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An approximation for the exchange-correlation energy of reduced-density-matrix-functional theory
was recently derived from a study of the homogeneous electron gas �N. N. Lathiotakis, N. Helbig,
and E. K. U. Gross, Phys. Rev. B 75, 195120 �2007��. In the present work, we show how this
approximation can be extended appropriately to finite systems, where the Wigner Seitz radius rs, the
parameter characterizing the constant density of the electron gas, needs to be replaced. We apply the
functional to a variety of molecules at their equilibrium geometry and also discuss its performance
at the dissociation limit. We demonstrate that, although originally derived from the uniform gas, the
approximation performs remarkably well for finite systems. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3073053�

I. INTRODUCTION

Density-functional theory �DFT� is one of the most
widely applied tools for electronic structure calculations.
While it successfully describes systems ranging from atoms
and molecules to solids, present day DFT approximations
fail to describe a class of systems generally called strongly
correlated. For these systems, recent calculations have fueled
the hope that reduced-density-matrix-functional theory �RD-
MFT� can cure the problem.1–3 Within RDMFT, the one-
body-reduced density matrix �1-RDM�, ��r ,r��, is used as
the basic variable in analogy to DFT, where that role is re-
served for the electronic density. The theorem of Gilbert,4

which is an extension of the Hohenberg–Kohn theorem to
nonlocal external potentials, guarantees that the ground-state
expectation value of any observable of a quantum mechani-
cal system is a unique functional of the ground-state 1-RDM.
In particular, the total energy Etot of a system of N electrons
moving in an external local potential V�r� can be written in
terms of the ground state � as

Etot��� =� � d3r d3r���r − r���−
1

2
�r

2 + V�r����r,r��

+
1

2
� � d3r d3r�

��r,r���r�,r��
�r − r��

+ Exc��� �1�

�atomic units are used throughout�. The first term contains
the kinetic and external energies and is a simple functional of
�. The fact that the kinetic energy can be written explicitly in
terms of the ground-state 1-RDM is a great advantage of

RDMFT compared to DFT. The energy contribution associ-
ated with the electron-electron interaction can be cast into
two terms, the direct Coulomb energy �or Hartree� term,
which is again an explicit functional of �, and the remaining
contribution, which is called exchange-correlation �xc� en-
ergy. The xc energy is an unknown functional of the 1-RDM
and needs to be approximated in practice. Contrary to DFT,
however, it does not contain any kinetic energy contributions
but is solely given as the difference between the full Cou-
lomb interaction and the Hartree energy. Several approxima-
tions for the xc energy have been introduced so far,1–3,5–16 the
great majority of them being implicit functionals of the
1-RDM. They depend explicitly on the natural orbitals � j

and the corresponding occupation numbers nj, i.e., the eigen-
functions and the eigenvalues of �, which are given by

� d3r���r,r��� j�r�� = nj� j�r� . �2�

Applications of different RDMFT functionals for the calcu-
lation of the dissociation of molecules,2,17 the ionization
potential,18–21 or the fundamental gap21,22 have been re-
ported. Most approximate RDMFT functionals can be writ-
ten in the form

Exc��� = Exc�	nj
,	� j
�

= −
1

2 �
j,l=1

�

f�nj,nl�� � d3r d3r�

�
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��r��l
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, �3�
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with some function f�nj ,nl� that distinguishes these approxi-
mations from the Hartree–Fock approximation.

The first approximation of the kind in Eq. �3� was intro-
duced by Müller5 using the function f�nj ,nl�=�njnl. Buijse
and Baerends1 rederived the same approximation from mod-
eling exchange and correlation holes. The Müller functional
overcorrelates in all systems it was applied to.23–28 Interest-
ingly, for diatomic molecules, it reproduces the dissociation
into two independent atomic fragments correctly. Goedecker
and Umrigar6 �GU� considered a functional with the same
function f but excluding explicitly the self-interaction terms,
j= l, in Eq. �3� and in the direct Coulomb term in Eq. �1�.
They used their functional in a minimization procedure and
determined the natural orbitals and the corresponding occu-
pation numbers. In this way, they found correlation energies,
for small atomic and molecular systems, which are in very
good agreement with the exact ones. However, it was found
later that the GU functional fails to describe the dissociation
of diatomic molecules correctly.23,24 In an attempt to correct
the overcorrelation of the Müller functional, while keeping
the good description in the dissociation limit, Gritsenko et
al.2 proposed a hierarchy of three levels of repulsive correc-
tions. All three corrections distinguish between weakly and
strongly occupied orbitals, the former being orbitals with oc-
cupation numbers close to 0, the latter having occupations
close to 1. The resulting functionals are called BBC1, BBC2,
and BBC3. For the first two approximations, the function f is
given by

fBBC1�nj,nl�

= − �njnl, j � l and j,l weakly occupied

�njnl, otherwise,
�

�4�

fBBC2�nj,nl�

= �− �njnl, j � l and j,l weakly occupied

njnl, j � l and j,l strongly occupied

�njnl, otherwise.
�

�5�

In the BBC3 functional, the antibonding orbital is treated as
strongly occupied. Additionally, the self-interaction terms are
removed as in the GU functional, except for the pair of bond-
ing and antibonding orbitals. Gritsenko et al.2 used the BBC
functionals to calculate the dissociation curves of diatomic
molecules. They concluded that the BBC3 functional is very
accurate in the description of these systems both at the equi-
librium geometry and the dissociation limit. Two other func-
tionals, derived from a cumulant expansion of the second-
order density matrix, with a final form that is very similar to
the BBC functionals, were introduced by Piris.14 We refer to
these functionals as Piris natural orbital functionals. The first
approximation, PNOF0, is identical to the BBC1 functional
apart from the self-interaction terms, which are removed in
the same way as in the GU approximation. In the second
functional, PNOF, an additional term is included to avoid

occupation numbers that are identical to 0 or 1. PNOF0 and
PNOF coincide for two electron systems. Finally, an empiri-
cal functional was considered by Marques and Lathiotakis16

�ML� using a Padé approximation for the function f. The
BBC as well as PNOF and PNOF0 functionals were evalu-
ated recently for a large set of molecular systems and were
proven to be quite accurate in reproducing the correlation
and the atomization energies of these systems.25

For the application of 1-RDM functionals to periodic
systems, the homogeneous electron gas �HEG� is an impor-
tant prototype system. Also, as far as size is concerned, the
HEG and small atomic and molecular systems are two oppo-
site extremes. For the HEG, the GU and Müller functionals
are identical since the self-interaction terms vanish. Simi-
larly, all terms that include a special treatment of single or-
bitals vanish. As a result, the BBC3 functional coincides with
BBC2, and PNOF0 with BBC1 in this special case.
Cioslowski and Pernal26 as well as Csányi and Arias27 ap-
plied the Müller functional to the HEG. As for finite systems,
the correlation energy is overestimated, actually by a factor
of about 2 in the high density regime. In the low density
region, the Müller functional fails completely to reproduce
the limit of zero correlation.26–28 Csányi and Arias27 also
introduced a different functional starting from a tensor ex-
pansion of the second-order matrix. Unfortunately, it fails to
describe the electronic correlation of the HEG in both the
dense and dilute limits. A more successful functional for the
HEG is the one proposed by Csányi, Goedecker, and Arias
�CGA�,7 which reproduces relatively accurately the correla-
tion energy for the dense HEG. Recently, we applied the
BBC1 and BBC2 functionals to the HEG.28 We showed that
these functionals offer a better description of the correlation
of the HEG over the whole range of densities than any other
of the discussed functionals. Both the BBC1 and the BBC2
functionals overcorrelate slightly for high densities and un-
dercorrelate for low densities. The crossover is at around rs

=0.5 where these functionals perform best. Additionally,
they produce a finite discontinuity in the momentum distri-
bution at the Fermi energy, resembling a feature of the exact
theory. Unfortunately, the size and the dependence on the
density of this discontinuity are not in agreement with the
exact result.

II. THE BBC++ FUNCTIONAL

In an attempt to improve over the BBC functionals for
the HEG, we introduced a modification to the BBC1
functional.28 It consists of the introduction of a parameter
into the function f fitted for each value of rs to reproduce the
exact correlation energy of the HEG. Two choices for this
parameter were made. We concluded that a reasonable way
to generalize BBC1 is to introduce a function s�rs� multiply-
ing the function f when both orbitals are weakly occupied.
The corresponding function f then reads as
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f�nj,nl� = − s�rs� �njnl, j � l and j,l weakly occupied

�njnl, otherwise.
� �6�

We call this functional s-functional. Note that, for the HEG,
if one assumes plane-wave natural orbitals, no special care is
necessary for the j= l terms since these terms vanish. The
s-functional reproduces, by construction, the exact correla-
tion energy of the HEG. It also improves the calculated mo-
mentum distribution compared to BBC1 and BBC2. How-
ever, the momentum distribution still deviates from the exact
one.28

Being derived from the study of the HEG, the
s-functional is directly applicable to metallic systems, where
a value of rs can be associated. The application to other
systems is not straightforward since one has to overcome the
rs dependence. One possibility, in the spirit of the local den-
sity approximation of DFT, is to express s as a function of
the local electronic density. Hence, s becomes a function of
the space coordinate r and therefore should be properly in-
cluded in the integrals in Eq. �3�. A reasonable choice that
preserves the symmetry of the integrations over r and r� is to
multiply the integrand in Eq. �3� by �s�n�r��s�n�r��� or other
possible averages and keep the BBC1 form for the function
f . Work investigating the performance of the resulting func-
tional is in progress.

In the present article, we propose an alternative way to
circumvent the rs dependence. We refer to the resulting func-
tional as the BBC++ functional. In this approximation, the
xc terms retain the simple form of the exchange integrals
over Gaussian or Slater type orbitals. The idea is to establish
the dependence of s on a quantity � which, contrary to rs, is
meaningful for all systems, finite and periodic, metallic and
insulating. We choose the ratio

� =
Ec

Ekin
�HF� , �7�

where Ec is the correlation energy defined as the difference
in the total energy of the system from its Hartree–Fock value

and Ekin
�HF� is the Hartree–Fock kinetic energy. For the HEG, �

depends on the density parameter rs and, since the function
��rs� is strictly monotonic and therefore invertible, the de-
pendence s��� can be established. The resulting function
s��� for the HEG is shown in Fig. 1. The function s�rs�,
which is necessary in the calculation of s���, is given in Ref.
28. The difficulty for the application of the BBC++ func-
tional lies in the fact that the correlation energy, and, conse-
quently �, are only known at the solution point, i.e., when
the optimal � is known. Thus, s��� has to be determined
self-consistently during the minimization procedure. Starting
from a trial value for s, one minimizes the energy with re-
spect to �, calculates �, and feeds the corresponding value
for s back into the functional. As the BBC++ functional
coincides with the s-functional for the HEG, the self-
consistent determination of s��� has to yield the correct s�rs�
in this case. Using the implementation for the HEG pre-
sented in Ref. 28, we verified that this is indeed the case. We
also found that the self-consistent determination of s con-
verges for all the finite systems we studied.

III. RESULTS FOR FINITE SYSTEMS

For the application of 1-RDM functionals to finite sys-
tems, we used the implementation introduced in Ref. 12
which relies on the GAMESS computer program31 for the cal-
culation of the one- and two-electron integrals. In the present
work, we employed the cc-pVTZ basis set32 for all systems
apart from the He atom for which the cc-pVQZ set33 was
used. Depending on the system, these basis sets contain
30–50 basis functions. We always made full use of the size
of the basis set, optimizing as many natural orbitals as there
were basis functions available. For the BBC3 functional, we
used the form that respects the possible degeneracies of the
bonding and antibonding orbitals.25 The total energies result-
ing from this full minimization with respect to the natural
orbitals and occupation numbers for several atoms and di-
atomic molecules are given in Table I. We compare all our
results to total energies obtained from a coupled-cluster-
singles-doubles-triples �CCSD�T�� �Ref. 34� calculation us-
ing the GAUSSIAN 03 computer program35 with the same basis
sets as used in the RDMFT calculation. For the systems con-
sidered here, the BBC++ functional yields slightly better
total energies than GU but does not reach the accuracy of the
BBC3 functional. However, it performs significantly better
than the BBC1 approximation that it was derived from ex-
cept for the H2 molecule. The repulsive correction to the
BBC1 functional increases with increasing number of elec-
trons in the system. Overall, for small finite systems, the
BBC++ functional performs remarkably well considering
that it was originally tuned to be exact for the HEG.

In Fig. 2, we plot the dissociation curve for the H2 mol-
ecule. As already mentioned, among all the systems we stud-
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FIG. 1. �Color online� Dependence of the fitting parameter s of the
s-functional �Ref. 28� on the opposite −� of the ratio of the correlation over
the Hartree–Fock kinetic energy for the HEG. Two different functions s are
plotted for two sets of diffusion Monte Carlo data that s was fitted
to reproduce: from Ceperley and Alder �Ref. 29� and Ortiz and Balone
�Ref. 30�.
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ied, H2 is the only case where the BBC++ functional does
not improve over BBC1. Nevertheless, BBC++ reproduces
the dissociation curve surprisingly well, giving a qualita-
tively correct optimal 1-RDM with four occupations equal to
0.5 �per spin� in the limit of large distance. The slight de-
crease in the total energy at around 2.5 Å separation, which
can be seen in Fig. 2, is a pathology of the BBC++ func-
tional. It originates from the dramatic increase in the static
correlation leading to a large negative value for �. While �
has a value of �0.0388 at the equilibrium distance, it be-
comes �0.335 at a distance of 4 Å. As we can see from Fig.
1, this results in a negative value for s driving the BBC++
toward the Müller functional. Consequently, the functional
overcorrelates and leads to a decrease in the total energy with
increasing distance for the H2 molecule. It is worth mention-
ing that the dissociation of the H2 molecule is a rather diffi-
cult case for DFT functionals.36,37

Finally, a second pathology of the BBC++ functional is
its obvious size inconsistency: Consider a system consisting
of two independent subsystems, for example, two finite sys-
tems at a large distance. If the two subsystems are identical,
the � of the total system is equal to the values of each sub-
system. In the extreme case, however, where one of the sub-

systems is much larger than the other, the common value for
� is completely determined by the larger subsystem. That is,
since the two systems are independent, the functional, when
applied to the composite system, gives a different result for
the smaller subsystem than when applied to the subsystems
independently.

IV. CONCLUSION

We presented a RDMFT functional, which we call
BBC++, based on an idea to circumvent the dependence on
the density parameter rs of functionals derived from the
HEG. This idea is applied to the s-functional introduced in
Ref. 28. We apply BBC++ in the calculation of correlation
energies of small atomic and molecular systems and show
that its performance is satisfactory. We also discuss patholo-
gies of this functional, with the most important being its size
inconsistency.

Despite its pathologies, the BBC++ functional repre-
sents an important step in the development of 1-RDM func-
tionals. It is a successful attempt to apply approximations
originally developed for the HEG to finite systems. In other
words, within RDMFT, it is possible to develop functionals
that perform equally well for extended systems, such as the
HEG, as well as small atomic and molecular systems. The
present work serves as an initiative for the development of
better approximations based on the HEG and, furthermore,
their application to finite systems in the future.
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