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ABSTRACT: Two recently proposed exchange-correlation functionals describing
the superconducting phase of matter are reviewed and further explored: Whereas
the first is a generalization of the local density approximation dealing with purely
electronic correlations, the second is a functional derived from Kohn-Sham
perturbation theory that includes electronic and phononic correlations on the same
footing. Superconducting properties of simple metals obtained with the latter

functional agree rather well with experimental results.
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Introduction

O ne of the most successful theories introduced
in condensed matter physics and theoretical
chemistry is density functional theory (DFT). Its
foundations were established in the mid-1960s in
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two seminal articles by Hohenberg and Kohn [1]
and Kohn and Sham [2]. The first proved rigorously
that all physical observables—such as the ground-
state energy—can be written as functionals of the
electronic density. This is a nontrivial statement
and quite surprising at first sight. To completely
describe the ground state of a many-body system
one does not require knowledge of the complicated
many-body wave function, but only that of a simple
three-dimensional function: the density. In the sec-



ond article, Kohn and Sham introduced a scheme to
obtain the density from the solution of a fictitious
noninteracting electronic system. These noninter-
acting electrons move in a local potential that in-
cludes, apart from the external field, the classical
electrostatic interaction, and an exchange and cor-
relation (xc) term that accounts for all the many-
body effects. To approximate the latter quantity,
they proposed the famous local density approxima-
tion (LDA). Despite its simplicity, the LDA per-
forms remarkably well in a huge variety of molec-
ular and solid-state systems. Over the next three
decades, several other xc functionals were pro-
posed in the literature. Today, with the most mod-
ern generalized gradient approximations (GGA) or
orbital functionals, DFT can compete with the com-
putationally much more intensive quantum-chem-
istry methods, and is the method of choice for large
systems.

Unfortunately, not all physical properties can be
easily written as functionals of the ground-state
density—e.g., excitation energies or properties of
the superconducting state. Several extensions of the
basic theory have been put forward to remedy this
inconvenience. In this article, we describe some
recent advances of one of those extensions, namely,
DFT for superconductors (SCDFT). The basic Ho-
henberg-Kohn and Kohn-Sham theorems of SCDFT
were proved by Oliveira, Gross, and Kohn in the
late 1980s [3]. However, very few applications of
the theory have appeared in the literature [4], pri-
marily because of the lack of reliable xc functionals.

The first attempt to construct such a functional
was a generalization of the LDA to the supercon-
ducting case [5]. This functional only accounts for
the purely electronic correlations in superconduc-
tors and is based on the xc energy of a uniform
electron gas made superconducting by an external
pairing field. To calculate the latter quantity, the
authors proposed the use of Kohn-Sham perturba-
tion theory at the level of a random-phase approx-
imation (RPA) [6]. Recently, a new functional incor-
porating both the electron—electron and electron—
phonon interactions was obtained [7] by using a
method resembling the optimized effective poten-
tial method. The superconducting transition tem-
peratures and the gaps at zero temperature, calcu-
lated for simple metals within this formalism, turn
out to agree well with experiment.

In our opinion, SCDFT has now attained a level
of maturity that allows it to compete with the tra-
ditional many-body approaches [8, 9, 10]. Its two
main advantages are the relative simplicity of the
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SCDFT equations, and the nonexistence of any
semiphenomenological parameter such as the w* of
Eliashberg theory [9].

This article is structured as follows: In the next
section we provide a succinct description of SCDFT
presenting the basic equations of the theory. We
then describe the construction of xc functionals for
superconductors. First, we present the LDA func-
tional of Ref. [5]. To visualise this functional, the
anomalous Hartree and the xc energies of the uni-
form superconducting electron gas are evaluated
for a variety of order parameters. In the last section,
we describe the calculation of material-specific
properties of superconductors, using the functional
of Ref. [7]. We conclude with a brief outlook.

DFT for Superconductors

We will begin with a brief overview of the SCDFT
equations. This generalization of normal DFT to
study superconductivity uses two densities: the
normal electronic density

n(r) = 2P0V, (x), )

and the “anomalous” density
x(r, 1) = (¥, (0¥ (), ()

which is the order parameter characterizing the
superconducting phase. In the previous expres-
sions, the field operator ¥ (r) annihilates an elec-
tron of spin o (¢ = 1, |) at the position r. With
these densities, a Hohenberg-Kohn theorem is eas-
ily established [3] by generalizing Mermin’s argu-
ments [11] for DFT at finite temperature. The theo-
rem states that there is a one-to-one correspondence
between the pair of external potentials {v — u, A}
and the pair of equilibrium densities {1, x}. A(r, t')
represents an external pairing field while v(r), as in
ordinary DFT, is a local potential, and w is the
chemical potential. The thermodynamic potential,
as well as all other observables, can thus be written
as a functional of {n, x}. The next step is the con-
struction of a noninteracting Kohn—Sham Hamilto-
nian
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Hs = 2 J' dST"P;(I‘)|:— V? + ’US(I') = M \Pzr(r)

- lf d3rJ’d3r’A§(r, )W, (0¥, (') + He.|. (3)

Atomic units are used throughout in all equations.
The Kohn-Sham electrons are subject to an effective
local potential, v(r), and to an effective pair poten-
tial, Ay(r, r'), chosen in such a way that the densities
of the Kohn—-Sham system equal the densities of the
interacting system. Diagonalizing this Hamiltonian
leads to the Bogoliubov—de Gennes-type equations

- 2 -

- ? + Us(r) — M Mi(r) + J’d3r,As(r1 I")'U[(I")

= Eju(r)

. 2 .

— -5+ 0y(r) — s [oi(x) + Jd?’r’A:(r, r)u(r')

=Ep(r), (4)

where u; and v; are the electron and hole ampli-
tudes, and the Kohn-Sham potentials are defined as

oyn, x1(x) = vy(x) + veln](x) + v fn, 1) (5)

Asl:n/ X](r/ r’) = AO(r/ I") + AH[X](r/ I")
+Adn, Xl 1), (6)

vy(r) represents the external Coulomb potential
generated by the periodic lattice of the ions, while
Ay(r, r') usually vanishes unless there is an external
pairing field produced by the proximity of an ad-
jacent superconductor. In these expressions, and in
the following, the square brackets indicate a func-
tional dependence. Note that the xc potentials v,
and A, are functionals of both the normal and the
anomalous density, whereas the Hartree potentials,
vy and Ay, depend only on one density and are
defined as

— 3.1 n(r’)
vulnl(x) = | dr |r — rr| ’ (7)
A, 1) = — f((iri (8)

The xc potentials are defined as functional deriva-
tives of the xc free energy functional, F,,,

SFXC 7
ot i = 2 9)
oF 1,
A><<:[n/ X](I', I") = - (SX’(-([ZI'),()] . (10)

In principle, these potentials include all many-body
effects induced by electron—electron and electron—
phonon interactions. The functional dependence of
F,. on the densities can be extremely complicated
and has to be approximated in any practical appli-
cation of the theory.

To simplify the previous equations we introduce
the so-called decoupling approximation [12] for u;
and v;

u;(r) = upr), vr) = v (r), (11)

where ¢, are solutions of the normal-state Kohn-
Sham equation. The eigenvalues of Eq. (4) are then
givenby E; = +V& + [A]>, with & = ¢, — p,, and ¢
are the Kohn-Sham eigenvalues corresponding to
¢;. The solution of the normal-state Kohn-Sham
equation can be achieved using standard band-
structure methods. Finally, A; is defined as

Ai:fd3rfd37'¢ir)As(r, (). (12)

The decoupling approximation reduces the prob-
lem to the solution of a BCS-like gap equation

tanh(B E~)
7 L5
A= —Z[AJA - 2 E T

j

where 8 is the inverse temperature. The kernel of
the gap equation is divided into two parts: a purely
diagonal term, Z;, and a nondiagonal part, K;;, both
being functionals of the Kohn-Sham pairing poten-
tial A,. This equation has the same structure as the
BCS gap equation, with the K;; kernel playing the
role of the model interaction kernel and Z; playing
a role similar to the renormalization term in the
Eliashberg equations. This similarity allows us to
interpret the quantity K;;/(1 + Z;) as an effective
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interaction responsible for the binding of the Coo-
per pairs.

Local Density Approximation for
Superconductors

The LDA functional for superconductors
(SCLDA) [5] can be constructed in an analogy to the
local spin density approximation (LSDA), with the
anomalous density playing the role of the spin-
magnetization density in LSDA. Whereas the LSDA
is derived from the xc energy of a uniform electron
gas exposed to a constant magnetic field, the input
required by the SCLDA is the xc energy of the
uniform electron gas under the influence of a ho-
mogeneous external pairing potential. Because of
the translational invariance of the gas, it is conve-
nient to work in momentum space. The xc energy
per unit volume of the uniform gas will then be a
function of the normal density # and a functional of
the anomalous density x(k), i.e.,

fim = fn, X101 (14)

With the help of this quantity, we define the LDA
for superconductors as

FEYPAM(R), (R, k)] = f FRE [, X0 2o
(15)

where xw(R, k) is the Wigner transform of the
anomalous density of the inhomogeneous system,
given by

. S S
XW(R/ k) = f dSSelksX<R + E’ R - 2), (16)

where R represents the center of mass of the Cooper
pair, R = (r + 1')/2, and s represents the relative
coordinate, s = r — r'. Although other forms for the
SCLDA might be conceivable, we can show that Eq.
(15) is the only correct definition. This is achieved by
performing a semiclassical expansion of the total
energy [13]. Then the lowest-order terms in % are
identical with the SCLDA.

The quantity f29™ is essential in this functional.
Various methods could be used to obtain it, e.g.,
quantum Monte Carlo, or many-body perturbation
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theory. We will use the latter to write the xc energy
of the electron gas as a series expansion in powers
of &2, where e is the electron charge. In first order in
€2, one finds

1 &%k [ K 4w
A="%| @m | @nP k-KT

X [1 - g];tanh@ Ekﬂ[l - Eitanh(? Ek,>]. (17)

This term is the generalization of the normal ex-
change energy. In second order, we find that some
of the contributions diverge. This well-known be-
havior is caused by the long-range nature of the
Coulomb interaction. To remedy this problem, one
can resort to infinite resummations of the perturba-
tion series, the simplest of which is the so-called
random-phase approximation (RPA) [6]. In the con-
text of this article, the RPA energy can be written as

1 [ &
T f T:Y’ X log[1 — v(g, v)TI(q, ,)]

+ U(q/ Vn)HO(q/ VH)/ (18)

where the irreducible polarization propagator, II,
is defined by

2 | &k
Ho(q/ Vn) = E f W E [G(k/ 0),1)

X Gk+q, 0, +v,) +Fk, 0,)F(k+q, 0, +v,)]
(19)

Here, w, and v, are odd and even Matsubara fre-
quencies, respectively. G, F, and F' represent the
normal and anomalous Green’s functions of the
superconducting electron gas [5].

In ordinary DFT the xc energy for the electron
gas is a simple function of the density. One can
therefore evaluate fi,}fm(n) for a set of densities, and
fit the result to some analytic form. As already
mentioned, /2™ for the superconducting electron
gas is a functional of x(k), so even if we could
calculate it, we could not fit the results in terms of
simple parameters. To circumvent this problem, we
parametrize the anomalous density (or equivalently
the pair potential), thereby transforming the xc
functional into a much simpler function of the ex-
pansion coefficients. As a first step, we investigate
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FIGURE 1. Energies vs & for an s-wave pair-potential with o = 1 (left panel) and energies vs o for a pair-potential
with 8 = 0.01 (right panel). Both panels were calculated forr, = 1and T = 0 K.

the functional for an s-wave pairing potential hav-
ing the shape of a Gaussian
(20)

ALK = 8 exp[(k/k;_l)]

where ki is the Fermi momentum, and 8 and o are
dimensionless parameters. To gain some insight
into the relative importance of the anomalous Har-
tree energy [the energy term associated with the
anomalous Hartree potential (8)]

[ @ [P 4 AK) AK)
fan=g em® | @Yk — k' Ex Ep

X tanh(é3 Ek)tanh<§ Ekr), (21)

versus the exchange and the RPA contributions, we
calculated these quantities numerically for a wide
range of parameters.

The results are summarized in Figure 1, where
we plot the difference of exchange energies, f; — £,
in the superconducting (S) and normal (N) states;
the negative difference —(fzpa — fRpa) Of the cor-
responding RPA correlation energies; the anoma-
lous Hartree energy, fay; and the sum, f_, 4, of these
three terms representing the potential part of the
condensation energy. In the left panel of Figure 1
these energies are plotted versus the parameter &
for o = 1, and in the right panel the same quantities
are plotted as functions of o for § = 0.01. These two
plots were obtained for r, = 1. The temperature in

this calculation was set to zero. The dependence of
the energies on the parameters ¢ and 8 turns out to
be rather smooth. The largest positive contribution
comes from the anomalous Hartree term, and is
almost canceled by the RPA correlation energy dif-
ference ( jfip A~ fEIP A)- The exchange part is positive,
but much smaller (almost an order of magnitude)
than the other two terms. The sum of the three is
positive everywhere. The same statement holds
true for 0.01 =6 X100=1,001=o0=1,and r, =
0.1, 1, 2, 3, 4, 5. In the conventional s-wave super-
conductors, the pairing mechanism is phononic,
and the above Coulombic positive-energy contribu-
tions reduce superconductivity.

Phonon-Induced Superconductivity

For a proper description of real materials, both
the electron—phonon and electron—electron interac-
tions have to be included. A suitable xc functional
has been constructed via Kohn-Sham perturba-
tion theory taken to the second order in powers of
e, the electron charge, and g, the electron—-phonon
coupling constant. The resulting gap equation
was then simplified by taking the values of K;
and Z; at A = 0. Two terms were found to con-
tribute to the kernel Kj;, the first of phononic
origin, K};—h, and the second of electronic origin,
Kf‘]l They can be written as

1
Kiej - wijl
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2 )
Kt = B gy 2 kel
tanh(2 §i)tanh(2 fj) «

X [I(gll gj/ qu) - I(gir _gj/ Qeq)] (22)

where w;; is the matrix element of the Coulomb
interaction

1
Wij = j d’r J ' ol e r’) =g elr)er’). (23)

ng is the electron—phonon coupling constant, ().,
the phonon frequency, and € and q are the phonon

(

7o = — 3E %‘,wq[l - tanh(lz3 Q)] -

2 .
Zih = 2 2L RLT (& & Q) (26)
tanh(z §l> ] €
where I' is the derivative of [ with respect to its first
argument.

It is a demanding numerical task to obtain the
gap as a function of k, for it involves the solution of
a three-dimensional integral equation. This is re-
quired if one wants to study the angular anisotropy
of the gap, or if the Fermi surface of the material is
highly nonspherical. However, for the simple sys-
tems we consider in this work, the calculations can
be simplified by approximating the electronic ei-
genspectrum with a free-electron parabola, and by
assuming the electron—phonon coupling constant to
be independent of k. These approximations allow
us to convert the three-dimensional gap equation
into a one-dimensional integral equation by chang-
ing the variable of integration from wave-vector to
energy. In addition, to take into account screening
effects, we replaced the bare Coulomb interaction
by a Thomas—Fermi function.

To solve numerically the nonlinear gap equation
(13) for different temperatures, we iterate it until
convergence is achieved. No more than a few hun-
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polarization and wave-vector, respectively. The
function I is defined as

I(gi/ g// Qeq) = fﬁ(gz)fB(B])nB(Qeq)
(eﬁfi — oBE+ 0
X

P — eﬁ(fﬁan))
- . (24
gi_gj_ﬂeq gi_gj_l_ﬂsq ( )

where f; and ng are the Fermi-Dirac and the Bose-
Einstein distribution functions, respectively.
Similarly, two terms contribute to Z,,

B \
2 Wk B
R |
cosh2<2 5])
B (25)
s 2
o
c:osh2<[23 g) )

dred iterations were necessary, which corresponds
to a few minutes of computer time for every given
temperature. In Figure 2, we show typical solutions
of the gap equation at 0.01 K for two different
metals, tantalum and aluminum. In the same figure
we show the dependence of the gap at the Fermi
energy, A,, on the temperature.

To find the precise value of the critical tempera-
ture, T, we followed a simpler and numerically
more stable procedure: The gap equation was lin-
earized in A and converted into an eigenvalue prob-
lem by introducing the “eigenvalue” A

A(BA; = E MijAj/ (27)
j

where i denotes the mesh index, and M is defined
as

tanh (Bf,,)

iT 721+ Z[A=0] &

M (28)

In this way, T, is identified as the temperature for
which the largest eigenvalue A™**(B) is equal to
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FIGURE 2. Temperature dependence of the gap function at the Fermi energy, A,, and the gap vs energy at zero
temperature for tantalum (upper panels) and aluminum (lower panels).

one. As we are only interested in the dominant
eigenvalue of M, we simply iterate Eq. (27) until
self-consistency is reached. It is then simple to
prove that

max ) — 2 MiAT

The equation A(B8) = 1 is then solved by a simple
bisection algorithm.

Our findings for T, and A, are shown in Table I.
The electron-phonon coupling constants, g4, used
to obtain these results were calculated from first
principles in Ref. [15]. Given that both T, and A,
depend extremely sensitively on the electron—pho-
non coupling constants, the agreement between the
calculated values and the experiment is remarkably
good. Both T, and A, are overestimated for vana-
dium, an expected result due to the strong spin

fluctuations existing in this material, which our
present functional does not take into account. The
small values of T. and A, for aluminum and mo-

TABLE |

Computed transition temperatures (in K) and
superconducting gaps at zero temperature (in meV)
for simple metals compared with experimental
values from Ref. [14].

796

Tc OFT)  To(exp) Ao (DFT) Ao (exp)
Al 0.76 1.18 0.117 0.179
Nb 9.37 9.5 1.69 1.55
Mo 0.65 0.92 0.099 —
Ta 4.51 4.48 0.764 0.694
v 16.3 5.38 2.99 0.789
Pb 6.58 7.2 1.24 1.33
Cu <0.01 — — —
VOL. 99, NO. 5



lybdenum, on the other hand, indicate a systematic
underestimation of the phononic part of the kernel,
K}C]?h, for small temperatures. We emphasize that
there are no phenomenological parameters in-
volved in the calculation. All quantities are calcu-
lated from first principles. The results represent the
first fully ab initio calculations of material-specific
properties of superconductors. The rather good
agreement with experiment is certainly encourag-
ing. The next step toward the description of more
complex superconductors, with band structures de-
viating strongly from spherical symmetry, will be
the implementation of the three-dimensional gap
equation.
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