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Theory of relativistic effects in superconductors

M. Marques a,), K. Capelle a,b, E.K.U. Gross a

a Institut fur Theoretische Physik, UniÕersitat Wurzburg, Am Hubland, D-97074 Wurzburg, Germany¨ ¨ ¨ ¨
b Instituto de Fısica de Sao Carlos, UniÕersidade de Sao Paulo, Sao Carlos, 13560-970 SP, Brazil´ ˜ ˜ ˜

Abstract

We develop a relativistic generalization of the Bogoliubov–de Gennes equations where the particle and hole amplitudes
are Dirac spinors. In the weakly relativistic limit, we find, besides the usual spin–orbit, Darwin and kinetic energy
corrections, additional ‘spin–orbit’ and ‘Darwin’ terms. These new terms are present in superconductors only and involve
the pairing field in place of the electrostatic potential. They become relevant for superconductors such as the heavy-fermions
and high-T compounds, which are characterized by a short coherence length and heavy elements in the lattice. q 1999c
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1. Introduction

Relativistic effects, such as spin–orbit coupling,
are known to affect, e.g., the symmetry of the super-

w xconducting order parameter 1–3 , the Knight shift
w x w x4 , the value of the upper critical field 5,6 , the

w xmagnetooptical response of superconductors 7,8 and
w xthe Cooper pair mass 9,10 . Previous work in the

field mostly proceeded by ad hoc substitution of
relativistic terms in the BCS equations, whenever
deemed necessary. Clearly, such procedures are not
failproof, and likely to miss terms arising from the
subtle interplay of relativity and superconductivity.
Recently, a systematic BCS-like theory of supercon-
ductivity, based on the Dirac equation, instead of the

w xSchroedinger equation, was constructed 11,12 . One
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of the main results of that work, the so-called
Ž .Dirac–Bogoliubov–de Gennes DBdG equation, is

a relativistic generalization of the Bogoliubov–de
Gennes equation. It reads

ˆ ˆh D u ud jk jksE . 1Ž .jkU U Õ Õž / ž /ˆ ˆ jk jkž /yD yhd

ˆHere, h is the Dirac Hamiltoniand

0 2 0 mĥ sg cgPpqmc 1yg qqg A , 2Ž .Ž .ˆ ˆ ˆ ˆd m

where g denotes the usual 4=4 Dirac matrices, andˆ

ˆ 3 X X ˆDs d r D r ,r . . . hsdh . 3Ž . Ž .ˆ ˆH
For a BCS superconductor, the matrix h is givenˆ

by

is 0ˆy
hs , 4Ž .ˆ

0 isž /ˆ y
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where s is the second Pauli matrix. The nonrela-ˆ y
Ž .tivistic limit of Eq. 1 is the well-known Bogoli-

ubov–de Gennes equation, while the nonsupercon-
ducting limit reproduces the conventional Dirac
equation for particles and holes. The weakly rela-
tivistic limit, obtained by expansion to second order
in 1rc, yields relativistic corrections to the conven-
tional theory of superconductivity. Explicitly one
finds

ˆ ˆ ˆ ˆh is dˆ 1 h dy 2 2
q 2 2U U U†4m cˆ ˆ ˆ ˆž /� 0yis d yh d yhˆy 2 2

u ujk jk
= sE . 5Ž .jkÕ Õž / ž /jk jk

Here, the first term is the standard Bogoliubov–de
Gennes Hamiltonian in the presence of magnetic
fields, with

21 q
ĥs py A r qV r ym s B r . 6Ž . Ž . Ž . Ž .ˆ0ž /2m c

The term

"
2 p4

2ĥ s"s = V r =pq = V r y . 7Ž . Ž . Ž .Ž .ˆ2 2 2m

contains the conventional spin–orbit, Darwin and
mass–velocity corrections of second order in 1rc.

ˆThe relativistic correction term d is written most2

conveniently in center-of-mass and relative coordi-
Ž X. X Ž X. Ž X.nates, s r,r sryr and R r,r s rqr r2. It

then reads

"
X X3d̂ s d r "sP = D s , R p q sŽ .ˆ ˆH2 R 2

2
"

X 2P = D s , R p q = D s , R . . . is .Ž . Ž . ˆs R y2

8Ž .

The first two terms under the integral can be inter-
preted as counterparts to the conventional spin–orbit
term, containing the pair-potential in place of the
lattice potential, and gradients with respect to the
center-of-mass and relative coordinates. Similarly,
the last term can be regarded as a superconducting
counterpart to the conventional Darwin term. These

terms, which arise from the interplay between rela-
tivistic covariance and superconducting coherence,
have been missed in all previous treatments of the
subject.

2. Discussion

Several applications of this theory have been
Ž .worked out: i The energy spectrum was calculated

for homogeneous superconductors. A small shift of
the position of the gap with respect to the nonrela-

w x Ž .tivistic value was predicted 11 . ii A complete
symmetry classification of all possible order parame-
ters consistent with the requirement of relativistic

w xcovariance has been worked out 12 . The classifica-
tion was performed both with respect to the transfor-
mation behaviour under Lorentz transformations and
with respect to the discrete symmetries of the under-
lying pair states. It turns out that the relativistic
theory allows more different order parameters than

Ž .the nonrelativistic theory. iii The spin–orbit terms
were used as basic ingredients in our recent analysis
of magnetooptical effects in superconductors. The
absorption of polarized light by superconductors was
found to be strongly modified by relativistic effects
w x7,8 . The predictions made for the magnetooptical
response are consistent with recent experiments. Our
theory is also consistent with the experimentally
observed relativistic mass correction to the Cooper

w xpair 9,10 . Further applications are currently being
worked out in the fields of dichroism in vortices and
relativistic effects in SNS multilayers. In these sys-
tems, the pair-potential has large spatial variations,
so we expect the relativistic correction terms involv-
ing the gradients of the pair-potential to give impor-
tant contributions.

3. Conclusion

If all relativistically allowed order parameters are
Ž .to be included in Eq. 1 , one needs 15 further

matrices, in addition to h. These matrices corre-ˆ
spond to the relativistic generalizations of the triplet
order parameters as well as to new types of order
parameters, not known from the nonrelativistic case
w x12 . A weakly relativistic approximation then yields
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relativistic corrections to triplet superconductivity
and, additionally, a new class of relativistic correc-

w xtions, which are of first order in 1rc 13 . These
terms are currently under study.
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