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An exchange-correlation energy functional involving fractional power of the one-body reduced density
matrix �S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103�R� �2008��
is applied to finite systems and to the homogeneous electron gas. The performance of the functional is assessed
for the correlation and atomization energies of a large set of molecules and for the correlation energy of the
homogeneous electron gas. High accuracy is found for these two very different types of systems.
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For the past 40 years, density-functional theory �DFT�
developed into one of the most successful theories in the
study of the electronic structure of atoms, molecules, and
periodic solids. At its heart lies the exchange-correlation �xc�
functional, for which many approximations have been pro-
posed. The simplest functionals that depend only on the den-
sity �the local-density approximation �LDA��, or on the den-
sity and its gradients �the generalized gradient approximation
�GGA��, give a very satisfactory description of many
ground-state properties. However, they still fail to reach
chemical accuracy for some important quantities such as re-
action or atomization energy. To remedy this situation hybrid
functionals were introduced, the first and most widely used
example being the Becke three-parameter Lee-Yang-Parr
�B3LYP� functional �1,2�. This functional is able to repro-
duce experimental atomization energies within about 10%
error. Although the atomization energies obtained using
B3LYP are in good agreement with experiments, the absolute
correlation energies, an accurate description of which can be
thought of as a test for the quality of any approximate func-
tional, exhibit a sizeable error �up to 400%� �3�. This is not a
surprise since experimentally one normally measures energy
differences, and it is these quantities that functionals such as
B3LYP are designed to reproduce. Accurate correlation en-
ergies for finite systems can be obtained by going beyond the
DFT framework, for instance, by using Møller-Plesset
second-order �MP2� perturbation theory or the coupled clus-
ter method with singles, doubles, and perturbative triples
�CCSD�T��. However, these methods are computationally
too expensive to be applied to realistic systems of ever grow-
ing complexity: biomolecules, large clusters, and nanode-
vices to name but a few examples.

Recently, reduced density-matrix-functional theory
�RDMFT� has appeared as an alternative approach to handle
complex systems. It has shown great potential for improving
upon DFT results for finite systems. RDMFT uses the one-
body reduced density matrix �1-RDM� � as the basic variable

�4,5�. This quantity, for the ground state, is determined
through the minimization of the total energy functional under
the constraint that � is ensemble N representable. The total
energy as a functional of � can be expressed as �atomic units
are used throughout�

Ev��� =� d3r� d3r� ��r − r���−
�2

2
���r,r��

+� d3r v�r���r�

+
1

2
� d3r� d3r�

��r���r��
�r − r��

+ Exc��� , �1�

where ��r� �the electron density� is the diagonal of the
1-RDM and v�r� is the external potential. The first two terms
in Eq. �1� are the kinetic and external potential energies. The
electron-electron interaction can be cast in the last two terms,
the first being the Coulomb repulsion energy and Exc the xc
energy functional. In principle, Gilbert’s �5� generalization of
the Hohenberg-Kohn theorem to the 1-RDM guarantees the
existence of a functional Ev��� whose minimum yields the
exact � and the exact ground-state energy of the systems
characterized by the external potential v�r�. In practice, how-
ever, the xc energy is an unknown functional of the 1-RDM
and needs to be approximated. In the past years, a plethora of
approximate functionals has been introduced. �6–15� An as-
sessment of the relative performance of these functionals for
a large set of atoms and molecules reveals that the so-called
third correction to Buijse Baerends functional �BBC3� �13�
and Piris natural orbital functional �PNOF0� �14,3� function-
als yield results for molecular systems, with an accuracy
comparable to the MP2 method �3,14,16–19�.

The situation for extended systems is somewhat more
complicated. When applied to the simplest system, the ho-
mogeneous electron gas �HEG�, these functionals lead to
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rather inaccurate correlation energies �11�. Moreover, for pe-
riodic solids, the aforementioned functionals fail to repro-
duce the fundamental gaps for insulators �20� �band as well
as Mott�. A functional was presented by Sharma et al. �20� to
solve this problem. It reads

Exc��� = −
1

2
� d3r� d3r�

����r,r���2

�r − r��
, �2�

where �� indicates the power used in the operator sense, i.e.,

���r,r�� = 	
j

�nj��� j
��r��� j�r� . �3�

Here � j�r� denotes the natural orbitals and nj denotes their
occupation numbers. The functional in Eq. �2� was shown to
perform very well for solids �20�. As it involves the power of
the density matrix we refer to it as “power functional” in the
following. The power � lies in the interval 1 /2���1. In
the limit �=1, minimization of the total-energy functional
�1� yields the Hartree-Fock energy, while the case �=1 /2
corresponds to the Müller functional which tends to overcor-
relate �3,11�. Hence the power � plays a similar role as the
mixing parameter in the hybrid functionals of the DFT.

The situation as it stands is that most of the existing xc
functionals of RDMFT are designed for finite systems and
perform quite poorly for solids and the HEG. The power
functional, on the other hand, is designed for the case of
solids, but has not yet been applied to the HEG or finite
systems. The objective of the present work is to fill this gap,
in the pursuit of a functional form that works equally well for
both finite and extended systems.

It is difficult to overstate the importance of the HEG in
the development of many-body theories. It is not only used
as a benchmark, but also acts as a reference system for the
design of xc functionals. Within DFT, the LDA is perhaps the
most successful example of this. Furthermore, results for the
HEG give us valuable indications on how the theory will
perform especially for metallic systems.

With this in mind, we first compare the relative perfor-
mance of various RDMFT functionals in reproducing the
correlation energy of the HEG of various densities. Figure 1
is a plot of the correlation energy versus the density param-
eter rs for a variety of approximate functionals compared to
exact Monte Carlo values �21,22�. Clearly, the Müller �23�,
corrected Hartree-Fock �CHF� �10�, and Csányi-Goedecker-
Arias �CGA� �12� functionals perform poorly over the whole
range of rs. The BBC �13� and PNOF �14� functionals are
more reasonable but still far from the true result. Encourag-
ingly, we find that for � between 0.55 and 0.58, the power
functional lies very close to the Monte Carlo results and
possesses a good low-density limit, making it one of the best
1-RDM functionals for the HEG.

Since the power functional performs well for the HEG at
small values of rs and for periodic solids �20�, it is worth-
while to investigate its behavior for finite systems. First we
performed a free optimization of the parameter � using a set
of 54 molecules and radicals. These molecules form a subset
of the Gaussian-2 �G2� test set of molecules �24,25�. For this
optimization two different basis sets are employed, namely,

6-31G� and cc-pVDZ. The optimal value of � that minimizes
the error in the correlation energy for this set of molecules is
0.578. This value is essentially the same for both kinds of
basis set used in the present work. It is interesting to note
from Fig. 1 that the value of � which best reproduces the
Monte Carlo data for rs of interest for most atoms and mol-
ecules is about 0.55. The optimal value obtained for the set
of molecules, �=0.578, is quite close to this.

Having determined the optimal value for the parameter �,
we compare this approach with different RDMFT function-
als. Figure 2 is the plot of relative error in the correlation
energy ��� given by

� = 100
	 ��Ec − Ec
�ref��/Ec

�ref��2/Nmol, �4�

where Ec is the correlation energy obtained with the method
under consideration, Ec

�ref� is the reference correlation energy
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FIG. 1. �Color online� Correlation energy as a function of the
Wigner-Seitz radius for the homogeneous electron gas. RDMFT
results are obtained using various approximations to the xc func-
tional. Monte Carlo results are taken from Ref. �21� �see also Ref.
�22��.
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FIG. 2. �Color online� Percentage deviation of the correlation
energy, obtained using various 1-RDM functionals, from the exact
CCSD�T� results.
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which is obtained with the CCSD�T� method, and Nmol is the
number of systems included in the calculation. It is apparent
from Fig. 2 that the power functional is very good in deter-
mining the correlation energy of finite systems. In fact, we
find that this very simple functional with �=0.578 �same
value of � was used for the full G2 set� is of similar quality
as the BBC3 or the PNOF0 which are to date the best
RDMFT functionals as far as finite systems are concerned
�3,14,16–19�.

The accurate determination of atomization energies is im-
portant for the calculation of the energetics of any chemical
reaction. Hence this important quantity also acts as a test for
the quality of an approximate functional. In Fig. 3 we plot
the atomization energies of molecules of the entire G2 set
obtained with various approximate functionals within
RDMFT versus the reference value determined using the
CCSD�T� method.

It is clear from Ref. �3� and Fig. 2 that BBC3, PNOF0,
and the power functional are the most accurate among the xc
functionals we considered; hence, in Fig. 3, we only compare
these three functionals. It is clearly visible that the power
functional is comparable in accuracy to the BBC3 functional,
while PNOF0 is slightly better than the two.

The successful prediction of properties of molecules at
equilibrium does not necessarily imply a good performance
for strongly distorted molecules, with the dissociation limit
being one such example. For a stretched molecule, not only
the total energy has to be equal to the sum of the energies of
the fragments but also the occupations of the natural orbitals
have to be correct. The simplest example is perhaps the H2
molecule. If we take the hydrogen atoms far apart, the total
energy should go to −1 a.u. and the four occupied spin or-
bitals made from the hydrogen 1s states have to be occupied
by half an electron each. Many DFT and RDMFT functionals
fail to reproduce the correct dissociation of this system
�26,27�.

In Fig. 4, we plot the H2 dissociation curve obtained using
various 1-RDM functionals, together with the exact curve
obtained through a full configuration-interaction calculation.

The BBC3 functional is designed with the dissociation limit
in mind and it yields the most accurate results for the H2

dissociation. The failure of PNOF0 and GU functionals is
twofold: as the distance between the two H atoms increases,
the energy deviates strongly from the exact value. Second, at
a sufficiently large distance between the two H atoms �6 Å�
two of the bonding orbitals still have occupancy of 0.86 and
the other two have 0.14. Both the Müller and the power
functionals with �=0.578 give the correct occupancy of
�0.5 for all four bonding spin orbitals, but the dissociation
energy is underestimated by the former of these functionals
and overestimated by the latter. If, on the other hand, the
value of � is changed to 0.525 the power functional de-
scribes the H2 dissociation curve accurately, with an accu-
racy comparable to the BBC3 functional.

In all the examples studied, it is clear that the simple form
of the power functional suffices to obtain very good elec-
tronic properties. However, we are faced with a problem: the
optimal value for � varies from one kind of system to an-
other. In fact, we find �=0.65 for solids, �=0.55 for the
HEG, �=0.578 for molecules at equilibrium, and �=0.525
for stretched H2. Although one can use different values of �
for different materials, it would be desirable to have a unique
method to determine the system-dependent value of �. In
this regard, one could make � itself a functional of the
1-RDM and optimize it in as ab initio manner for each sys-
tem. Many other improvements of the power functional are
also conceivable; for example, it could be a basis for sophis-
ticated corrections like those of Gritsenko et al. �13� and/or
removal of self-interaction terms. How these modifications
affect the quality of the power functional will be the subject
of future studies.

In summary, we have used the recently proposed power
functional to calculate the correlation energy of the HEG, G2
test set of molecules, and stretched H2. For the case of mol-
ecules, we also determined atomization energies. Our results
show that the power functional, originally proposed for
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FIG. 3. �Color online� Atomization energies for the G2 set of
molecules calculated using the BBC3, PNOF0, and power func-
tional vs the CCSD�T� reference atomization energies.
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solids, also performs very well for the HEG and finite sys-
tems. However, the optimal value of � for all three cases is
different. The encouraging results of the present work point
to the fact that this family of approximations is an interesting
path for the future development of approaches, within
RDMFT, to accurately describe electronic correlations.
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