�6–8�, where we explicitly include the full spin dependence
in the occupation numbers and the natural orbitals. We refer
to this as the spin-unrestricted functional that reads

E = �
a,�

na
�haa

� +
1

2 �
ab,���

na
�nb

���1 − �ab�����Jab
���

−
1

2 �
ab,�

�na
�nb

��1 − �ab�Kab
� , �3�

with na
� being the spin-dependent occupation numbers and

haa
� , Jab

���, and Kab
� the one- and two-electron integrals for the

natural orbitals �a�

haa
��� =� d3r �a�

* �r��−
�2

2
+ Vext�r�	�a��r� ,

Jab
��� =� � d3r d3r�

�a�
* �r��a��r��b���r���b��

* �r��


r − r�

,

Kab
� =� � d3r d3r�

�a�
* �r��b��r��a��r���b�

* �r��

r − r�


. �4�

In the above expression, Vext�r� is the external potential, i.e.,
the ionic potential for atomic and molecular systems. The
Kronecker �s are inserted in Eq. �3� in order to exclude
explicitly the self-interaction terms �8�.

We now concentrate on the spin-restricted case by assum-
ing spin-independent orbitals but still spin-dependent occu-
pation numbers. Then expression �3� reduces to

E = �
a

�na
↑ + na

↓�haa +
1

2�
ab

��na
↑nb

↑ + na
↓nb

↓��1 − �ab�

+ �na
↑nb

↓ + na
↓nb

↑��Jab

−
1

2�
ab

���na
↑nb

↑ + �na
↓nb

↓��1 − �ab��Kab. �5�

In this equation, the integrals haa, Jab, and Kab are analogous
to those in Eq. �4� but for spin-independent orbitals �a. This
is the functional we employ in this paper. It can be viewed as
a generalization of the ROHF functional in the sense that it
reduces to the ROHF functional if all the occupation num-
bers are either zero or 1. Although the formulation in this
paper refers to the specific functional given in Eq. �5�, the
generalization to different functionals of similar kinds �9� is
easily achieved by replacing the square roots in the ex-
changelike term in Eq. �5� by the appropriate functions
f�na

↑ ,nb
↑� , f�na

↓ ,nb
↓�.

Driven by physical requirements, Cioslowski et al. �18�
have derived a list of criteria that 1-RDM functionals should
fulfill. In addition, they examined whether functionals of the
Müller-type satisfy these criteria. Our open-shell version �5�
of the self-interaction-corrected Müller functional satisfies
the same criteria as the original Müller functional �6� with
the self-interaction correction of Goedecker and Umrigar �8�.

We now discuss the subsidiary conditions that have to be
enforced in the minimization procedure of functionals such

as the one given by Eq. �5�. Since the occupation numbers
are spin-dependent, we face a dilemma concerning the con-
servation of the total spin. More specifically we have two
options. �i� We can use one constraint for the conservation of
the total number of electrons. This introduces a single
Lagrange multiplier, the chemical potential �. In that way,
we unfortunately allow for charge transfer from one spin
channel to the other, usually from the majority to the minor-
ity spin, and the total spin is not preserved. �ii� Alternately,
we can use an extra constraint for the conservation of the
total spin, making the minimization more restrictive. In prac-
tice, we use two different constraints for the spin-up and the
spin-down electrons. In that way, we introduce two Lagrange
multipliers, i.e., a spin-dependent chemical potential. It is
one of the goals of the present paper to assess these two
different ways of minimizing the energy functional. Of
course, the above dilemma applies only to open-shell sys-
tems. It is expected that the first option, being less restrictive,
leads to a lower total energy. However, since RDMFT �like
DFT� is not variational, a lower energy is not necessarily
better. Hence, it is not a priori clear whether enforcing the
spin conservation constraint in addition to the particle num-
ber conservation will improve or worsen the energy.

Additionally, as in the case of closed-shell systems, we
have to include two further subsidiary conditions. The first is
the orbital orthonormality. Unfortunately, all 1-RDM func-
tionals are not invariant under unitary transformation of the
natural orbitals. This leads to a complex minimization prob-
lem that consists of orbital dependent Fock-like operators
and off-diagonal Lagrange multipliers. The equations we
have to solve in order to find the orbital solution for fixed but
fractional occupation numbers have the form

F�a��r��a�r� = �
b

�ab�b�r� ,

�ba = �ab, �6�

where F�a� is analogous to the Fock matrix in Hartree-Fock
theory but in this case orbital-index dependent, and �ab are
the nondiagonal Lagrange multipliers, which should be Her-
mitian according to the second equation. The orbital-index
dependent operator F�a� is

F�a��r� = �na
↑ + na

↓�h�r� + �
b

��na
↑nb

↑ + na
↓nb

↓��1 − �ab�

+ �na
↑nb

↓ + na
↓nb

↑��Jb�r�

− �
ab

���na
↑nb

↑ + �na
↓nb

↓��1 − �ab��Kb�r� , �7�

where

h�r� = −
�2

2
+ Vext�r� ,

Jb�r� =� dr�
�b

*�r���b�r��

r − r�


,
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Kb�r��a�r� =� dr�
�b

*�r���a�r��

r − r�


�b�r� . �8�

A similar problem with an orbital-index dependent operator
exists in the self-interaction-correction method �19,20� of
DFT and to a lesser extent in the ROHF method �17,21�.
Finally, the second of the subsidiary conditions, known as
the N-representability constraint, restricts the occupation
numbers to lie between zero and 1, 0�na

��1, and guaran-
tees that the 1-RDM corresponds to an N-body wave func-
tion.

Our implementation uses the GAMESS quantum chemistry
program �22� for the calculation of the one-body and two-
body integrals, as well as for providing the Hartree-Fock
solution that we choose as the starting point of our minimi-
zation procedure. The minimizations with respect to both the
occupation numbers and the natural orbitals are performed
with a conjugate gradient procedure. For the optimization
with respect to the orbitals, we adopted a procedure similar
to the one described in Refs. �20,23�. We calculated the total
energies of the first-row open-shell atoms, i.e., Li, B, C, N,
O, and F. For all these elements we used the correlation-
consistent polarized valence quadruple-zeta �cc-PVQZ�
Gaussian-basis set �24�.

In Fig. 1, we show the convergence of the total energy
as a function of the number of natural orbitals included in the
calculation. As it can be seen, 30–40 natural orbitals are
typically required for full convergence. In Table I, we list
the total energies for the open-shell systems as well as the He

and Be closed-shell atoms for completeness. Comparing
the total energies it becomes apparent that forcing or relaxing
the constraint of spin conservation is extremely important for
open-shell systems. The energy differences between the two
minimization procedures are of the order of 10 mH with the
spin-conserving constraint giving results much closer to the
exact ones. Relaxing the constraint results in a charge trans-
fer from one spin to the other, which is of the order of 0.05–
0.1 electrons. This charge transfer increases with the number
of natural orbitals included in the minimization procedure,
which is the reason for the increase in the energy difference
between the two procedures with the number of naturals or-
bitals seen in Fig. 1. Interestingly, for the last two open-shell
elements, i.e., O and F, where the 2p shell is more than half
filled, the energy difference between the two minimization
procedures is smallest.

It is clear from Fig. 1 and Table I that RDMFT offers a
very good approximation for the correlation energy for all,

TABLE I. Absolute total energies for the first-row atoms �in
atomic units� with and without enforcing the spin conservation con-
straint. The Quadratic CI �QCI� �25� and exact �26� values are also

listed. 	̄ is the mean absolute deviation from the exact values �for
open-shell systems only�.

Atom

RDMFT

QCI Exact�↑=�↓ �↓��↑

He 2.8978 2.9049 2.9037

Li 7.4940 7.4827 7.4743 7.4781

Be 14.6686 14.6657 14.6674

B 24.6746 24.6616 24.6515 24.6539

C 37.8675 37.8506 37.8421 37.8450

N 54.6096 54.5965 54.5854 54.5893

O 75.0668 75.0671 75.0613 75.0670

F 99.6951 99.6952 99.727 99.734

	̄ 0.020 0.010 0.004 0.000

TABLE II. The values of the spin-dependent chemical potential
�↑ �the majority spin� and �↓ in the case of enforcing the spin
conservation constraint, and the common value of � and the charge
transfer 	q in the case of relaxing that constraint.

Forcing spin
conservation

Relaxing spin
conservation

−�↑

a.u.
−�↓

a.u.
−�
a.u.

	q
e

He 0.928 0.928 0.928

Li 0.191 2.541 0.186 0.012

Be 0.292 0.292 0.292

B 0.234 0.421 0.193 0.089

C 0.312 0.550 0.286 0.074

N 0.445 0.710 0.411 0.058

O 0.474 0.404 0.418 0.075

F 0.570 0.527 0.510 0.060

FIG. 1. The convergence of the total energy with the number of
natural orbitals included in the minimization procedure for lithium
and carbon atoms. The values of the ROHF method as well as the
CI and exact values are shown as horizontal lines.

OPEN SHELLS IN REDUCED-DENSITY-MATRIX… PHYSICAL REVIEW A 72, 030501�R� �2005�

RAPID COMMUNICATIONS

030501-3



closed- and open-shell, atomic systems we studied. Despite
its simplicity, the functional we used produces results in very
good agreement with state of the art, but computationally
much more expensive, methods such as configuration inter-
action �CI�. However, the systematic trend of this particular
functional is to overestimate slightly the correlation energy
for all the open-shell systems studied. To give a fair credit to
RDMFT, one has to take into account that this is one of the
few 1-RDM functional that has been exploited in a minimi-
zation procedure, in contrast to DFT functionals that have
been heavily used and tuned for decades.

In Table II, we quote the different values of the chemical
potential for the majority and the minority spin as well as the
common value of it in the case of relaxing the constraint of
spin conservation. Clearly, the values are significantly differ-
ent. Interestingly, for B and C with the p shell less than half
filled, but also for N with the half-filled p shell, the majority
�↑ is larger than the minority �↓. This is a consequence of
the fact that ionization from the majority is energetically fa-
vorable. For the remaining two elements, i.e., O and F, with
more than a half-filled p shell, this trend is opposite.

In summary, we have presented a systematic application
of RDMFT to open-shell systems. We adopted a spin-
restricted open-shell treatment and extended 1-RDM func-

tionals to include spin-dependent occupation numbers. This
formalism has the advantage of allowing the prescription of a
specific spin state. In particular, we introduced a spin-
dependent chemical potential in order to enforce conserva-
tion of the total spin in the minimization procedure, in addi-
tion to the conservation of the total number of electrons. We
performed calculations for open-shell atoms using the appro-
priate extension of a standard 1-RDM functional �6,8�, both
with and without the spin conservation constraint. We con-
clude that the inclusion of this constraint is essential for the
proper treatment of open-shell systems. Our results for the
total energies of the first-row open-shell atoms are in very
good agreement with state-of-the-art quantum-chemistry cal-
culations. The presented formalism can be easily extended to
any 1-RDM functional and therefore opens up the wide
range of open-shell systems to the testing of future 1-RDM
functionals.
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