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Abstract
Superconductivity in intercalated graphite CaC6 and H under extreme pressure is discussed in
the framework of superconducting density functional theory. A detailed analysis of how the
electron–phonon and electron–electron interactions combine together to determine the
superconducting gap and critical temperature (Tc) of these systems is presented. In particular,
we discuss the effect on the calculated Tc of the anisotropy of the electron–phonon interaction
and of the different approximations for screening the Coulomb repulsion. These results
contribute to the understanding of multigap and anisotropic superconductivity, which has
received a lot of attention since the discovery of MgB2, and show how it is possible to describe
the superconducting properties of real materials on a fully ab initio basis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of two-gap superconductivity in MgB2 has
triggered a huge revival of interest in the search for new
electron–phonon superconductors. Recent experience in the
vast majority of electron–phonon superconductors has shown
that ab initio calculations can provide a detailed and useful
description of the normal state of these systems, including
dynamical properties and electron–phonon (e–ph) coupling.
The treatment of the superconducting state, however, is a much
more difficult task. On the theoretical side, most calculations
nowadays are based on the Eliashberg theory [1–3]. While
in the Eliashberg theory the electron–phonon interaction is
perfectly accounted for, the effects of the electron–electron (e–
e) Coulomb repulsion are condensed in a single parameter,
μ∗, which is difficult to calculate from first principles
and which, in most practical applications, is treated as an
adjustable parameter usually fitted to the experimental critical
temperature, Tc. In this sense, the Eliashberg theory, in spite

of its tremendous success, has to be considered as a semi-
phenomenological theory. However, the possibility to describe
the superconducting state on a fully ab initio ground and,
as a consequence, to be able to predict the superconducting
properties of materials, is still highly sought after.

Density functional theory (DFT), a very successful
standard approach in normal state electronic structure
calculations, has recently been extended to deal with the
superconducting (SC) state (SCDFT) [4, 5]. SCDFT contains
no adjustable parameters, and the final critical temperature is
the result of material-specific quantities, all of them computed
ab initio. SCDFT is able to treat superconductors with a wide
range of couplings, as shown by several investigations, MgB2

being one of the most nontrivial one [6].
Superconductivity is the result of a subtle competition

between two opposite effects: the phonon-mediated attraction
(e–ph in the following) and the direct Coulomb repulsion
(e–e) between the electrons. In this work, we show how
different approximations for the e–e and e–ph interactions
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(e.g. an isotropic approximation, or an insufficiently elaborated
screening entering the e–e term) will depart from the
experimental results. Considering intercalated graphite CaC6

and H under pressure as test cases, we will quantify, without
ad hoc assumptions, the effect on Tc of the superconducting
gap anisotropy and of the assumed screened Coulomb
potential. The choice of these two systems comes from their
peculiarities. CaC6 is a superconductor with a moderate degree
of anisotropy [7], recently confirmed by experiments [8, 9],
with electronic bands having different orbital characters. With
a critical temperature as high as 11.5 K, CaC6 exhibits the
highest Tc [10] among graphite intercalated compounds. DFT
calculations of the electronic and dynamical properties of
CaC6 [11, 12] pointed out that the e–ph coupling is large
enough to yield the observed Tc. In CaC6, the phonons mostly
contributing to superconductivity belong to an optical branch
involving Ca displacements and, to a lower extent, to two
C-related branches at much higher frequency. The different
phonon branches couple to different Fermi surface (FS) sheets,
as pointed out in [7].

High temperature superconductivity in H was suggested
40 years ago by Ashcroft [13], and has been the subject
of several investigations (see [14] and references therein),
both theoretical and experimental. However, metalization
of hydrogen is far than being obvious and easy to reach.
Experimentally, in the search for metallic hydrogen, only three
different insulating phases were found at pressures as large
as 350 GPa [15]. Unlike CaC6, molecular hydrogen under
pressure involves basically only one type of atomic orbital; it
has very large phonon frequencies (due to the light H mass)
and large e–ph coupling [14].

The paper is organized as follows. In section 2 we
summarize the main features of SCDFT and describe our
computational approach; in section 3 we discuss the different
approximations used for the Coulomb interaction; in sections 4
and 5 we present our results for CaC6 and H, respectively;
finally, in section 6, we summarize our conclusions.

2. Density functional theory for superconductors

Density functional theory [17] has enjoyed increasing
popularity as a reliable and relatively inexpensive tool to
describe real materials. In this section we will briefly
outline the DFT approach to superconductivity, and refer
to the original papers for more details. In order to give
an introduction to SCDFT, it is instructive to recall how
magnetism is treated within DFT. The Hohenberg–Kohn (HK)
theorem [18] states that all observables, in particular the
magnetization, are functionals of the electronic density alone.
This, however, assumes the knowledge of the magnetization
as a functional of the density. Finding an approximation
for this functional is extremely hard and, in practice, one
chooses a different approach. The task can be vastly simplified
by treating the magnetization density m(r), i.e., the order
parameter of the magnetic state, as an additional fundamental
density in the density functional framework [19]. An auxiliary
field—here a magnetic field Bext(r)—is introduced, which
couples to m(r) and breaks the corresponding (rotational)

symmetry of the Hamiltonian. This field drives the system
into the ordered state. If the system is actually magnetic, the
order parameter will survive when the auxiliary perturbation
is quenched. In this way, the ground-state magnetization
density is determined by minimizing the total energy functional
(free energy functional for finite temperature calculations)
with respect to both the normal density and the magnetization
density. Within this approach, much simpler approximations to
the exchange–correlation (xc) functional (now a functional of
two densities) can lead to satisfactory results.

The same idea is also at the heart of density functional
theory for superconductors, as formulated by Oliveira, Gross
and Kohn (OGK) [16]. Here the order parameter is the so-
called anomalous density,

χ(r, r′) = 〈�̂↑(r)�̂↓(r′)〉, (1)

and the corresponding potential is the non-local pairing
potential �(r, r′). It can be interpreted as an external pairing
field, induced by an adjacent superconductor via the proximity
effect. Again, this external field only acts to break the
symmetry (here the gauge symmetry) of the system, and is
quenched at the end of the calculation. As in the case of
magnetism, if the system is actually a superconductor the order
parameter will be sustained by the self-consistent effective
pairing field. The approach outlined so far captures, in
principle, all the electronic degrees of freedom. To describe
conventional phonon-mediated superconductors, the electron–
phonon interaction also has to be taken into account.

In order to treat both weak and strong electron–phonon
coupling, the electronic and the nuclear degrees of freedom
have to be treated on an equal footing. This can be achieved by
a multi-component DFT, based on both the electronic density
and the nuclear density [20, 21]. In addition to the normal and
anomalous electronic densities, we also include the diagonal of
the nuclear density matrix

�(R) = 〈�̂†(R1) . . . �̂†(RN )�̂(RN ) . . . �̂(R1)〉, (2)

where �̂(R) is a nuclear field operator4.
In order to formulate a Hohenberg–Kohn theorem for this

system, we introduce a set of three potentials, which couple
to the three densities described above. Since the electron–
nuclear interaction, which in conventional DFT constitutes the
external potential, is treated explicitly in this formalism, it
is not part of the external potential. The nuclear Coulomb
interaction Û nn already has the form of an external many-
body potential, coupling to �(R), and for the sake of the
Hohenberg–Kohn theorem, this potential will be allowed to
take the form of an arbitrary N-body potential. All three
external potentials are merely mathematical devices, required
to formulate a Hohenberg–Kohn theorem. At the end of the
derivation, the external electronic and pairing potentials will
be set to zero while the external nuclear many-body potential
to the nuclear Coulomb interaction.

4 We note that taking only the nuclear density would lead to a system of
strictly non-interacting nuclei which would give rise to non-dispersive, hence
unrealistic, phonons.
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As usual, the Hohenberg–Kohn theorem guarantees
a one-to-one mapping between the set of the densities
{n(r), χ(r, r′), �(R)} in thermal equilibrium and the set of
their conjugate potentials {ve

ext(r) − μ,�ext(r, r′), vn
ext(R)}.

Therefore, all the observables are functionals of the set of
densities. Finally, it assures that the grand canonical potential,

�[n, χ, �] = F[n, χ, �] +
∫

d3r n(r)[ve
ext(r) − μ]

−
∫

d3r
∫

d3r ′ [
χ(r, r′)�∗

ext(r, r′) + h.c.
]

+
∫

d3 R �(R)vn
ext(R), (3)

is minimized by the equilibrium densities. We use the notation
A[ f ] to denote that A is a functional of f . The functional
F[n, χ, �] is universal, in the sense that it does not depend on
the external potentials, and is defined by

F[n, χ, �] = T e[n, χ, �] + T n[n, χ, �] + U en[n, χ, �]
+ U ee[n, χ, �] − 1

β
S[n, χ, �], (4)

where S is the entropy of the system,

S[n, χ, �] = −Tr{ρ̂0[n, χ, �] ln(ρ̂0[n, χ, �])}. (5)

In standard DFT one normally defines a Kohn–Sham
system, i.e., a non-interacting system chosen such that it has
the same ground-state density as the interacting one. The
variational procedure for this system gives Schrödinger-like
(Kohn–Sham) equations for non-interacting electrons subject
to an effective (Kohn–Sham) potential. These equations are
nowadays routinely solved by solid state theorists. In our
formalism, the Kohn–Sham system consists of non-interacting
(superconducting) electrons, and interacting nuclei. We will
not describe here the details of the method, and will only
outline its basic features: the Kohn–Sham potentials, which
are derived in analogy to normal DFT, include the external
fields, Hartree, and exchange–correlation terms. The latter
account for all many-body effects of the electron–electron and
electron–nuclear interactions. Obtaining their explicit form
has represented a major theoretical effort [22–24]. Once
this problem has been solved, the problem of minimizing the
Kohn–Sham grand canonical potential can be transformed into
a set of three differential equations that have to be solved self-
consistently: one equation for the nuclei, which resembles
the familiar nuclear Born–Oppenheimer equation, and two
coupled equations which describe the electronic degrees of
freedom and have the algebraic structure of the Bogoliubov–
de Gennes [25] equations.

The resulting Kohn–Sham–Bogoliubov–de Gennes (KS–
BdG) equations read (we use atomic Rydberg units)[
−∇2

2
+ ve

s (r) − μ

]
unk(r) +

∫
d3r ′ �s(r, r′)vnk(r′)

= Ẽnk unk(r), (6a)

−
[
−∇2

2
+ ve

s (r) − μ

]
vnk(r) +

∫
d3r ′ �∗

s (r, r′)unk(r′)

= Ẽnk vnk(r), (6b)

where unk(r) and vnk(r) are the particle and hole amplitudes.
This equation is very similar to the Kohn–Sham equations in
the OGK formalism [16]. However, in the present formulation
the lattice potential is not considered an external potential
but enters via the electron–ion Hartree term. Furthermore,
our exchange–correlation potentials depend on the nuclear
density matrix, and therefore on the phonons. Although
equations (6) and the corresponding equations for the nuclei
have the structure of static mean-field equations, they contain,
in principle, all correlation and retardation effects through the
exchange–correlation potentials.

These KS–BdG equations can be simplified by the so-
called decoupling approximation [4, 26], which corresponds
to the following ansatz for the particle and hole amplitudes:

unk(r) ≈ unkϕnk(r); vnk(r) ≈ vnkϕnk(r), (7)

where the wavefunctions ϕnk(r) are the solutions of the
normal Schrödinger equation. In this way the eigenvalues in
equations (6) become Ẽnk = ±Enk, where

Enk =
√

ξ 2
nk + |�nk|2, (8)

and ξnk = εnk − μ. This form of the eigenenergies allows us
to interpret the pair potential �nk as the gap function of the
superconductor. Furthermore, the coefficients unk and vnk are
given by simple expressions within this approximation:

unk = 1√
2

sgn(Ẽnk)e
iφnk

√
1 + ξnk

Ẽnk
, (9a)

vnk = 1√
2

√
1 − ξnk

Ẽnk

. (9b)

Finally, the matrix elements �nk are defined as

�nk =
∫

d3r
∫

d3r ′ ϕ∗
nk(r)�s(r, r′)ϕnk(r′), (10)

and φnk is the phase eiφnk = �nk/|�nk|. The normal and the
anomalous densities can then be easily obtained from

n(r) =
∑
nk

[
1 − ξnk

Enk
tanh

(
β

2
Enk

)]
|ϕnk(r)|2 (11a)

χ(r, r′) = 1

2

∑
nk

�nk

Enk
tanh

(
β

2
Enk

)
ϕnk(r)ϕ∗

nk(r
′). (11b)

Within the decoupling approximation, we finally arrive at an
equation for the k-resolved superconducting gap �nk, which
has the following form [4, 5, 16, 27]:

�nk = −Znk�nk − 1

2

∑
n′k′

Knk,n′k′
tanh

(
β

2 En′k′
)

En′k′
�n′k′ . (12)

Equation (12) is the central equation of the DFT for
superconductors. The kernel K consists of two contributions
K = Ke−ph +Ke−e, representing the effects of the e–ph and of
the e–e interactions, respectively. The diagonal term Z plays

3
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a similar role as the renormalization term in the Eliashberg
equations (no analogous renormalization is included, in the
present status of the theory, for the normal channel). Explicit
expressions of Ke−ph and Z , which are the results of the
approximate functionals, are given in equations (9) and (11)
of [5], respectively. These two terms involve the e–ph
coupling matrix, while Ke−e contains the matrix elements
of the screened Coulomb interaction (the explicit expression
is given below). Equation (12) has the same structure as
the BCS gap equation, with the ab initio kernel K replacing
the model interaction of BCS theory (which allows for the
predictive power absent within BCS theory). This similarity
allows us to interpret the kernel as an effective interaction
responsible for the binding of the Cooper pairs. Moreover,
we emphasize that equation (12) is not a mean-field equation
(as in BCS theory), since it contains correlation effects via
the SC exchange–correlation functional entering K and Z .
Furthermore, it has the form of a static equation—i.e., it does
not depend explicitly on the frequency—and therefore has a
simpler structure (and is computationally more manageable)
than the Eliashberg equations. However, this certainly does
not imply that retardation effects are absent from the theory.
Once again, retardation effects enter through the xc functional,
as explained in [4, 5]. Various tests [24] have shown that, in
a model superconductor without Coulomb repulsion, SCDFT
provides results very close to those obtained within Eliashberg
theory. SCDFT, however, allows us to treat the e–ph and the
screened e–e interactions on the same footing, which has never
been done within Eliashberg theory. This is definitely a point of
strength of our approach, relative to Eliashberg theory. On the
other hand, due to the static character of our gap equation (we
are not using a Green function approach), the full wavevector
and frequency-dependent gap function are not accessible to our
calculation. We, therefore, only obtain an energy dependence
of the SC gap through its k-point dependence (�(ξnk) =
�(nk)). A frequency-dependent gap function may be retrieved
from the dynamical response functions [28] associated with
the time-dependent version [29] of SCDFT. This possibility,
however, has not been exploited in practice so far.

The Coulomb interaction terms can be treated at different
levels of approximation, as we will discuss below. It is
important to point out, however, that common to all these
methods is the need to consider a very large energy range
(we used up to ≈2 Ryd). This is necessary to bring about
the retardation effects associated to the different phononic and
electronic timescales. It has been shown in figure 9 of [5]
how the gap at EF converges as a function of the energy
cutoff in equation (12). The presence of a node in the energy
dependence of the gap implies a constructive contribution to
�(n, kF) from the states away from EF, through a repulsive
interaction. It is a key feature of our approach that the matrix
elements of the screened Coulomb interaction are used in the
kernel of the gap equation up to very high energies. It is this
feature that allows for the description of nontrivial, material-
specific effects. Traditionally, the use of this large energy
window is avoided by rescaling the Fermi surface average of
these matrix elements. This rescaling leads to the Morel–
Anderson pseudopotential μ∗, which is absent in our approach.

In the most accurate implementation of our theory, we
calculated the screened Coulomb matrix elements (MEs) with
respect to the Bloch functions, for the whole energy range
of relevant valence and conduction states. The different
nature of the electronic bands in each material (e.g. some of
them can be highly localized while others more delocalized),
strongly calls for the use of a non-diagonal screening, including
local field effects. In order to properly describe these
effects, a very important step to achieve good agreement
with the experiment, we calculated the static random phase
approximation (RPA) dielectric matrix (DM) ε−1(q,G,G′),
using the pseudopotential-based SELF code [30]. The explicit
expression of the kernel Ke−e in reciprocal space reads

Ke−e
nk,n′k′ = 4π

∑
G,G′

ε−1(q,G,G′)

× 〈n′k′| ei(q+G)·r|nk〉〈nk| e−i(q+G′)·r|n′k′〉
|q + G||q + G′| , (13)

where q = k′ − k. The detailed structure, energy,
and k-dependence of the kernel Ke−e change the Coulomb
renormalization effect (due to the different scales of the
vibrational and electronic energies) considered: in many
materials, it only acts as a scaling of the superconducting
gap at the Fermi energy, thus keeping the main structures
of the coupling (see [7, 31–33]). On the other hand, in
strongly anisotropic materials with small interband interaction
(like MgB2), the Coulomb renormalization turns out to be
nontrivial [6, 34].

In this paper we report a study of the role of the different
approximations for the Coulomb and the electron–phonon
interactions on the solution of the SCDFT gap equation. This
is illustrated in CaC6 [7] and H under extreme pressure. As
mentioned above, the normal state calculations, necessary for
the study of the superconducting state, are performed within
DFT in the LDA or GGA approximations. Computationally,
the electronic and dynamical properties are obtained using the
pseudopotential method as implemented in the QUANTUM-
ESPRESSO package [35]; the screened Coulomb matrix
elements are obtained with the SELF [30] code.

3. Evaluation of Coulomb matrix elements

In this section we discuss the different approximate
formulations of the Coulomb interaction analyzed in this work.

3.1. Sham–Kohn

The first and simplest approximation includes a Thomas–
Fermi (TF) dielectric function together with free-electron
wavefunctions. This leads to isotropic (i.e. k independent)
matrix elements, expressed by the analytic formula [4, 5]:

K e−e
ξ,ξ ′ = π

2
√

ξξ ′ ln

[
ξ + ξ ′ + 2

√
ξξ ′ + q2

TF/2

ξ + ξ ′ − 2
√

ξξ ′ + q2
TF/2

]
, (14)

where the Fermi level is fixed by the number of valence
electrons and the TF wavevector is that of a jellium having
the same density of states at the Fermi energy of the true
system N(0), i.e. q2

TF = 8π N(0). A justification for

4



Supercond. Sci. Technol. 22 (2009) 034006 S Massidda et al

Figure 1. Left panel: electronic band structure of CaC6, with the Fermi energy set to zero. Different colors for the Kohn–Sham eigenvalues
are used corresponding to the s (black) p (orange—light gray) or d (red—gray) main orbital character. Central panel: total density of states
(DOS) (thick black line), projected DOS on Ca site (dashed red—gray line) and on C states, divided in sp2 part (turquoise—light gray), and pz

part (long dashed black). Right panel: CaC6 Fermi surface, showing the external π sheet (1, green (light gray)), the Ca-related sphere (2, blue
(dark gray)) and the internal π sheet (3, red (hexagonal shapes)).

the use of this approximation, in the spirit of the seminal
paper of Sham and Kohn [39], is given in [4]. Typically,
equation (14) provides reasonable results for systems with
delocalized electrons [5, 32]. Furthermore, it avoids the
cumbersome calculation of the anisotropic Coulomb matrix
elements, calculated with the Kohn–Sham Bloch functions of
the system (see below).

3.2. Bloch wavefunctions and Thomas–Fermi screening

In order to include the effects of the wavefunction localization
in the evaluation of the matrix elements, we used the real
Kohn–Sham Bloch states of equation (13), together with the
TF screened dielectric function. The TF vector is again q2

TF =
8π N(0), where N(0) is the density of states at the Fermi
energy in the real material. In this way, we correct for the
locality of the wavefunctions in the evaluation of the Coulomb
integrals, still keeping, for the screening, a very approximate
form. The present approximation and those described below
in this section correspond to an anisotropic treatment of the
Coulomb interaction.

3.3. Diagonal random phase approximation (RPA)

The TF dielectric function is only valid in the limit q → 0.
To improve this aspect we calculate the dielectric function
ε(q,G,G′) in the RPA, initially limiting ourselves to the
diagonal form, where we set to zero all the G �= G′ terms.
In real space this corresponds to a screening depending not on
r and r′ separately but only on r − r′. On the other hand, the
electronic polarizability is built by taking into account the real
band structure of the system. This approximation is expected
to be reasonable for closely packed systems with delocalized
electrons.

3.4. Non-diagonal RPA

With a fully non-local RPA screening (with non-zero G �= G′
terms) the electronic response will depend on the two spatial
indices r and r′ separately. This improves the efficiency of
the screening for strongly localized states, with a resulting
reduction of the Coulomb matrix elements in the corresponding
regions. As an example, this improvement affects mainly the
graphene sheets in CaC6.

4. Results on CaC6

Before discussing the various approximations for the Coulomb
interaction, we briefly describe the electronic states of CaC6.
This material crystallizes in the rhombohedral space group
R3̄m [10], and has one unit formula per primitive cell. The
rhombohedral lattice parameter is 5.17 Å, with rhombohedral
angle 49.55◦. We plot in figure 1 the band structure of the
system. Three bands cross the Fermi energy. Two of them
have p character and come from the π bonding pattern of the
graphene layer. They give rise to two two-dimensional Fermi
surfaces (figure 1, right panel). The third band corresponds
to a spherical Fermi surface with the charge localized in the
interlayer space and on the Ca ion. Its character is mainly s
(d) in the kx , ky (kz) directions (the z-axis being normal to the
graphene layer).

The presence of an intercalant band crossing the Fermi
energy has been shown to be a necessary condition for
superconductivity in graphite intercalated compounds (GICs),
as pointed out by Csányi et al [36]. Interlayer bands,
uncorrelated to a particular atomic orbital nature, have been
largely discussed in graphite [40], GICs [11, 36–38] and
MgB2 [6]. In CaC6, however, this band gains a further strong
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Figure 2. CaC6 superconducting gap �nk as a function of the energy distance from the Fermi energy (μ in the figure). The right panel shows
the energy distribution (in arbitrary units) of the gap, resolved over the three Fermi surfaces. The histogram is evaluated within the energy
window from −2 to 2 meV.

contribution from the Ca 4s and 3d orbitals. This band is
coupled to the in-plane Ca optical phonon branch; these low
frequency modes provide a strong contribution to the e–ph
constant λ [7, 11, 12]. The energy window between −20
and −4 eV is mainly occupied by the bands forming the sp2

bonds pattern of graphene, as shown by the orbital decomposed
density of states in figure 1. The pz bands starts around the L
symmetry point (corresponding to the A point in the hexagonal
unit cell, i.e. to the zone boundary in z direction) at about
−10 eV. Just above the Fermi level, mainly between 2 and 5 eV,
the DOS shows a peak originated by a set of flat bands due to
Ca -d states. Above 5 eV the percentage of the total charge
projected over atomic orbitals starts to reduce corresponding
to the free-electron limit of the KS wavefunctions.

4.1. Anisotropic approach for the Coulomb interaction

We now discuss the effect of the approximate treatments
of the Coulomb interaction described in section 3 on the
superconducting Tc. In the following analysis, we assume
a fully anisotropic phononic kernel. Within the Sham–Kohn
approximation we obtain Tc = 13.5 K, to be compared with
the experimental value T exp

c = 11.5 K. The Sham–Kohn
approximation is rather simple and gives quite reliable results
for nearly free-electron metals [5, 32]. However, for CaC6

this approximation is not expected to hold, since it neglects
the presence of localized states with much stronger Coulomb
interactions. Therefore in the Sham–Kohn approximation an
overestimate of the superconducting gap and Tc is expected and
found.

With the Thomas–Fermi approximation and Bloch
wavefunctions we obtain Tc ≈ 8.2 K, underestimating the
experimental value. Remarkably, the critical temperature
obtained using the RPA approximation with diagonal screening
turns out to be Tc ≈ 8.0 K, very close to the one found in the
TF approach and significantly smaller than the experimental
value. This result shows that the TF screening is quite

Table 1. Band-resolved superconducting gap of CaC6 from different
approximation schemes for the e–e interaction. The brackets 〈· · ·〉
indicate a Fermi surface average and the indices 1, 2, 3 correspond to
the three parts of the Fermi surface (see figure 1), namely the
external (green (light gray)) π surface, the Ca sphere (blue (dark
gray)) and the internal (red (hexagonal shapes)) π surface.

SK-TF wf-TF diag-RPA RPA No Coulomb

〈�1〉 (meV) 2.20 1.24 1.19 1.42 5.40
〈�2〉 (meV) 2.94 1.78 1.77 2.00 6.72
〈�3〉 (meV) 2.49 1.39 1.37 1.67 6.08
Tc (K) 13.5 8.2 8.0 9.4 31

similar to the static diagonal RPA one, and that indeed the Tc

underestimation is related to the lack of local field corrections.
A diagonal screening in fact averages out over a unit cell of the
system. A correct screening, on the other hand, should be more
effective in regions of the unit cell with larger charge density.
As a consequence, inclusion of non-diagonal terms in the
screening produces an increased Tc of 9.4 K. This value, while
not in excellent agreement with the experiment, represents an
improvement over the previous Tc values (we recall that in our
calculations no fitting parameter to the experiment is used). In
table 1 we summarize the superconducting properties in the
discussed cases, including Tc and the value of the gap �nk on
the different Fermi surface sheets.

The detailed behavior of the gap �nk as a function of the
normal state eigenvalue is given in figure 2. The set of black
points shows the gap at T = 0 K, as a function of the energy
distance from the Fermi level EF. For each energy the gap
is not a single-valued function, i.e. the gap is anisotropic in
the reciprocal space. In particular, the gap values exhibit a
moderate anisotropy, rather than a multigap character.

4.2. Isotropic approach for the Coulomb interaction

All the above results (excluding the Sham–Kohn approxima-
tion) refer to fully anisotropic calculations, in which the k, k′

6
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Table 2. Results of the RBCS equation including both the e–ph (λi j )
and e–e (μi j ) matrices (Full RBCS), and without the μi j matrix
(RBCS (e–ph)).

�1/�3 �2/�3

Full RBCS 1.61 1.13
RBCS (e–ph) 1.37 1.09

dependence of the Coulomb matrix elements is included in the
solution of the SCDFT gap equation. We also calculated Tc

with an isotropic approach in which the Ke−e
nk,n′k′ matrix ele-

ments are averaged in k and k′ over isoenergy surfaces, yield-
ing a corresponding V (ξ, ξ ′) function. The average is done for
each one of the approximations discussed. The critical temper-
atures turn out to be quite close (within the order of few per
cent) to the corresponding fully anisotropic ones, showing that
the anisotropy effect on the Coulomb repulsion is almost neg-
ligible, unlike in the case of MgB2 [6, 34]. On the other hand
(see section 4.3), this is not true for the phononic part of the
kernel [7–9].

A graphical comparison between the (averaged) different
approximations is given in figure 3, where we report
(upper panel) two cuts of the function V (ξ, ξ ′), namely the
diagonal part V (ξ, ξ) and the elements with the first energy
corresponding to the Fermi level V (0, ξ ′); in the lower panel
a graphical representation of the whole function in the TF
and in RPA approximation is presented. The Sham–Kohn
approach gives a smooth function, with no correlation with
the electronic structure of the material. The upturn at about
−18 eV corresponds to the energy of the k = 0 state in a free-
electron gas with the same number of electrons per unit cell.
The use of TF approximation with the Bloch wavefunctions
shows the effect of the orbital nature of states reflected in the
matrix elements. In figure 3, for example, we see the strong
Coulomb repulsion between very localized Ca d states giving a
peak in the Coulomb matrix elements for ξ � ξ ′ � 4 eV. The
strong localization implies a nearly zero interaction between
these states and the rest of the electronic structure (the darkest
regions in the matrix), whose charge is located in different
areas. Moreover, we can distinguish the signature of the sp2

bonds in the region −20 to −5 eV in a sharp increase of
the matrix elements with poor interaction with higher energy
states.

Going from Thomas–Fermi to diagonal-RPA screening
does not introduce any important changes. Local fields
effects, on the other hand, strongly reduce the matrix elements
below the Fermi level. In the high energy region all the
approximations behave in a similar way as the states are
free-electron-like. The RPA including local field effects,
although giving similar structures with respect to the Bloch
wavefunctions and TF approach, introduces a more efficient
screening in the graphene layer so that the corresponding
matrix elements are reduced by about 20%.

4.3. Effects of anisotropy in the phonon coupling

It is interesting, at this point of the discussion, to analyze the
role of the e–ph interaction anisotropy and its effects on Tc and
on the anisotropic character of the superconducting gap.

Figure 3. Comparison between different approximations in
calculating the Coulomb matrix elements (MEs). The central panel
shows, with a scale of colors, the matrix of averaged Coulomb MEs
(defined in equation (13)). Because this matrix is symmetric, we used
the upper-left part to show Thomas–Fermi MEs (using Bloch
wavefunctions) and the bottom-right part for RPA MEs. The upper
panel shows two cuts of this matrix for the various approximations
discussed in the text: a diagonal cut (V (ξ, ξ), straight lines) and an
horizontal cut passing for EF (V (0, ξ ′), dashed lines). On the right is
the density of electronic states.

From a multiband BCS model (i.e. the Suhl–Matthias–
Walker model [41]), it is known that an anisotropy in the
phonon coupling always yields a Tc enhancement with respect
to an averaged coupling. To discuss this kind of anisotropy, it
is useful to compare CaC6 with MgB2, the prototypical two-
gap superconductor. We first define the band-resolved e–ph
coupling λi j = ∫

α2 Fi j (ω)/ω dω and Eliashberg functions
α2 Fi j :

α2 Fi j (ω) = 1

Ni

∑
k,k′

∑
ν

|gi j
k,k′,ν |2δ(ξik)δ(ξ jk′)δ(ω − ωqν),

(15)
where i and j are the indices of the selected sheet of the
Fermi surface; N j is the partial DOS at the Fermi level, for
the sheet j ; |gi j

k,k′,ν |2 are the e–ph matrix elements; ν is the
phonon branch; and ωqν the phonon frequencies. Moreover, we
define the DOS-renormalized, band-resolved matrix elements
V ph

i j = λi j/N j .
In the following, we present the partial DOS and couplings

for CaC6 and MgB2: for CaC6 we separate the Fermi surface
into three parts: (1) external π bands, (2) Ca sphere, and
(3) internal π bands (the one cutting the Ca sphere, as shown
in figure 1). We obtained

λ:
⎡
⎣ 0.286 0.173 0.223

0.518 0.315 0.425
0.382 0.245 0.303

⎤
⎦

7
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V ph [eV] :
⎡
⎣ 0.363 0.651 0.492

0.651 1.177 0.932
0.492 0.932 0.678

⎤
⎦

DOS

[
states

eV · cell

]
:

⎡
⎣ 0.79

0.27
0.45

⎤
⎦ .

For MgB2 we have [34]

λ:
[

1.017 0.213
0.156 0.448

]

V ph [eV] :
[

3.390 0.520
0.520 1.093

]

DOS

[
states

eV · cell

]
:

[
0.30
0.41

]

where the first entry in each row or column corresponds to the
two σ bands and the second to the π [42].

These data show clearly that both systems are quite
anisotropic: in MgB2, the much stronger coupling in the σ

rather than in the π Fermi surfaces, and the small interband
coupling, make the calculated anisotropic Tc double with
respect to the isotropic one [6, 34]. Within the Suhl–Matthias–
Walker model [41] this can be roughly explained by a large
λmax = 1.070 (defined as the maximum eigenvalue of the
λi j matrix—very similar to λ11) with respect to the average,
isotropic coupling λ̄ = 0.860.

In CaC6, instead, both Ca and C bands contribute strongly
to the global coupling. Consider the Ca spherical Fermi
surface, that in CaC6 has the largest superconducting gap. As
shown by the λi j matrix, the contribution coming from the
interband scattering is larger than the intraband one (λ21 =
0.518 and λ23 = 0.425, against the intraband λ22 = 0.315):
although the Ca intraband average coupling (as represented by
the V ph

i j matrix) is the largest one, the large phase space (DOS)
for interband scattering, with a reasonably large interband
scattering potential, makes the difference. We calculated
λmax = 0.912 and λ̄ = 0.855, both much larger than any of
the intraband couplings. These arguments are supported by the
SCDFT result: using the isotropic approximation we obtain
a critical temperature of 8.1 K, against Tc = 9.4 K obtained
within the fully anisotropic approach. Hence, unlike in MgB2,
we have only a 15% reduction of Tc in comparison with the
anisotropic case.

5. H under pressure

The possibility of a superconducting dense molecular phase
of hydrogen represents a long-standing problem, recently
investigated by means of first-principles methods within the
SCDFT [14]. The low temperature and high pressure
(>400 GPa) phase of molecular hydrogen is predicted to be a
base-centered orthorhombic metallic molecular solid (known
as the Cmca phase) [43] with two molecules per unit cell
located on different layers. The electronic band structure
arises from the bonding and anti-bonding combination of the
H2 molecular orbitals. At high pressure, the band overlap
between the valence and conduction bands produces a complex

Fermi surface with disconnected sheets of different orbital
nature [14]. The molecular nature of the bands provides
a strong electron–phonon coupling. The superconducting
properties of this system are extremely interesting: the
calculated Tc results in being around 240 K at �450 GPa,
with three different gaps on the three different sheets of the
Fermi surface. The presence of three gaps represents one of
the main peculiarities of molecular hydrogen, and its origin is
mainly due to the (band) anisotropy of the electron–phonon
coupling [14]. However, as we will see, the anisotropy of
the Coulomb interaction is fundamental to achieve a proper
prediction of the gaps at T = 0 K.

In order to simplify the analysis, we will use a multigap
BCS model (with parameters calculated ab initio) to discuss
the effect of multiband anisotropy, with particular attention
to the Coulomb interactions. Thus, we reduce the fully
anisotropic SCDFT gap equation to a BCS multiband equation,
including phonon renormalization effects (which, in the
SCDFT gap equation (12) are included in the term Znk).
In order to do this, we need the band-resolved interaction
matrices, calculated averaging the k-resolved e–ph and e–e
matrix elements over (physically) different sheets of the Fermi
surface.

In figure 4 we show the calculated Fermi surface at
414 GPa. The three gaps separate into three main regions: the
disk at the Gamma point (labeled as 1), the ‘prism-like’ regions
(2), and the remainder (unlabeled). In order to construct a
three-band model of the system, we introduce a 3 × 3λ-matrix
of the partial e–ph coupling λi j , where the indices i, j = 1, 2, 3
span over the above mentioned regions. We also introduce
the 3 × 3 matrix for the V ph, as defined in section 4.3. In
analogy with the e–ph interaction, we also introduce the 3 × 3
Coulomb interaction matrix V el

i j and the μi j matrix defined by
the relation μi j = N j V el

i j . V el
i j represents the band-resolved

Coulomb matrix defined in analogy with the definition of λi j ,
but containing the Coulomb matrix elements. In the following,
we report the values of these matrices:

V ph
[
Ryd

] :
⎡
⎣ 2.16 3.00 1.59

3.00 0.45 0.91
1.59 0.91 0.78

⎤
⎦

V el
[
Ryd

] :
⎡
⎣ 0.71 0.08 0.11

0.08 0.38 0.20
0.11 0.20 0.20

⎤
⎦

λ:
⎡
⎣ 0.14 0.37 1.45

0.20 0.06 0.82
0.11 0.11 0.71

⎤
⎦

μ:
⎡
⎣ 0.046 0.010 0.100

0.006 0.046 0.180
0.007 0.025 0.182

⎤
⎦ .

We note that the intraband scattering (V el
ii ) is dominating

the Coulomb interaction and that it is particularly strong for the
states of region (1). These states are bonding combinations of
anti-bonding molecular states, are responsible for the interlayer
bonding, and are very localized in the interlayer region,
with rather poor screening properties. An opposite behavior
characterizes the μ-matrix, which represents the effective e–
e interaction in the superconducting phase: in fact, despite
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Figure 4. Fermi surface of molecular hydrogen at 414 GPa. The
different sheets used to construct the interaction matrices are labeled
as (1): the disk region; (2): the ‘prism-like’ regions; the remaining
regions (not labeled).

the large value of V el
11 we find a very small value of μ11,

due to the low density of states in region (1). Interband
terms, in particular those involving the bands less coupled
with phonons, dominate thanks to their high density of states.
Although inspection of the μ-matrix suggests a minor role
of the e–e interaction anisotropy in the Tc value (we find the
same Tc in the isotropic and anisotropic case), we demonstrate
that inclusion of band anisotropy in the repulsive term has
a nontrivial effect on the T = 0 K gap. The phonon-
renormalized BCS equation (RBCS) is obtained from the
SCDFT fully anisotropic equation averaging the k-anisotropy
(still retaining the band anisotropy) and performing the T → 0,
ξ, ξ ′ → 0 limits. The results of the solution of the RBCS
equation are reported in table 2.

As we can see from table 1, the presence of three gaps
is predicted even within the RBCS model. Comparing the
results of the full RBCS and RBCS (e–ph) models, the role
of both interaction on the prediction of T = 0 gaps is evident.
Even if the main source of band anisotropy is given by the e–
ph interaction, inclusion of the proper band-resolved Coulomb
interaction increases the anisotropy by about 18%.

This demonstrates that the band anisotropy of the repulsive
e–e interaction, essentially related to the different nature
of the bands at the Fermi level, increases the multigap
superconducting properties in dense molecular hydrogen.

6. Summary

The SCDFT approach allows a fully anisotropic description
of the superconducting phase and the inclusion of Coulomb
repulsion effects on an ab initio basis. After a brief
review of the SCDFT method, in this paper we performed a
detailed analysis of the Coulomb and electron–phonon matrix
elements in intercalated graphite CaC6 and hydrogen under
high pressure. In CaC6 we studied different approximations for
the Coulomb interaction. We find that, due to the presence of
strongly localized states, the use of free-electron-like Coulomb
matrix elements gives a strong underestimation of the Coulomb

repulsion and a corresponding overestimation of the critical
temperature Tc. While local field effects are important to
describe the screening properties in the graphene layers, the
inclusion of an isotropic Coulomb interaction—averaged on
isoenergy surfaces—does not strongly affect the value of
Tc. Concerning the electron–phonon interaction, however, the
isotropic approximation yields a Tc reduction of 15%.

Finally, we calculate the matrix elements of both
interactions for H under high pressure. By making use of
a multiband BCS model using SCDFT-calculated parameters,
we demonstrate that the usual isotropic approximation of the
repulsive e–e interaction is completely unjustified in the case
of superconducting molecular hydrogen, and that the Coulomb
anisotropy is fundamental for the prediction of the three
superconducting gaps at T = 0 K.
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[9] Nagel U, Hüvonen D, Joon E, Kim J S, Kremer R K and
Room T 2008 Far-infrared signature of the superconducting
gap in intercalated graphite CaC6 Phys. Rev. B
78 041404(R)

[10] Emery N et al 2005 Superconductivity of bulk CaC6 Phys. Rev.
Lett. 95 087003

9

http://dx.doi.org/10.1103/PhysRev.167.331
http://dx.doi.org/10.1103/PhysRevLett.10.336
http://dx.doi.org/10.1103/PhysRevB.72.024545
http://dx.doi.org/10.1103/PhysRevB.72.024546
http://dx.doi.org/10.1103/PhysRevLett.94.037004
http://dx.doi.org/10.1103/PhysRevB.75.020511
http://dx.doi.org/10.1103/PhysRevLett.100.207004
http://dx.doi.org/10.1103/PhysRevB.78.041404
http://dx.doi.org/10.1103/PhysRevLett.95.087003


Supercond. Sci. Technol. 22 (2009) 034006 S Massidda et al

[11] Calandra M and Mauri F 2005 Theoretical explanation of
superconductivity in C6Ca Phys. Rev. Lett. 95 237002

[12] Kim J S, Kremer R K and Boeri L 2006 Specific heat of the
Ca-intercalated graphite superconductor CaC6 Phys. Rev.
Lett. 96 217002

[13] Ashcroft N W 1968 Metallic hydrogen: a high-temperature
superconductor? Phys. Rev. Lett. 21 1748

[14] Cudazzo P et al 2008 High-temperature electron–phonon
superconductivity in molecular hydrogen under extreme
pressure Phys. Rev. Lett. 100 257001

[15] Narayana C et al 1998 Nature 393 46
Loubeyre P et al 2002 Nature 416 613

[16] Oliveira L N, Gross E K U and Kohn W 1988 Density
functional theory for superconductors Phys. Rev. Lett.
70 2430

[17] Dreizler R M and Gross E K U 1990 Density Functional
Theory (Berlin: Springer)

[18] Hohenberg P and Kohn W 1964 Inhomogeneous electron gas
Phys. Rev. 136 B864

[19] Vonbarth U and Hedin L 1972 J. Phys. C: Solid State Phys.
5 1629

[20] Kreibich T and Gross E K U 2001 Multicomponent
density-functional theory for electrons and nuclei Phys. Rev.
Lett. 86 2984

[21] Kreibich T, van Leeuwen R and Gross E K U 2008
Multicomponent density-functional theory for electrons and
nuclei Phys. Rev. A 78 022501

[22] Kurth S 1995 Exchange–correlation functionals for
inhomogeneous superconductors PhD Thesis
Julius-Maximilians-Universität Würzburg http://www.
physik.fu-berlin.de/∼ag-gross/theses/kurth phd.pdf
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