
Summary. — In this article we will give an overview of two extensions of ground
state density functional theory (DFT) – time-dependent DFT (TDDFT), and DFT
for superconductors (SCDFT) – and their interplay with the electron gas. TDDFT
can be viewed as an alternative formulation of time-dependent quantum mechanics
that uses the electronic density as the basic variable. This theory is capable of tack-
ling many-electron systems under the influence of a generic time-dependent external
potential (such as a laser field). Furthermore, TDDFT is a very powerful tool to
calculate linear excitation spectra. On the other hand, SCDFT is an attempt to de-
scribe the phenomenon of superconductivity from a density functional perspective.
In all these density functional theories, the complexities of the many-body problem
are included in the so-called exchange-correlation functional. This is a very com-
plicated quantity that has to be approximated in any practical application of the
theory. One of the most successful approximate exchange-correlation functionals is
certainly the local density approximation, which uses information from the uniform
electron gas to construct an exchange-correlation functional for the inhomogeneous
system. Local density approximations have been proposed both within TDDFT
and SCDFT. We will pay particular attention to their construction and, whenever
possible, give a critical account of their successes and failures.
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1. – Introduction

1
.
1. The electron gas paradigm. – As most physicists, the reader probably owns at

least a shelf-full of physics books, some technical and specialized, others remnant from

undergraduate studies, some acquired to satisfy the insatiable curiosity that characterizes

scientists. Among these books, one will very likely find a couple about many-body

physics, and several that treat the subject of solid state physics or condensed matter

theory. By opening any of these books, the reader will invariably encounter the electron

gas. Theoretically, the electron gas is a model for a system of electrons and nuclei,

where the point nuclei have been replaced by a uniform distribution of positive charge.

The model thus defined exhibits translational symmetry and can be characterized, in

the simplest case, by a single number, the (constant) electronic density. The complete

neglect of the nuclei may seem at first as a very drastic approximation. However, this

“trivial” model is still able to exhibit a wealth of different physical phenomena. At very

low densities and very low temperature, several phases are in competitions: The Wigner

crystal[1]; a superconducting phase first predicted by Kohn and Luttinger[2]; as well as

ferromagnetic and anti-ferromagnetic phases[3]. Is is therefore not surprising that the

electron gas is used as an almost ubiquitous paradigm in solid state physics.

Traditionally, simple models (like the electron gas) are used to understand the physics

of complicated systems. Stripped out of successive layers of unnecessary detail, the model

pinpoints the basic underlying causes, and explains qualitatively the behavior of the

system. Some useful information can normally be extracted, like asymptotic behaviors,

scaling properties, etc. What is usually beyond the reach of a simple model is the

calculation of specific properties of specific systems. But the electron gas surprises us

once again – when information obtained from the gas is used in the context of density

functional theory (DFT)[4, 5, 6], one obtains one of the most reliable methods to calculate

ground-state properties of real materials.

In this article we will be concerned with two extensions of the traditional ground-state

DFT – time-dependent DFT (TDDFT), and DFT for superconductors (SCDFT) – and

with their interplay with the electron gas. TDDFT was proposed by Runge and Gross

in 1984 as a tool to study electronic systems under the influence of an external time-

dependent field (such as an electromagnetic field)[7]. More recently it has become very

popular for the calculation of linear excitation spectra, and is by now deployed in most

quantum-chemistry codes. The less known SCDFT is an attempt to tackle the problem of

superconductivity from the density functional perspective[8, 9]. The evolution of SCDFT

has been slow, but recent developments may pave the way for a more general use of this

theory[10, 11, 12].

However, before entering the realm of TDDFT and SCDFT, we will give a brief
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overview of the basic ideas of ground-state DFT, that will allow us to fix some basic

notation that will be used in the rest of this article, and to introduce some key concepts

that will be developed later. Hartree atomic units will be used throughout this article,

unless explicitly stated.

1
.
2. Ground-state density functional theory. – The basic quantity in quantum me-

chanics is the wave-function. From the wave-function all observables of the system can

be easily obtained just by taking the expectation value of the appropriate operator. Un-

fortunately, the wave-function is a rather “clumsy” quantity to work with – For a system

of N electrons, the many-body wave-function is a complex function of 3N variables (the

three coordinates of each electron, and ignoring the spin degrees of freedom). For a

simple nitrogen atom (7 electrons) this amounts to 21 coordinates. Clearly, a function

of 21 coordinates can not be evaluated or even stored in a modern computer. Fortu-

nately, an electronic quantum system can be fully described by simpler functions, like

the two-particle density matrix[13], the one-particle density matrix[14], or even by the

much simpler electronic density[15]. In the following we will be concerned with this latter

function, the density, which plays the central role in DFT. The density can be written

as the expectation value of the operator

(1) n̂(r) =
∑

σ

n̂σ(r) ; n̂σ(r) = ψ̂†
σ(r)ψ̂σ(r) ,

where ψ̂σ(r) [ψ̂†
σ(r)] annihilates [creates] a particle of spin σ at position r. With the

help of the Rayleigh-Ritz principle it is possible to prove the following three statements,

that constitute the celebrated Hohenberg-Kohn theorem[15]

1. The electronic density of an interacting system of electrons fully and uniquely

determines the external potential, v(r), that these electrons experience and thus

the Hamiltonian, the many-body wave-function, and all observables of the system.

2. The ground-state energy of this system can be obtained by minimizing the total

energy in terms of the density.

3. There exists a functional F [n](1) such that the total energy, E[n], can be written

in the form

(2) E[n] = F [n] +

∫

d3r n(r)v(r) .

The functional F is universal, in the sense that its functional dependence on the

density is the same for all systems with the same particle-particle interaction.

While, in principle, one could work with the density alone, in practise it is favorable

to employ an explicitly spin-dependent version of DFT[16] where the total energy E and

(1) By [n] we denote a functional dependence on n.
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the universal functional F are explicit functionals of the spin-densities n↓, n↑. In the

following we will deal exclusively with spin-DFT.

The Hohenberg-Kohn theorem is an existence theorem – it proves that the ground-

state of the system can be obtained from the density alone, but, unfortunately, it does

not teach us how to do it in practice. A practical framework was developed by Kohn

and Sham in 1965[17]. Their idea was to construct a simple auxiliary system of non-

interacting electrons with the same density as the interacting system. As the Kohn-Sham

system is non-interacting, its ground-state can be obtained by solving the one-particle

Schrödinger equation

(3)

[

−∇2

2
+ vKS

σ [n↑, n↓](r)

]

ϕiσ(r) = εiσϕiσ(r) .

The ground-state spin-densities can then be calculated as a sum over the Nσ lowest

occupied Kohn-Sham states

(4) nσ(r) =

Nσ
∑

i

|ϕiσ(r)|2 ,

where Nσ is the number of electrons with spin σ. The external potential that the Kohn-

Sham electrons feel is usually separated into three parts

(5) vKS
σ [n↑, n↓](r) = vσ(r) +

∫

d3r′
n(r′)

|r − r′| + vxc
σ [n↑, n↓](r) .

The first, vσ(r), is the external potential (usually created by a set of nuclear charges).

Then comes the Hartree potential, which accounts for the classical part of the inter-

action between the electrons. Finally, we have the exchange-correlation (xc) potential,

vxc
σ [n↑, n↓](r), that includes all non-trivial many-body effects. This term can be written

as the functional derivative of the xc energy

(6) vxc
σ [n↑, n↓](r) =

δExc[n↑, n↓]

δnσ(r)
.

Finally, the xc energy can be defined with the help of the functional F [n↑, n↓] by the

equation

(7) F [n↑, n↓] = Ts[n↑, n↓] + EHartree + Exc[n↑, n↓] ,

where Ts[n↑, n↓] is the kinetic energy of the system of non-interacting electrons, and the

Hartree energy has the definition

(8) EHartree =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′| .
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If we possessed the exact xc energy functional, the Kohn-Sham equations would yield

the exact density of the interacting many-body system. Unfortunately, Exc is a very

complicated quantity that has to be approximated in any practical application of the

Kohn-Sham scheme. In the following we will give a brief overview of the different ap-

proximations to Exc that are currently available, and their connection to the electron

gas, the central topic of this volume.

1
.
3. Ground-state exchange-correlation functionals. – The first approximation to the

xc energy functional, the so-called local density approximation (LDA), was proposed by

Kohn and Sham in 1965[17]

(9) ELDA
xc =

∫

d3r n(r)εunif
xc (n↑(r), n↓(r)) ,

where εunif
xc (n↑, n↓) is the energy per particle of the homogeneous electron gas with (con-

stant) spin-densities n↑ and n↓ – a quantity well known from, e.g., quantum Monte-Carlo

calculations[18]. The LDA functional is local, i.e., the energy density at the point r only

depends on the density at that same point. By construction, one would expect the LDA

to perform well only for systems with slowly varying densities, but, in fact, the LDA

yields remarkably good results even for highly inhomogeneous systems, like atoms or

small molecules.

Next in the ladder of ever increasing complexity come the generalized gradient ap-

proximations (GGAs)[19]. The general form of a GGA is

(10) EGGA
xc =

∫

d3r f(n↑(r), n↓(r),∇n↑(r),∇n↓(r)) .

Note that besides the local dependence on the density, the function f also depends on

the gradient of the density. For this reason, the GGA is sometimes referred to as a

semi-local approximation. In contrast to the LDA where εunif
xc (n) is unique and known

to very good accuracy, the function f in the GGA is uniquely defined only in the limit of

a weakly inhomogeneous gas, i.e. in the limit where the dimensionless density gradient

∇nσ/n
4/3
σ approaches zero. In this limit, f can be expressed in terms of the response

functions of the uniform electron gas[15]. Beyond this limit, the common approach to

obtain this function proceeds as follows: i) The function f is parameterized in some smart

way. Sometimes the parameterization is crafted to give the exact xc energy for some well

studied system, like the uniform electron gas. ii) Sum rules, and some other features

of the exact xc functional are used to determine the unknown parameters. iii) If some

parameters are still left unknown, fit them to some small molecules or other physical

systems.

More recently, a new class of functionals has been proposed – the meta-GGAs[20].

Besides the usual dependence on the density and on its gradient, the meta-GGAs require
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a third variable, the kinetic energy density

(11) τσ(r) =
1

2

occ
∑

i

|∇ϕiσ(r)|2 .

The energy functional then takes the form

(12) EMGGA
xc =

∫

d3r g(n↑(r), n↓(r),∇n↑(r),∇n↓(r), τ↑(r), τ↓(r)) .

The function g is determined in the same way as in the GGA. The extra flexibility gained

by the introduction of τ allowed to improve the results obtained with the traditional

GGAs. Note that EMGGA
xc is no longer an explicit density functional, but depends on

the Kohn-Sham orbitals due to the τ dependence. The orbitals are solutions of the

Kohn-Sham equation, and therefore functionals of the Kohn-Sham potential. This latter

quantity is, by virtue of the Hohenberg-Kohn theorem, a functional of the density which

proves that EMGGA
xc is still a density functional, although its functional dependence on

the density is implicit.

Another orbital functional (or implicit density functional) that we will encounter in

the following is the exact exchange (EXX)[21, 22]. It stems from a perturbative expansion

in e2 of the xc energy (where e is the electron charge), and reads

(13) EEXX
x = −1

2

∑

σ

occ
∑

i,j

∫

d3r

∫

d3r′
ϕiσ(r)ϕ∗

iσ(r′)ϕjσ(r′)ϕ∗
jσ(r)

|r − r′| .

This functional has exactly the same form as the Fock term in Hartree-Fock theory.

However, the functional (13) should be evaluated with the Kohn-Sham orbitals – which

are solutions of a Schrödinger equation with a local potential – and not with the Hartree-

Fock orbitals – that stem from a free minimization of the energy in terms of the orbitals.

This subtle difference has some quite profound consequences for some systems – e.g, the

electron gas calculated with the EXX functional does not exhibit the pathologies at the

Fermi surface present in the Hartree-Fock solution.

A very important problem that affects the LDA (and most GGAs and meta-GGAs) is

the presence of a spurious self-interaction term. This problem can be easily understood

by writing the Hartree energy in terms of the orbitals

(14) EHartree =
1

2

∑

ij
σσ′

∫

d3r

∫

d3r′
|ϕiσ(r)|2|ϕjσ′ (r′)|2

|r − r′| .

Note that the i = j, σ = σ′ term is included in the sum. This term, usually called

the self-interaction part of the Hartree energy, has a simple interpretation: It describes

the interaction of an electron with itself. It is clearly a spurious term, that should be

canceled by a similar diagonal term coming from the exchange contribution to the energy
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[cf. eq. (13)]. However, most approximations to the exchange energy functional – like

the LDA or the GGA – do not cancel the self-interaction part of the Hartree energy,

which leads to some well known pathologies. For example, the exact xc potential for

a neutral finite system decays asymptotically as −1/r, while the LDA potential goes

exponentially to zero. The LDA potential is consequently too shallow, the Kohn-Sham

eigenvalues are too small, and the system has problems binding extra electrons. This

problem is particularly severe when performing time-dependent calculations within the

LDA, for the ionization probability is greatly overestimated.

Approximate correlation functionals may also include spurious self-interaction terms.

It is clear that for a one-particle system the correlation energy has to vanish. While this

is true for the more recent meta-GGAs[20], the LDA and GGA correlation functionals

are not zero for one-particle systems.

In 1981, Perdew and Zunger had the idea of subtracting all these spurious self-

interaction terms from the LDA energy functional[23]. The resulting SIC functional

reads

(15)

ESIC
xc = ELDA

xc [n↑, n↓] −
∑

iσ

ELDA
xc

[

|ϕiσ |2 , 0
]

− 1

2

∑

iσ

∫

d3r

∫

d3r′
|ϕiσ(r)|2 |ϕiσ(r′)|2

|r − r′| .

The SIC is, by construction, fully self-interaction free, so the SIC potential has the correct

−1/r asymptotic behavior for neutral finite systems. However, this functional suffers

from a different pathology: expression (15) is not invariant upon unitary transformations

of the Kohn-Sham orbitals.

The success of DFT is based on the availability of increasingly accurate approxima-

tions to the xc energy functional. Currently, the most promising line of research are

orbital functionals, but the quest for still more accurate approximations continues.

2. – Time-dependent density functional theory

Ordinary DFT is concerned with systems subject to a static external potential, which

are described by the time-independent Schrödinger equation. However, there are many

situations of interest that fall outside this category. A few examples are: an atom or

a molecule under the influence of an external electromagnetic field (like a laser field),

electron or proton scattering, etc. These systems are correctly described by the time-

dependent Schrödinger equation. TDDFT is an extension of ordinary ground-state DFT

designed to tackle such problems from a density functional perspective.

The theoretical foundations of TDDFT were laid down by Runge and Gross in 1984[7],

who proved a Hohenberg-Kohn like theorem and developed a Kohn-Sham scheme for the

time-dependent case. Although their original motivation was the description of scat-

tering experiments, the formalism is general enough to encompass other time-dependent

problems. In fact, nowadays the most important application of TDDFT is the calculation

of optical absorption spectra of finite systems.
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2
.
1. Preliminaries. – A system of N electrons subject to an arbitrary time-dependent

potential obeys the time-dependent many-body Schrödinger equation

(16) i
∂

∂t
Ψσ(r, t) = Ĥ(r, t)Ψσ(r, t) ,

where Ĥ is the Hamilton operator of the system, σ = (σ1 · · ·σN ) are the spin coordinates,

and r = (r1 · · · rN ) are the spatial coordinates of the N electrons. The Hamiltonian is

naturally decomposed into three terms

(17) Ĥ(r, t) = T̂ (r) + Û(r) + V̂ (r, t) .

The first term accounts for the kinetic energy of the electrons, while the second is the

electron-electron interaction

(18) T̂ (r) = −
∑

i

∇2
i

2
; Û(r) =

1

2

∑

i6=j

1

|ri − rj |
,

where the 1/2 in the definition of Û was introduced to avoid double counting. The

electrons evolve under the influence of the external time-dependent potential V̂ . In this

article we will only be concerned with external potentials that can be written as a sum

of one-body terms

(19) V̂ (r, t) =
∑

i

v(ri, t) .

Most potentials that appear in condensed-matter physics are of this kind. For example,

a system of Nn nuclei (treated as classical particles moving on trajectories Rν(t)) will

produce the potential

(20) v(r, t) = −
Nn
∑

ν=1

Zν

|r − Rν(t)| ,

where Zν denotes the charge of the nucleus ν.

Also electromagnetic fields can be easily described by (19). For example, if we shine

a laser beam on an electronic system, the electrons will feel the potential (in the dipole

approximation)

(21) v(r, t) = E f(t) sin(ωt)r · α ,

where α, ω and E are the polarization, the frequency and the amplitude of the laser,

respectively. The function f(t) is an envelope that describes the temporal shape of the

laser pulse. The dipole approximation is a commonly used approximation that holds

whenever the following conditions are true: i) The wave-length of the light (λ = 2πc/ω,
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where c is the velocity of light in vacuum) is much larger than the size of the system.

ii) The path that the particle travels in one period of the laser field is small compared to

the wave-length. If v is the average velocity of the electrons then vT � λ⇒ v � λ/T = c,

where T stands for the period of the laser. In these circumstances we can treat the laser

field as a purely electric field and completely neglect its magnetic component. iii) The

total duration of the laser pulse should be short enough so that the molecule does not

leave the focus of the laser during the time the interaction lasts.

The electronic density is obtained by contracting the absolute square of the time-

dependent many-body wave-function

(22) n(r, t) = N
∑

σ1···σN

∫

d3r2 · · · d3rN |Ψ(rσ1, r2σ2, · · · , rNσN , t)|2 .

With this definition, the total density n is normalized at all times to the total number

of electrons, N . Another observable that we will encounter is the current density, j. It

has the definition

j(r, t) =
N

2i

∑

σ1···σN

∫

d3r2 · · · d3rN

[Ψ∗(rσ1, r2σ2, · · · , rNσN , t)∇Ψ(rσ1, r2σ2, · · · , rNσN , t) − c.c.] .(23)

2
.
2. Basic theorems . – The formal foundations of TDDFT are enclosed in the so-

called Runge-Gross theorem[7] – the time-dependent generalization of the Hohenberg-

Kohn theorem[15] – while the practical framework of the theory is given by the time-

dependent Kohn-Sham scheme. One usually derives the Kohn-Sham scheme using a

variational principle based on the quantum mechanical action. This has, however, to be

done with care due to problems related to causality.

2
.
2.1. The Runge-Gross theorem. The Runge-Gross theorem states that there exists

a one-to-one correspondence between the external potential, v(r, t), and the electron

density, n(r, t) for time-dependent systems evolving from a fixed many-body state[7].

The consequences of this statement are quite profound: Let us assume that we possess the

density of an electronic system. The Runge-Gross theorem assures that this information

is in principle sufficient to obtain the external potential of the system. Now, we can

insert the external potential in the time-dependent Schrödinger equation and solve it,

thereby obtaining the time-dependent many-body wave-function. As this wave-function

determines all observables of the system, we conclude that all observables are functionals

of the time-dependent density.

Note that the Runge-Gross theorem only holds for a fixed initial state, i.e., the density

functionals will depend parametrically on the initial many-body state. This problem is

absent, however, if the system departs, at t = t0, from its ground state. By virtue of the

Hohenberg-Kohn theorem, the ground state many-body wave-function is a functional of

the ground state density, i.e., n(r, t = t0). Special care has nevertheless to be taken if,
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on the other hand, the system at t = t0 is in an arbitrary many-body state (which is the

case, e.g., in electron scattering) [24, 25].

In order to prove the Runge-Gross theorem, we assume that we have two systems with

different time-dependent potentials, v and v′(2) differing by more than a purely time-

dependent constant. If the two potentials differ solely by a time-dependent function,

they will produce wave-functions which are equal up to a purely time-dependent phase.

This phase will, of course, cancel while calculating the density (or any other observable,

in fact). Both systems evolve from the same many-body state, so, at t = t0 we have

|Ψ(t0)〉 = |Ψ′(t0)〉 ≡ |Ψ0〉 ,(24a)

n(r, t0) = n′(r, t0) ≡ n0(r) ,(24b)

j(r, t0) = j′(r, t0) ≡ j0(r) .(24c)

In a first step one proves, using the equation of motion for the current density, that two

external potentials v and v′ yield different current densities j and j′. In a second step, the

continuity equation is used to show that if two systems have different current densities,

then they must also possess different time-dependent densities, i.e., j 6= j′ ⇒ n 6= n′.

Combining these two statements we get

(25) v(r, t) 6= v′(r, t) + c(t) ⇒ n(r, t) 6= n′(r, t) .

In the following we will give a detailed account of the proof of this important theorem.

For reasons that will become apparent during the course of the demonstration, we require

that the external potential can be expanded for t > t0 in a Taylor series around the initial

time t0

(26) v(r, t) =

∞
∑

k=0

ck(r)(t− t0)
k ,

with the expansion coefficients

(27) ck(r) =
1

k!

∂k

∂tk
v(r, t)

∣

∣

∣

∣

t=t0

.

This requirement is certainly fulfilled by any real-world time-dependent potential. It

nevertheless excludes some cases like adiabatically switched-on potentials. Furthermore,

we define the function

(28) uk(r) =
∂k

∂tk
[v(r, t) − v′(r, t)]

∣

∣

∣

∣

t=t0

.

(2) In the following we will use primes to distinguish the quantities of the systems with external
potentials v and v′.
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It is clear that if v(r, t) 6= v′(r, t) + c(t), then at least one of the expansion coefficients

in their Taylor expansion around t0 will differ by more than a constant

(29) ∃k≥0 : uk(r) 6= constant.

The quantum-mechanical equation of motion, which is valid for any operator, Ô(t), reads

(30) i
d

dt
〈Ψ(t)| Ô(t) |Ψ(t)〉 = 〈Ψ(t)| i ∂

∂t
Ô(t) +

[

Ô(t), Ĥ(t)
]

|Ψ(t)〉 .

We will be interested in the equation of motion for the current density

(31) ĵ(r) =
1

2i

∑

σ

{ψ̂†
σ(r)

[

∇ψ̂σ(r)
]

−
[

∇ψ̂†
σ(r)

]

ψ̂σ(r)} .

Subtracting the equations of motion for the current density in the prime and unprimed

systems we obtain, at t = t0,

i
∂

∂t
[j(r, t) − j′(r, t)]t=t0

= 〈Ψ0|
[

ĵ(r), Ĥ(t0) − Ĥ ′(t0)
]

|Ψ0〉

= 〈Ψ0|
[

ĵ(r), v(r, t0) − v′(r, t0)
]

|Ψ0〉

= in0(r)∇ [v(r, t0) − v′(r, t0)] .(32)

If the two potentials, v and v′, differ at t0 [i.e., if (29) is fulfilled already with k = 0],

the derivative on the left-hand side of (32) is different from zero, and the two current

densities j and j ′ deviate for t > t0. On the other hand, if uk is not a constant only for

k > 0, we can apply the equation of motion k + 1 times, yielding

∂k+1

∂tk+1
[j(r, t) − j′(r, t)]t=t0

= n0(r)∇uk(r) .(33)

The right-hand side of (33) differs from zero, which again implies that j(r, t) 6= j′(r, t)

for t > t0. This concludes the first step of the proof of the Runge-Gross theorem.

The second step of the proof, i.e., that j 6= j′ ⇒ n 6= n′, makes use of the continuity

equation

(34)
∂

∂t
n(r, t) = −∇ · j(r, t) .

Writing (34) for the primed and unprimed system and taking the difference, we arrive at

(35)
∂

∂t
[n(r, t) − n′(r, t)] = −∇ · [j(r, t) − j′(r, t)] .
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As before, we would like an expression involving the kth time derivative of the external

potential, so we take the (k + 1)st time-derivative of (35) to obtain (at t = t0)

∂k+2

∂tk+2
[n(r, t) − n′(r, t)]t=t0

= −∇ · ∂
k+1

∂tk+1
[j(r, t) − j′(r, t)]t=t0

= −∇ ·
[

n0(r)∇uk(r)
]

,(36)

where in the last step we used (33). If the right-hand side of the previous equation is

different from zero, we have n 6= n′, from which the Runge-Gross theorem follows. We

will prove this last assertion by reductio ad absurdum. Assume that ∇·
[

n0(r)∇uk(r)
]

= 0

with uk(r) 6= const. [cf. hypothesis (29)], and look at the integral (obtained using Green’s

theorem)

∫

d3r n0(r) [∇uk(r)]
2

= −
∫

d3r uk(r)∇ ·
[

n0(r)∇uk(r)
]

(37)

+

∫

S

n0(r)uk(r)∇uk(r) · dS .

The first term on the right-hand side is zero by assumption, while the second term

vanishes if the density and the function uk(r) go to zero when r → ∞. This situation is

always true for finite systems. Furthermore, as the integrand n0(r) [∇uk(r)]
2

is always

positive, either the density n0(r) or ∇uk(r) has to vanish identically. The first possibility

is obviously ruled out, while the second contradicts our initial assumption that uk(r) is

not a constant. This concludes the proof of the Runge-Gross theorem.

2
.
2.2. Causality and the quantum mechanical action. In static quantum mechanics,

the ground-state of a system can be obtained by minimizing the total energy functional

(38) E[Φ] = 〈Φ| Ĥ |Φ〉 ,

where Φ is an N -body function defined in some convenient space. In time-dependent

systems there can be no variational principle in terms of the total energy, for this is not

a conserved quantity. It is, however, possible to cast the solution of the time-dependent

Schrödinger equation into a variational problem using the quantum-mechanical action

(39) A[Φ] =

∫ t1

t0

dt 〈Φ(t)| i ∂
∂t

− Ĥ(t) |Φ(t)〉 .

It is easy to obtain two important properties of the action from its definition (39): i) From

the variational equation

(40)
δA[Φ]

δ 〈Φ(t)| = 0
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we recover the time-dependent Schrödinger equation. The function Ψ(t) that makes the

functional stationary will therefore be the solution of the time-dependent many-body

Schrödinger equation. ii) The action vanishes at the solution point, i.e., A[Ψ] = 0. This

is, however, not necessarily the minimum value of the action.

In their seminal paper, Runge and Gross offered a derivation of the time-dependent

Kohn-Sham equations starting from the action (39)[7]. However, it was later discovered

that this approach encompasses two fundamental problems. i) Response functions that

stem from (39) are not causal[26, 27]. ii) To derive the variational equation one must

impose two independent boundary conditions, namely δΨ(t0) = δΨ(t1) = 0. It turns

out that in TDDFT these two conditions are not independent, for the value of δΨ(t1) is

determined by δΨ(t0) = 0[28, 29]. These two problems were solved by van Leeuwen in

1998[28]. The causality problem is circumvented by the use of the Keldysh formalism[30],

while the second problem is resolved by introducing a new action functional that does

not contain explicitly ∂/∂t

(41) A[n] = −i ln 〈Ψ(t0)| Û(τf , τi) |Ψ(t0)〉 +

∫

C

dt

∫

d3r n(r, τ)v(r, τ) ,

where τ stands for the Keldysh pseudo-time,
∫

C dt is a shortcut for
∫

dτ dt/dτ , and U

is the evolution operator of the system

(42) Û(τf , τi) = T̂C exp

[

−i

∫ τf

C τi

dt Ĥ(τ)

]

.

In the last expression, T̂C denotes ordering in τ . Response functions calculated from

the action (41) will be time-ordered in Keldysh pseudo-time, but properly causal in real

time. We will use the action functional (41) to construct a Kohn-Sham system for the

time-dependent case.

2
.
2.3. Time dependent Kohn-Sham equations. The Runge-Gross theorem asserts

that all observables of the quantum mechanical system can be obtained from the density.

Nothing is however stated on how to calculate that quantity. For that purpose, we

construct an auxiliary system of non-interacting electrons – the Kohn-Sham system. As

in the static case, we proceed from now on with the explicitly spin-dependent version

of TDDFT which was first formulated by Liu and Vosko[31]. The corresponding time-

dependent Kohn-Sham equations are

(43) i
∂

∂t
ϕiσ(r, t) = ĤKS

σ (r, t)ϕiσ(r, t) ,

where the Kohn-Sham Hamiltonian is defined as

(44) ĤKS
σ (r, t) = −∇2

2
+ vKS

σ [n↑, n↓](r, t) .
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The potential vKS
σ [n↑, n↓](r, t) is chosen such that the spin densities of the Kohn-Sham

system,

(45) nσ(r, t) =

Nσ
∑

i

|ϕiσ(r, t)|2 ,

equal to the spin densities of the interacting system we want to study. As in ground-state

DFT, the time-dependent Kohn-Sham potential is normally written as the sum of three

terms [cf. eq. (5)]

(46) vKS
σ [n↑, n↓](r, t) = vσ(r, t) +

∫

d3r′
n(r′, t)

|r − r′| + vxc
σ [n↑, n↓](r, t) .

The first term is the external potential felt by the electrons, while the Hartree potential

takes into account the classical electrostatic interaction between the electrons. The third

term in (46), the so-called xc potential, includes all non-trivial many-body effects. It can

be written as a functional derivative

(47) vxc
σ (r, t) =

δAxc[n↑, n↓]

δnσ(r, τ)

∣

∣

∣

∣

nσ=nσ(r,t)

,

where the xc part of the action is defined by

(48) A[n↑, n↓] = AKS[n↑, n↓] −Axc[n↑, n↓] −
1

2

∫

C

dt

∫

d3r

∫

d3r′
n(r, τ)n(r′, τ)

|r − r′| ,

where AKS is the action functional (41) written for the Kohn-Sham system.

2
.
3. Time-dependent exchange-correlation potentials . – In contrast to ground-state

DFT, where a plethora of approximations to the xc functional exist (see Sect. 1
.
3),

the development of time-dependent xc potentials is still in its infancy. The simplest, and

perhaps most widely used, functional is the adiabatic local (spin-) density approximation

(ALDA)

(49) vxc ALDA
σ (r, t) =

∂

∂nσ

[

n εunif
xc (n↑, n↓)

]

∣

∣

∣

∣

nα=nα(r,t)

.

The ALDA potential is nothing more than the ground-state LDA potential evaluated at

each time with the density nσ(r, t). This functional is clearly local in space (like the

ground-state LDA), and in time.

Following the same reasoning, it is simple to recycle other ground-state xc potentials

for use in TDDFT. In general, we can write

(50) vxc adiabatic
σ [n↑, n↓](r, t) = ṽxc

σ [n↑, n↓](r)|nα=nα(r,t) ,
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where ṽxc[n↑, n↓] is some given ground-state xc functional. Clearly, vxc adiabatic
σ [n↑, n↓](r, t)

is local in time (although it may be non-local in space). Naturally, the adiabatic potential

will retain all the problems already present in ṽxc[n↑, n↓]. For example, the ALDA po-

tential (as well as most adiabatic GGAs and MGGAs) has the same incorrect asymptotic

behavior as the LDA potential (see Sect. 1
.
3).

A functional that does exhibit the correct asymptotic behavior is the EXX. The EXX

action is obtained by expanding Axc to first order in e2 (where e denotes the electron

charge)[28, 32]

(51) AEXX
x = −1

2

∑

σ

occ
∑

j,k

∫

C

dt

∫

d3r

∫

d3r′
ϕ∗

jσ(r′, τ)ϕkσ(r′, τ)ϕjσ(r, τ)ϕ∗
kσ(r, τ)

|r − r′| .

The EXX is an example of an orbital dependent functional. For this class of action

functionals the calculation of the corresponding potential has to be performed through

a series of chain rules[21, 22]. First, we use the Runge-Gross theorem to write

(52) vxc
σ (r, t) =

∑

σ′

∫

C

dt′
∫

d3r′
δAxc

δvKS
σ′ (r′, τ ′)

δvKS
σ′ (r′, τ ′)

δnσ(r, τ)
.

The second functional derivative on the right-hand side can be easily identified with the

inverse of the Kohn-Sham response function, χKS (see Sect. 2
.
4.1). Multiplying by χKS

and applying the chain rule a second time we arrive at

∑

σ′

∫

C

dt′
∫

d3r′ χKS
σσ′ (rτ, r′τ ′)vxc

σ′ (r′, t′) =(53)

∑

jσ′

∫

C

dt′
∫

d3r′

[

δAxc

ϕjσ′ (r′τ ′)

ϕjσ′ (r′τ ′)

δvKS
σ (r, τ)

+
δAxc

ϕ∗
jσ′ (r′τ ′)

ϕ∗
jσ′ (r′τ ′)

δvKS
σ (r, τ)

]

.

The functional derivative of Axc with respect to the orbitals can be calculated directly,

while δϕjσ′ (r′τ ′)/δvKS
σ (r, τ) is obtained from first-order perturbation theory. Rearrang-

ing the terms and transforming back to physical time yields the integral equation[32]

(54)

occ
∑

j

∫

dt′
∫

d3r′
[

vxc
σ (r′, t′) − uxc

jσ(r′, t′)
]

ϕjσ(r, t)ϕ∗
jσ(r′, t′)GR

σ (rt, r′t′) + c.c. = 0 ,

where we have defined the retarded Green’s function by

(55) iGR
σ (rt, r′t′) = θ(t− t′)

∞
∑

k=1

ϕ∗
kσ(r, t)ϕkσ(r′, t′) ,
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and the quantity uxc
jσ by

(56) uxc
jσ(r, t) =

1

ϕ∗
jσ(r, t)

δAxc[ϕjσ ]

δϕjσ(r, τ)

∣

∣

∣

∣

ϕjσ=ϕjσ(r,t)

.

Note that the vxc is still a local potential in space and time, even if it is obtained from

the solution of an extremely non-local and non-linear integral equation. The numerical

implementation of (54) turns out to be an extremely demanding task. It is, however,

possible to obtain an approximate semi-analytical solution of (54) by performing a trans-

formation similar to the one proposed by Krieger, Lee and Iafrate (KLI) for the static

case[33, 34, 32]. The KLI potential retains the correct asymptotic behavior of vEXX
x , but

becomes local in the time coordinate.

Most of the xc potentials we have presented so far are local in the time coordinate.

In 1997 Dobson et al. tried to go beyond this limitation by constructing an xc potential

with “memory”[35]. They assumed that, in the electron liquid, memory resides not

with each fixed point r, but rather within each separate “fluid element”. Thus the

element which arrives at location r at time t “remembers” what happened to it at earlier

times when it was at locations different from its present location r. Furthermore, the

functional satisfies both Galilean invariance[36] and Ehrenfest’s theorem. Unfortunately,

the numerical implementation of this functional is quite complicated, and no practical

applications have appeared to date.

2
.
4. Linear response theory. – One of the most important applications of TDDFT is

the calculation of linear absorption spectra. In this case, the external time-dependent

field (the electromagnetic field) is “weak”, so we can use linear-response theory to cir-

cumvent the solution of the time-dependent Kohn-Sham equations.

2
.
4.1. The response function. Let us assume that a system is in its ground state,

described by the many-body wave-function |Ψ0〉. At t = t0 we perturb the system by

applying a (infinitesimally) small time-dependent perturbation, δvσ(r, t). The linear

change in the density is then

(57) δnσ(r, t) =
∑

σ′

∫

dt′
∫

d3r′ χσσ′(rt, r′t′)δvσ′ (r′, t′) .

The function χ is the so-called linear density-density response function. A simple calcu-

lation shows that χ can be written as the expectation value of the commutator of two

density operators[37, 38]

(58) iχσσ′ (rt, r′t′) = θ(t− t′) 〈Ψ0|
[

n̂H
σ (r, t), n̂H

σ′(r′, t′)
]

|Ψ0〉 ,

where n̂H is the density operator in the Heisenberg representation. Note that the factor

θ(t − t′) ensures that the response function is properly causal. By inserting the com-

pleteness relation 1 =
∑

m |Ψm〉 〈Ψm| into (58) and Fourier transforming into frequency
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space we obtain the Lehmann representation of the density response function

(59)

χσσ′ (r, r′, ω) = lim
η→0+

∑

m

[ 〈0| n̂σ(r) |m〉 〈m| n̂σ′(r′) |0〉
ω − (Em − E0) + iη

− 〈0| n̂σ′(r′) |m〉 〈m| n̂σ(r) |0〉
ω + (Em − E0) + iη

]

,

where η is a small positive infinitesimal, and Em is the energy of the mth many-body

state. This representation is particularly elucidative: as a function of frequency, χ will

have poles at the true excitation energies of the system, Ω = Em − E0. To find these

excitation energies we can therefore search for the poles of χ.

Expression (59) can be quite simplified if the system is non-interacting. In this case,

only a few Slater determinants 〈Ψm| contribute to χs. These involve the excitation of

a single particle from an occupied state to an unoccupied state. The non-interacting

response function then reads

(60) χs
σσ′(r, r′, ω) = δσσ′

∞
∑

jk

(fkσ − fjσ)
ϕjσ(r)ϕ∗

jσ(r′)ϕkσ(r′)ϕ∗
kσ(r)

ω − (εjσ − εkσ) + iη
,

where fkσ denotes the occupation of the state kσ. As expected, χs has poles at the

difference of the single-particle eigenvalues, εjσ − εkσ, which are the excitation energies

in the non-interacting system.

TDDFT provides a very elegant method to evaluate the response function for the

interacting system. By construction, the time-dependent Kohn-Sham system has the

same density as the interacting system. We can therefore calculate the linear change of

the density using the Kohn-Sham electrons

(61) δnσ(r, t) =
∑

σ′

∫

dt′
∫

d3r′ χKS
σσ′ (rt, r′t′)δvKS

σ′ (r′, t′) .

Note that the Kohn-Sham system is a non-interacting system of electrons, so its response

function, χKS, will have the form (60). Using the definition of the Kohn-Sham potential,

equation (46), we can deduce

(62) δvKS
σ (r, t) = δvσ(r, t) +

∫

d3r′
δn(r′, t)

|r − r′| +
∑

σ′

∫

dt′
∫

d3r′ fxc
σσ′(rt, r′t′)δnσ′(r′, t′) ,

where we have introduced the xc kernel

(63) fxc
σσ′ [nGS

↑ , nGS
↓ ](r, r′, t− t′) =

δvxc
σ [n↑, n↓](r, t)

δnσ′(r′, t′)

∣

∣

∣

∣

nα=nGS
α

,

where the functional derivative is evaluated at the ground-state density, nGS
α (r). Com-
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bining the previous results, we can obtain a Dyson-like equation for the response function

χσσ′ (rt, r′t′) = χKS
σσ′ (rt, r′t′)(64)

+
∑

αα′

∫

d3x

∫

d3x′
∫

dτ

∫

dτ ′χKS
σα(rt,x, τ)

[

δ(τ − τ ′)

|x − x′| + fxc
αα′(xτ,x′τ ′)

]

χα′σ′(x′τ ′, r′t′) .

The previous equation is a formally exact representation of the density response of the

interacting system. We note that by taking fxc = 0 we recover the random phase

approximation (RPA) to the response function.

2
.
4.2. The poles of the response function. The response equation is an integral

equation that has to be solved self-consistently. Furthermore, one of the ingredients

of (64) is the Kohn-Sham response function, χKS, which is usually obtained though a

sum over all (occupied and unoccupied) states [cf. eq. (60)]. This summation usually

converges quite slowly and requires the inclusion of many unoccupied states. However,

for a system with a discrete spectrum of excitations it is possible to transform (64) into

an eigenvalue equation for the excitation energies that circumvents these problems[39,

40, 41].

By writing (64) in frequency space and rearranging the terms, we can obtain the fairly

suggestive equation

(65)
∑

σ′

∫

d3r′ [δ(r − r′)δσσ′ − Ξσσ′ (r, r′, ω)]χσ′σ′′(r′, r′′, ω) = χKS
σσ′′ (r, r′′, ω) ,

where the function Ξ is defined by

(66) Ξσσ′ (r, r′, ω) =
∑

σ′′

∫

d3r′′ χKS
σσ′′ (r, r′′, ω)

[

1

|r′′ − r′| + fxc
σ′′σ′(r′′, r′, ω)

]

.

As noted in the previous section, the interacting response function, χ, has poles at

the true excitation energies of the system, Ω, while the Kohn-Sham response function

has poles at the difference of Kohn-Sham eigenvalues. For the equality (65) to hold,

it is therefore required that the operator δ(r − r′)δσσ′ − Ξ has zero eigenvalues at the

excitation energies Ω, i.e., λ(ω) → 1 when ω → Ω, where λ(ω) is the solution of the

eigenvalue equation

(67)
∑

σ′

∫

d3r′ Ξσσ′ (r, r′, ω)ξσ′ (r′, ω) = λ(ω)ξσ(r, ω) .

Using this equation we can determine the excitation energies of a finite system from the

knowledge of χKS and fxc. After some algebra[42] it is possible to transform (67) into

another eigenvalue equation having the true excitation energies as eigenvalues

(68)
∑

j′k′σ′

[δjj′δkk′δσσ′ ωjkσ + (fk′σ′ − fj′σ′)Kjkσ,j′k′σ′(Ω)]βj′k′σ′ = Ωβjkσ ,
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where ωjkσ = εjσ − εkσ, and

(69)

Kjkσ,j′k′σ′(ω) =

∫

d3r

∫

d3r′ ϕ∗
jσ(r)ϕkσ(r)

[

1

|r − r′| + fxc
σσ′ (r, r′, ω)

]

ϕj′σ′ (r′)ϕ∗
k′σ′ (r′) .

If the excitation is well described by a single particle transition, we can neglect the

off-diagonal terms of Kjkσ,j′k′σ′ to obtain the single-pole approximation (SPA) to the

excitation energies[39]. For a spin-unpolarized system it reads

(70) Ω = ω12 + < [K12↑,12↑ ±K12↑,12↓] .

In the SPA the Coulomb and fxc contributions to the excitation energies appear as a

simple additive correction. Furthermore, the SPA is able to describe properly the spin-

multiplet structure of an otherwise spin-unpolarized system due to the spin-dependence

of the xc kernel.

Several calculations for the lowest excitation energies of atoms and molecules have

been performed within this formalism with very promising results[39, 43, 44]. Further

results on the SPA, including a discussion on why, and under which circumstances, the

SPA is a good approximation can be found in refs. [45, 46].

There is another way of transforming (64) into an eigenvalue equation[40, 41]. The

starting point is the parameterization of the linear change of the density

(71) δnσ(r, ω) =
∑

ia

[ξiaσ(ω)ϕ∗
aσ(r)ϕiσ(r) + ξaiσ(ω)ϕaσ(r)ϕ∗

iσ(r)] ,

where i labels an occupied and a a virtual state. Inserting this expression in the linear re-

sponse equation, and after some algebra, it is possible to cast the problem of determining

the excitation energies into the pseudo-eigenvalue problem

(72)
∑

a′i′σ′

[

δσσ′δaa′δii′(εjσ − εkσ)2 + 2
√
εaσ − εiσKaiσ,a′i′σ′(Ω)

√
εa′σ′ − εi′σ′

]

βa′i′σ′ = Ω2βaiσ .

The eigenvalues of this equation are the square of the excitation energies, while the

eigenvectors can be used to calculate the oscillator strengths[40, 41].

2
.
4.3. Approximations to the exchange-correlation kernel. The xc kernel is an es-

sential ingredient of Kohn-Sham linear response theory, as it includes all non-trivial

many-body effects beyond the simple RPA. Furthermore, its functional dependence on

the density is universal, i.e., fxc is the same for a helium atom, a benzene molecule,

or a jellium sphere. It is obviously impossible to obtain the exact xc kernel – it would

imply solving the general many-body problem – but several approximations to fxc have

appeared in the literature over the years.

A large number of functionals use information about the xc kernel of the uniform

electron gas, funif
xc , to construct an approximate fxc for inhomogeneous systems. As
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the electron gas is translationally invariant in space, funif
xc is not a function of r and r′

separately, but only depends on their difference, r − r′. Moreover, due to translation

invariance in time, the xc kernel (both for the electron gas and for inhomogeneous sys-

tems) is a function of the difference of times, t − t′. In this case, it is often convenient

to work in Fourier space, and look at funif
xc as a function of momentum q and frequency

ω. Furthermore, the xc kernel of the uniform gas is a function of the spin-densities, i.e.,

fxc unif
σσ′ (q, ω, n↑, n↓). We will discuss several approximations to this latter quantity in

Sect. 2
.
5.2.

The simplest approximation for fxc is the adiabatic local (spin-) density approxima-

tion (ALDA)

(73) fxc ALDA
σσ′ (r, r′, ω) = δ(r − r′)fxc unif

σσ′ (q → 0, ω = 0, n↑, n↓)
∣

∣

nα=nα(r)
.

The zero momentum limit at zero frequency of the xc kernel for the uniform gas is simply

given by

(74) lim
q→0

fxc unif
σσ′ (q, ω = 0) =

d2

dnσdnσ′

[

n εunif
xc (n↑, n↓)

]

.

Note that the ALDA kernel is local both in time (for it is frequency independent),

and in space. Surprisingly, and despite being such a crude approximation, the ALDA

approximation yields very good results for a large variety of atoms and molecules (see

Sect. 2
.
4.4). In fact, we could expect that the total neglect of the frequency dependence

of the kernel would lead to poor excitation energies. This apparent paradox can be

understood to some extent by looking at the frequency dependent fxc of the electron gas

in the long wave-length limit, funif
xc (q = 0, ω)[47]. While the ALDA kernel is a fairly good

approximation to funif
xc (q = 0, ω) at low frequency or for systems with high densities, it

completely fails to reproduce the strong frequency dependence of funif
xc (q = 0, ω) for

low densities (see Sect. 2
.
5.2). The ALDA yields such good excitation energies, even at

high frequencies, because excitations at these high frequencies are usually connected to

regions of space with a high density of electrons, where the ALDA becomes again a good

approximation.

It is straightforward to use the frequency dependent funif
xc (q = 0, ω)[47] to construct

a dynamical local density approximation (DLDA) to fxc for inhomogeneous systems

(75) fxc DLDA
σσ′ (r, r′, ω) = δ(r − r′)fxc unif

σσ′ (q = 0, ω, n↑, n↓)
∣

∣

nα=nα(r)
.

This functional was used by Dobson et al. to calculate a multipole surface plasmon mode

for a neutral Al jellium surface[48]. The shift in frequency of the mode, compared to the

usual ALDA results, was about 3%, but there was a 20% increase in the damping.

Several approximations to the xc kernel of the homogeneous electron gas as a function

of q have been proposed. This function can also be used to construct an xc kernel for
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inhomogeneous systems

(76) fxc
σσ′ (r, r′, ω) = fxc unif

σσ′ (r − r′, ω, n↑, n↓)
∣

∣

nα=ñα(r,r′)
,

with some conveniently chosen function ñα(r, r′). Now, the problem is which density

should be used to evaluate funif
xc , or, in other words, how to determine the best func-

tion ñ. There are several obvious choices, like n(r), n(r′), the arithmetic average,

[n(r) + n(r′)] /2, the geometrical average,
√

n(r)n(r′), etc.

A similar, but simpler, approach is to seek a local density approximation for the

response function of the interacting system, rather than merely for the xc kernel. The

first step towards such an approximation was given by Chakravarty et al., who proposed

the form[49]

(77) χσσ′(r, r′, ω) ≈ χunif
σσ′ (r − r′, ω, n↑, n↓)

∣

∣

nα=nα(r)
,

where χunif is some suitable approximation to the response function of the homogeneous

electron gas. A more symmetric expression was later used to study equations of state for

molecular and metallic hydrogen[50]

(78) χσσ′ (r, r′, ω) ≈ χunif
σσ′ (r − r′, ω, n↑, n↓)

∣

∣

nα= 1
2
[nα(r)+nα(r′)]

.

Several more complicated approximations have already been tried. For a jellium slab

Dobson and Harris found that the best choice was to use the mean-density ansatz [51]

(79) ñα(z, z′) =
1

z′ − z

∫ z′

z

dz′′nα(z′′) ,

where z is the coordinate perpendicular to the slab.

There are other approximations to the xc kernel that do not use information stemming

from the electron gas. In 1996 Petersilka et al. proposed the kernel[39]

(80) fx PGG
σσ′ (r, r′, ω) = −δσσ′

1

|r − r′|
|
∑occ

k ϕkσ(r)ϕ∗
kσ(r′)|2

nσ(r)nσ(r′)
,

which can be derived from a simple analytical approximation to the EXX potential[39].

This approximation, called the Slater approximation in the context of Hartree-Fock the-

ory, only retains the leading term in the expression for EXX. The PGG kernel is again

frequency independent, but has a rather non-local spatial dependence. Recently, Burke

et al. proposed to combine the PGG kernel with the ALDA in an attempt to improve

excitation energies[52].

Finally, we would like to mention the work by Tokatly and Pankratov, who used a

many-body diagrammatic technique to derive an expression for the xc kernel[53]. More-

over, they also showed that spatial non-locality of the xc kernel is strongly frequency

dependent, especially in extended systems in the vicinity of the excitation energies.
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Table I. – 1S →
1P excitation energies for selected atoms. Ωexp denotes the experimental results

from [56]. All energies are in hartrees. Table adapted from [39].

Atom ωLDA ΩLDA/ALDA ωEXX ΩEXX/PGG Ωexp

Be 0.129 0.200 0.130 0.196 0.194
Mg 0.125 0.176 0.117 0.164 0.160
Ca 0.088 0.132 0.079 0.117 0.108
Zn 0.176 0.239 0.157 0.211 0.213
Sr 0.082 0.121 0.071 0.105 0.099
Cd 0.152 0.214 0.135 0.188 0.199

2
.
4.4. Some results for finite systems. Over the years, a vast number of TDDFT

calculations for finite systems have been reported in the literature, so only the scantiest

of selections can be given here. Before starting our discussion we note that to perform

a linear response calculation we need both ground-state Kohn-Sham orbitals, ϕi, and

an approximation to fxc. The Kohn-Sham orbitals are usually determined with an ap-

proximate vxc. To emphasize this important detail, we will use the notation XXX/YYY,

which has the meaning that the ground-state orbitals were calculated with the functional

XXX, and that the YYY approximation was used for fxc. It turns out that, for finite

systems, the first approximation is in general much more important than the choice of

the xc kernel[44, 54].

The first calculation of excitation energies within TDDFT was performed by Zangwill

and Soven in 1980[55]. Using the ALDA approximation they obtained excellent results

for the photo-absorption cross section of several rare gases for energies just above the

ionization threshold.

This good agreement with experiment is not only found in transitions to the contin-

uum. In Table I the 1S →1 P excitation energies for several atoms are listed[39]. The

agreement of the calculated excitation energies (ΩLDA/ALDA and ΩEXX/PGG) with the

experimental results is quite remarkable. We furthermore notice that the EXX/PGG

results are superior to the LDA/ALDA. This can be traced back to the quality of the

unoccupied states used in the calculations. In contrast to the EXX, the LDA yields

unoccupied states that are too extended due to its incorrect asymptotic behavior.

For molecules and clusters, the majority of the TDDFT calculations are performed

within the ALDA approximation. The choice of the ALDA has two reasons: i) The

ALDA has a very simple analytical expression and is very easy to implement. ii) The

results obtained within the ALDA are usually in very good agreement with experimental

results, and the use of more sophisticated functionals, like the adiabatic GGAs, does not

improve the calculated spectra. In fig. 1 we show an example of such a calculation for

the benzene molecule. The agreement with experiment is quite remarkable, especially

when looking at the π → π∗ resonance at around 7 eV. The spurious peaks that appear

in the calculation at higher energies are artifacts caused by an insufficient treatment
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Fig. 1. – Optical absorption of the benzene molecule[57]. Experimental results from ref. [58].
Figure reproduced from ref. [59].

of the unbound states. Other applications of TDLDA that appeared in the literature

include small molecules (see e.g., refs. [42, 60]), fullerenes[57, 61, 62], chromophores of

proteins[63], etc.

However, and despite its unequivocal success, the application of the ALDA to the cal-

culation of excitation spectra can encounter some difficulties. For example, the ALDA

sometimes underestimates the onset of absorption by 1 or 2 eV[54]. Furthermore, some

bound excitations will appear in the ALDA as resonances, again due to the wrong asymp-

totic behavior of the LDA potential. These problems are however solved by using xc

potentials with the correct asymptotic behavior, like the van Leeuwen and Baerends

GGA[64], the SIC, or the EXX. A more complicated problem is posed by the stretched

H2 molecule, where the ALDA fails to reproduce even qualitatively the shape of the

potential curves for the 3Σ+
u and 1Σ+

u states[65, 66]. A detailed analysis of the problem

shows that the failure is related to the breakdown of the simple local approximation to

the kernel.

2
.
4.5. Some results for extended systems. In a extended system, neutral linear

excitations can be calculated from the dielectric function, ε. For a spin-compensated

system, the dielectric function is related to the response function by the relation

(81) ε−1(r, r′, ω) = δ(r − r′) +

∫

d3x
χ(x, r′, ω)

|r − x| .

In momentum space, ε is a matrix in G and G′ (where G is a reciprocal lattice vector)

and depends on the wave-vector q (belonging to the first Brillouin zone), i.e, we have
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Fig. 2. – Optical absorption spectrum of silicon. In the figure are represented the following
spectra: experiment[67] (thick dots), RPA (dotted curve), TDDFT using the ALDA (dot-dashed
curve), TDDFT using the RORO kernel[68] (solid curve), and the results obtained from the
solution of Bethe-Saltpeter equation (dashed curve). Figure reproduced from ref.[69].

εGG′(q). Moreover, we define the macroscopic dielectric function, εM, as the limit

(82) εM(ω) = lim
q→0

1

ε−1
G=0,G′=0(q, ω)

.

The photo-absorption spectrum can then be obtained from the imaginary part of the

macroscopic dielectric function, σ(ω) = = εM(ω). Furthermore, the dielectric constant,

ε0, is the value of εM(ω) at ω = 0.

From an optical absorption experiment we can obtain information about the long-

range limit of the dielectric function. There is, however, another spectroscopic technique

that probes both the momentum and frequency dependence of ε – electron energy loss

spectroscopy (EELS). This technique consists in measuring the energy and momentum

of electrons scattered by a sample. The EELS spectrum is obtained from

(83) EELS(q, ω) = −=
[

ε−1
G=0,G′=0(q, ω)

]

.

Several calculations of linear spectra of solids using TDDFT have appeared in the lit-

erature. Calculations of the EELS for silicon[69] and diamond[70] using the ALDA are in
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quite good agreement with experimental spectra, especially for small q. In fact, it turns

out that the most important ingredient for the calculation of an EELS spectrum is the

proper inclusion of local field effects, while the choice of fxc is relatively unimportant[70].

However, the situation is quite different for the optical absorption spectrum. In fig. 2

we show several calculations of the optical absorption spectrum of Si compared to ex-

perimental results. It is clear that the ALDA spectrum is in fairly bad agreement with

experiment. Moreover, the ALDA fails to yield any significant improvement over the

RPA calculation. This problem can be traced to the behavior of the xc kernel for small

q: In a semiconductor, fxc should behave asymptotically like 1/q2 when q → 0, but

fALDA
xc , as well as the adiabatic GGAs, approach a finite value.

Several attempts to solve this problem have recently appeared in the literature. For

example, using insight gained from the Bethe-Saltpeter equation, Reining et al. pro-

posed an fxc of the form −α/q2[68] (the RORO kernel). By taking the empirical value

of α = 0.2 they were able to describe quite well both the real and imaginary parts of

the dielectric constant (see fig. 2). Another approach was followed by Kim and Görling,

who calculated the photo-absorption spectrum of silicon using the EXX approximation

both in the calculation of the ground-state and for fxc[71]. They found that the spec-

trum collapsed due to the long-range nature of the Coulomb interaction. However, by

cutting off the interaction, they were able to obtain results in very good agreement to

the experimental curve. We note that these are very recent results, so it is reasonable to

expect further developments in the near future.

2
.
5. The exchange-correlation kernel of the homogeneous electron gas . – As we have

seen in Sect. 2
.
4.3 the xc kernel of the homogeneous electron gas is an extremely impor-

tant ingredient to construct xc functionals for inhomogeneous systems. We will therefore

dedicate this section to the study of this important quantity. In a first step we will

present several known exact features of funif
xc , and then show how these exact features

can be incorporated into approximations to the xc kernel of the gas. To simplify the

notation we will write all expressions in this section for spin-saturated systems.

2
.
5.1. Exact features of funif

xc . Several exact features of the xc kernel for the electron

gas are easily obtained from the definition (63). As both the external potential and the

density are real functions when written in real space and real time, so must be the xc

kernel. From this fact one immediately obtains

<funif
xc (q, ω) = <funif

xc (q,−ω) ,(84)

=funif
xc (q, ω) = −=funif

xc (q,−ω) .

Furthermore, from causality follow the Kramers-Kronig relations:

<funif
xc (q, ω) − funif

xc (q,∞) = P
∫ ∞

−∞

dω′

π

=funif
xc (q, ω)

ω − ω′ ,(85)

=funif
xc (q, ω) = −P

∫ ∞

−∞

dω′

π

<funif
xc (q, ω) − funif

xc (q,∞)

ω − ω′ ,
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where P denotes the principal value of the integral. Note that, as the infinite frequency

limit of the xc kernel is different from zero, one has to subtract funif
xc (q,∞) in the Kramers-

Kronig relations.

Several limits of funif
xc (q, ω) are also known. The long wave-length limit at zero fre-

quency, also known as the compressibility sum rule, is given by

(86) lim
q→0

funif
xc (q, ω = 0) =

d2

dn2

[

nεunif
xc (n)

]

≡ f0(n) ,

where εunif
xc , the xc energy per particle of the homogeneous electron gas, is known exactly

from Monte-Carlo calculations[18]. On the other hand, the infinite frequency limit is

lim
q→0

funif
xc (q, ω = ∞) = −4

5
n

2
3

d

dn

[

εunif
xc (n)

n2/3

]

+ 6 n
1
3

d

dn

[

εunif
xc (n)

n1/3

]

(87)

≡ f∞(n) .

This condition is sometimes called the third frequency moment sum rule. If we insert the

best approximations known for εunif
xc (n) in the previous expressions one can show that

the zero frequency limit is always smaller than the infinite frequency limit, and that both

these quantities are smaller than zero

(88) f0(n) < f∞(n) < 0 .

The behavior of the spin-dependent xc kernel for the electron gas at small q and finite

frequency has been studied by Qian et al.[72]. Their results show that the long-range

expansion has a divergence of the form σσ′/q2. However, this divergence cancels out in

the density response of spin-compensated systems.

The long wave-length limit of fxc is also known

lim
q→∞

funif
xc (q, ω = 0) = c+

b

q2
,(89)

lim
q→∞

funif
xc (q, ω 6= 0) = − 8π

3q2
[1 − g(0)] ,(90)

where b and c are functions of the density that can be found in ref. [73], and g(0) is the

pair-correlation function evaluated at zero distance.

Furthermore, by performing a perturbative expansion of the irreducible polarization

to second order in e2, one finds

(91) lim
ω→∞

=funif
xc (q = 0, ω) = − 23π

15ω3/2
.

The real part can be obtained with the help of the Kramers-Kronig relations

(92) lim
ω→∞

<funif
xc (q = 0, ω) = f∞(n) +

23π

15ω3/2
.
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Fig. 3. – Real and imaginary part of the parameterization for funif
xc (q = 0, ω). Figure reproduced

from ref. [74].

Normally, in constructing an approximation for the xc kernel of the electron gas one tries

to ensure that at least some of these exact features are included in the functional.

2
.
5.2. Approximations to funif

xc . Innumerous approximations to the xc kernel of the

homogeneous electron gas have appeared in the literature in the past decades. The

description of all of these is clearly beyond the scope of this review, so we will only

present the ones that have been used within the context of TDDFT.

In 1985, Gross and Kohn proposed an analytical form for the long-wavelength limit of

the imaginary part of fxc that incorporates several of the limits presented in the previous

section[47, 74]

(93) =funif
xc (q = 0, ω) ≈ α(n)ω

[1 + β(n)ω2]
5
4

.

The coefficients α and β are determined using the compressibility sum rule (86) and the

third frequency moment sum rule (87). A simple calculation yields

α(n) = −A [f∞(n) − f0(n)]
5
3 ,(94)

β(n) = B [f∞(n) − f0(n)]
4
3 ,(95)

where A,B > 0 and independent of n. The real part of fxc can be obtained from the

Kramers-Kronig relation

<funif
xc (q = 0, ω) = f∞(n) +

2
√

2α

π
√
βr2

[

2E

(

1√
2

)

(96)

− 1 + r

2
Π

(

1 − r

2
,

1√
2

)

− 1 − r

2
Π

(

1 + r

2
,

1√
2

)]

,
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Fig. 4. – The funif CDOP
xc plotted in reciprocal and direct space for rs = 2 (Q = q/kF and

(R = r kF).

where r =
√

1 + βω2 and E and Π are the elliptic integrals of second and third kind. In

fig. 3 we plotted the real and imaginary part of funif
xc (q = 0, ω) for two different densities,

rs = 2 and rs = 4 (rs is the Wigner-Seitz radius, 1/n = 4πr3s /3). Both the real and

imaginary parts of the xc kernel exhibit a quite strong frequency dependence, especially

for the more dilute gas. We note that the ALDA consists in approximating the curves

in fig. 3 by their zero frequency limit.

The static (ω = 0) xc kernel for the electron gas as a function of q was calculated

by Moroni et al. using diffusion Monte-Carlo[73]. Their method is very simple: One

perturbs the gas with a static external potential

(97) v(r) = 2vq cos(q · r),

which will induce a modulation of the density. The total energy of the gas is then

calculated using diffusion Monte-Carlo for a few coupling strengths vq, and the static

response function is extracted from the expansion

(98) Eq = E0 +
χ(q)

n0
v2

q + C4v
4
q + · · · ,

where Eq is the energy (per particle) of the perturbed system, and E0 and n0 the energy

and density of the unperturbed electron gas. From the response function it is then trivial

to extract funif
xc (q, ω = 0) by inverting the response equation

(99) funif
xc (q, ω = 0) =

1

χs(q)
− 1

χ(q)
− 4π

q2
,

where χs(q) is the response function of the non-interacting electron gas.

Shortly after these calculations, Corradini et al. proposed an analytical expression

that reproduces the quantum Monte-Carlo data, but also incorporates the known asymp-

totic behavior for both small and large q. The expression of the xc kernel they obtained
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reads, in real space,

(100)

funif CDOP
xc (x, ω = 0) = −4πC

k2
F

δ(x) +
αkF

4π2β

(

π

β

)3/2 [

k2
Fx

2

2β
− 3

]

e−k2
Fx2/4β −B

e−
√

gkFx

x
,

where x = |r − r′|, kF =
(

3π2n
)1/3

is the Fermi wave-vector, and B, C, α, β and g

are functions of the density. In fig. 4 this kernel is plotted for rs = 2 in both real and

momentum space. Note that this form does not have long-range oscillations, which makes

it particularly useful in the calculation of a real solid.

Finally, we would like to mention the approximation of Richardson and Ashcroft

(RA) for the xc kernel as a function of momentum, imaginary frequency, and density[75].

Their approach is based on a summation of an infinite class of diagrams within many-

body theory. This summation is precise for high densities, but becomes innacurate for

sufficiently low densities. To solve this problem, Richardson and Ashcroft proposed a

parametrized form that fulfills exactly the compressibility, susceptibility, and the third-

frequency moment sum rules at all frequencies, and approaches their many-body results

at high densities.

The quality of these kernels was tested by Lein et al., who calculated the corre-

lation energy of the electron gas from the different approximations to funif
xc [77]. The

ground-state correlation energy can be obtained from the response function at imaginary

frequencies and the xc kernel by using the adiabatic connection formula[78, 79]

(101) Ec = − 1

2π

∫

d3r

∫

d3r′
1

|r − r′|

∫ 1

0

dλ

∫ ∞

0

du [χλ(r, r′, iu) − χKS(r, r
′, iu)] ,
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where χλ is the response function of a system where the Coulomb interaction between the

electrons has been scaled by λ. The results of Lein et al. are summarized in fig. 5. While

the simple RPA gives an error sometimes as large as 0.5 eV, the ALDA over-corrects the

correlation energy by essentially the same amount. The static but q dependent CDOP

kernel reduces this error to around 0.1 eV. The error is reduced further (to less than

0.02eV) by using the frequency and momentum dependent RA kernel.

The quality of the RA kernel is further confirmed by the calculations of elementary

excitations in the electron gas of Tatarczyk et al.[80]. Comparing the calculated plasmon

dispersion for rs = 4 to experimental data for sodium they found that the RA kernel

yields results in a very good agreement with experiment, especially at smaller wave-

vectors. Although the ALDA correctly reproduces the qualitative features, it deviates

significantly from the experimental results, especially at intermediate wave-vectors.

3. – Density functional theory for superconductors

The success of DFT in describing the most varied phenomena in condensed matter

physics is unquestionable. However, conventional DFT is not able to describe the super-

conducting state of matter. In 1988, triggered by the remarkable discovery of the high-Tc

materials, Oliveira, Gross and Kohn (OGK) proposed a density functional theory for the

superconducting state (SCDFT)[8, 9]. Up to now, the success of SCDFT has been fairly

limited, essentially due to the nonexistence of adequate xc functionals. Several recent

developments[10, 11, 12] may, however, bring SCDFT to a much wider audience.

In the following we will give an overview of SCDFT, and we will show how to construct

an LDA functional that describes the electron-electron part of the interaction. SCDFT is

most conveniently formulated using second quantization, so we will use this formulation

extensively throughout this section.

3
.
1. Preliminaries. – The Hamiltonian of a general many-electron system can be

written, in second quantization, as

(102) Ĥ =
∑

σ

∫

d3r ψ̂†
σ(r)

[

−∇2

2
+ v(r) − µ

]

ψ̂σ(r) + Û + Ŵ ,

where v is, as usual, the external potential, and µ the chemical potential of the system.

Moreover, the term Û accounts for the Coulomb interaction between the electrons

(103) Û =
1

2

∑

σσ′

∫

d3r

∫

d3r′ ψ̂†
σ(r)ψ̂†

σ′ (r
′)

1

|r − r′| ψ̂σ′ (r′)ψ̂σ(r) .

To properly describe superconductivity we clearly have to take into account the electron-

phonon interaction. In the original OGK formulation this interaction was modeled by a
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phonon-mediated effective electron-electron attraction of the form

(104)

Ŵ = −
∑

σσ′

∫

d3r1

∫

d3r2

∫

d3r3

∫

d3r4 ψ̂
†
σ(r1)ψ̂

†
σ′(r2)w(r1, r2, r3, r4)ψ̂σ′ (r3)ψ̂σ(r4) ,

where w can be a BCS model[81], or a Bardeen-Pines interaction[82], for example. How-

ever, this formulation is only able to describe systems where the electron-phonon inter-

action is weak. More recently, Lüders, starting from a multi-component DFT for the

combined electron-nuclear system, extended the OGK formalism to incorporate strong

electron-phonon interactions[10].

To the Hamiltonian (102) OGK added the term

(105) ∆̂ = −
[
∫

d3r

∫

d3r′ ∆∗
0(r, r

′)ψ̂↑(r)ψ̂↓(r
′) + H.c.

]

.

This term is only required to break the gauge symmetry of the system, and can be taken

to zero at the end of the derivation. Alternatively, it can be viewed as describing a

pairing field induced by a nearby superconductor.

3
.
2. Basic theorems . – The construction of SCDFT follows a parallel route to the

derivation of spin-DFT. In this latter theory one uses as basic variables the spin-densities,

nσ, or equivalently, the total density n = n↑ + n↓ and the magnetization density m =

−µ0 (n↑ − n↓). The second density, m, can be viewed as a magnetic order parameter

which is zero above a certain critical point and non-zero below, marking the transition

from the non-magnetic to the magnetic phase. In a similar way, we will use as basic

variables in SCDFT the “normal” density

(106) n(r) =
∑

σ

〈

ψ̂†
σ(r)ψ̂σ(r)

〉

,

and a non-local, “anomalous” density

(107) χ(r, r′) =
〈

ψ̂↑(r)ψ̂↓(r
′)
〉

.

The anomalous density can be viewed as an order parameter that describes the pair-

ing of the electrons, and is zero for any non-superconducting system. With these two

densities, it is simple to derive a Hohenberg-Kohn like theorem. By generalizing Mer-

min’s proof for finite temperature DFT[83], OGK proved that[8] “at the temperature

θ = 1/β, the densities n(r) and χ(r, r′) in thermal equilibrium determine uniquely the

density operator ρ̂ = e−βĤ[v,∆]/Tre−βĤ[v,∆], which minimizes the thermodynamic poten-

tial Ω[v,∆] = Tr{ρ̂′Ĥ[v,∆] + θρ̂′ ln ρ̂′}”. The grand-canonical thermodynamic potential

can thus be written as a functional of the pair of densities {n, χ}

(108) Ω[n, χ] = F [n, χ] +

∫

d3r n(r) [v(r) − µ] −
∫

d3r

∫

d3r′ [∆∗
0(r, r

′)χ(r, r′) + c.c.] .
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The functional F is universal, in the sense that its functional dependence on the pair of

densities {n, χ} is unique for a given interaction, and does not depend on the external

potentials {v,∆}. It is defined by

(109) F [n, χ] = T [n, χ] + U [n, χ] +W [n, χ] − 1

β
S[n, χ] ,

where T [n, χ] and S[n, χ] are the kinetic energy and the entropy functionals of the inter-

acting system, and U [n, χ] and W [n, χ] are the density functionals corresponding to the

thermal averages of Û and Ŵ .

As in ordinary DFT, we now introduce a system of non-interacting electrons (the

Kohn-Sham system) described by the Hamiltonian

ĤKS =
∑

σ

∫

d3r ψ̂†
σ(r)

[

−∇2

2
+ vKS(r) − µ

]

ψ̂σ(r)

−
[
∫

d3r

∫

d3r′ ∆∗
KS(r, r′)ψ̂↑(r)ψ̂↓(r

′) + H.c.

]

.(110)

The Kohn-Sham potentials {vKS,∆KS} are chosen such that the pair of densities of the

Kohn-Sham system equals the densities of the interacting system, {n, χ}. They are given

by [cf. eq. (5)]

vKS[n, χ](r) = v(r) +

∫

d3r′
n(r′)

|r − r′| + vxc[n, χ](r) ,(111a)

∆KS[n, χ](r, r′) = ∆(r, r′) − χ(r, r′)

|r − r′| + ∆xc[n, χ](r, r′) .(111b)

The xc potentials are formally defined as functional derivatives of the xc free-energy

functional Fxc[n, χ]

vxc[n, χ](r) =
δFxc[n, χ]

δn(r)
,(112a)

∆xc[n, χ](r, r′) = −δFxc[n, χ]

δχ∗(r, r′)
.(112b)

Finally, Fxc[n, χ] is defined through the expression

F [n, χ] = Ts[n, χ] − 1

β
Ss[n, χ] +

1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′|

+

∫

d3r

∫

d3r′
|χ(r, r′)|2
|r − r′| + Fxc[n, χ] .(113)

Note that in the expression (113) we separated out all “trivial” contributions to the free-

energy, namely the non-interacting kinetic energy and entropy (Ts[n, χ] and Ss[n, χ]),
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the Hartree term, which takes into account the classical electrostatic interaction between

the electrons, and an anomalous Hartree energy. The remainder, which contains all

non-trivial many-body contributions to the free-energy, is the xc energy.

The Kohn-Sham equations are then obtained by diagonalizing the Hamiltonian (110).

The resulting expression has the familiar form of the Bogoliubov-de Gennes equations[84]

[

−∇2

2
+ vKS(r) − µ

]

ui(r) +

∫

d3r′ ∆KS(r, r′)vi(r
′) = Eiui(r)

−
[

−∇2

2
+ vKS(r) − µ

]

vi(r) +

∫

d3r′ ∆∗
KS(r, r′)ui(r

′) = Eivi(r) ,(114)

where ui(r) and vi(r) are the particle and hole amplitudes. The densities can then be

obtained through the relations

n(r) = 2
∑

i

[

|ui(r)|2 fβ(Ei) + |vi(r)|2 fβ(−Ei)
]

,(115a)

χ(r, r′) =
∑

i

[ui(r)v∗i (r′)fβ(−Ei) − ui(r
′)v∗i (r)fβ(Ei)] ,(115b)

where fβ(Ei) denotes the Fermi distribution. In 1993, Suvasini, Temmerman and Gy-

orffy [85] presented the first numerical solution of the above KS equations for niobium

with a phenomenological xc functional using a linear muffin-tin orbital (LMTO) method,

generalized to solve the Bogoliubov-de Gennes equations. More recently, the first at-

tempts to tackle the high-Tc superconductors within this DFT framework have appeared

[86, 87]. In this work, the xc functional was modeled by a phenomenological interaction

kernel which was expanded in the LMTOs of a recently proposed eight-band model for

YBCO[88, 89]. The expansion coefficients KRL,R′L′ characterizing the effective interac-

tion between orbital L at site R with orbital L′ at site R′ were treated as adjustable

parameters. The comparison of various scenarios pointed to the conclusion that the

pairing mechanism operates between electrons of opposite spins on nearest-neighbor Cu

sites.

While it is certainly fruitful to study the xc potential of a particular system, the

charm and the power of DFT derives from the universality of the xc functional: One and

the same functional of n and χ should predict the specific properties of all materials.

Although a wealth of xc functionals exists for normal DFT, the case is quite different in

the case of DFT for superconductors. The only two functionals proposed to date are:

i) In 1999, Kurth et al. proposed an LDA-type functional[90] which only accounts for

the purely electronic correlations in superconductors and is based on the xc energy of

a uniform electron gas made superconducting by an external pairing field. To calculate

the latter quantity, the authors proposed the use of Kohn-Sham perturbation theory at

the level of a random phase approximation (RPA)[91]. ii) More recently, Lüders et al.

constructed a functional, using a method resembling the optimized-effective potential

method, that describes both strong electron-phonon interactions and electron-electron
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repulsion[10, 11, 12]. First results for the simple metals calculated with this functional

turn out to be in fairly good agreement with experiment[12]. In the following we will

present a fairly detailed account of the first of these functionals – the LDA for supercon-

ductors.

3
.
3. An LDA for superconductors . – The LDA functional for superconductors (SCLDA)

[90] can be constructed in analogy to the local spin density approximation (LSDA), with

the anomalous density playing the role of the spin-magnetization density in the LSDA.

The key ingredient of the SCLDA is the xc energy per particle of the uniform gas that

turns out to be a function of the normal density n, and a functional of the anomalous

density χ(r − r′), i.e.

(116) εunif
xc = εunif

xc [n, χ(r − r′)] .

Various methods can, in principle, be used to obtain εunif
xc , like e.g. quantum Monte-

Carlo, or many-body perturbation theory. We will use the latter to write the xc energy

of the electron gas as a series expansion in powers of e2, where e is the electron charge.

3
.
3.1. The local spin density approximation. In this section we will make a brief

detour and examine the construction of the LSDA. This construction will then serve as

a template for the development of the LDA for superconductors.

In the standard formulation of spin DFT the xc energy functional is a universal

functional of the pair of densities (n,m), i.e., F spin DFT
xc [n,m]. The spin local density

approximation (LSDA) to Fxc is then defined by

(117) FLSDA
xc [n(r),m(r)] =

∫

d3r n(r) εunif
xc (n,m)

∣

∣

∣ n=n(r)
m=m(r)

where εunif
xc (n,m) is the xc energy per particle of an electron-gas of density n, and magne-

tization m. To evaluate this quantity the electron gas is exposed to a constant magnetic

field, B (in the z direction)

(118) Ĥ = T̂ + Û −
∫

d3r m̂z(r)B ,

with

(119) m̂z(r) = −µ0

[

ψ̂†
↑(r)ψ̂↑(r) − ψ̂†

↓(r)ψ̂↓(r)
]

.

The external magnetic field will produce a finite (and constant) magnetization, m, in the

gas, allowing us to calculate εunif
xc (n,m).

Note that what enters the construction of the LSDA is the xc energy of the uniform

gas exposed to a finite magnetic field. It is therefore of no relevance that the uniform

gas (without a magnetic field) only becomes spin-polarized at very low densities[3].
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3
.
3.2. Construction of an LDA for superconductors. We now construct the LDA for

superconductors (SCLDA) in close analogy to the LSDA. The homogeneous electron gas

is exposed to an external pairing field ∆. To preserve the translational invariance of

the uniform gas, ∆ is chosen to depend on the difference (r − r′). As a consequence,

the induced order parameter χ(r, r′) is translationally invariant as well. It is therefore

convenient to work in Fourier space. The Fourier transform of the anomalous density is

(120) χ(k) =

∫

d3s eiksχ(s) ,

where s = r − r′ is the relative coordinate of the Cooper pair. (The Fourier transform

of the pair potential is defined in a similar way.) The SCLDA is then defined as

F SCLDA
xc [n(R), χ(R,k)] =

∫

d3R n(R) εunif
xc [n, χ(k)]

∣

∣

∣ n=n(R)
χ=χW (R,k)

,(121)

where R represents the center of mass of the Cooper pair, R = (r + r′)/2. The func-

tion χW (R,k) is the Wigner transform of the anomalous density of the inhomogeneous

system, given by

(122) χW (R,k) =

∫

d3s eiksχ
(

R +
s

2
,R − s

2

)

.

This expression trivially reduces to the common LDA for non-superconducting systems

in the limit χ → 0. At first sight, other definitions of an LDA for superconductors with

the correct non-superconducting limit might be conceivable. However, it can be shown

that (121) is the only correct definition. This follows from a semi-classical expansion

of the total energy[92]. The lowest-order terms in h̄ are identical with the SCLDA[93],

leading to equation (121).

3
.
3.3. How to calculate εunif

xc . The LDA requires εunif
xc as an input. To evaluate this

function we use Kohn-Sham perturbation theory. The unperturbed system is described

by the Hamiltonian

(123) ĤKS =
∑

σ

∑

k

(

k2

2
− µKS

)

ĉ†kσ ĉkσ −
∑

k

[∆∗
KS(k)ĉk↑ĉ−k↓ + H.c.] ,

where ĉkσ destroys an electron with momentum k and spin σ, µKS is a shorthand for the

constant (µ − vKS) and ∆KS(k) is the KS pairing potential (111b) for a homogeneous

system. We then use as perturbation Ĥ1 = Ĥ − ĤKS, where Ĥ is the many-body OGK

Hamiltonian of the homogeneous electron gas. Due to the the presence of the pairing

field ∆KS(k) in the unperturbed Hamiltonian, ĤKS, the perturbation expansion not

only involves the normal Kohn-Sham Green’s functions, GKS, but also the anomalous
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Fig. 6. – First order diagrams contributing to the free energy of the superconducting electron
gas.

Kohn-Sham propagators, FKS and F †
KS. These anomalous propagators are defined as

expectation values of two creation or two annihilation operators

FKS
σσ′ (rτ, r′τ ′) = −Tr

{

ρ̂KS T̂ ψ̂σ(rτ)ψ̂σ′ (r′τ ′)
}

,(124a)

F † KS
σσ′ (rτ, r′τ ′) = −Tr

{

ρ̂KS T̂ ψ̂
†
σ(rτ)ψ̂†

σ′ (r
′τ ′)

}

,(124b)

where the field operators are written in the Heisenberg picture, T̂ stands for the usual

time-ordering operator, which orders the operators from right to left in ascending time

order, and the statistical operator ρ̂KS is defined by

(125) ρ̂KS =
e−βĤKS

ZKS
= eβ(ΩKS−ĤKS) ; ZKS = e−βΩKS = Tr e−βĤKS .

When drawing Feynman diagrams we will represent the anomalous propagators by lines

with arrows pointing in opposite directions, the normal Green’s functions by lines with

arrows pointing in the same direction, and the bare Coulomb interaction by wiggly lines.

The three diagrams contributing to the free energy to first order in Ĥ1 are depicted in

fig. 6. However, only the third of these diagrams, fig. 6c, contributes to the xc free energy

Fxc. Figure 6a corresponds to the classical electrostatic energy of the charge distribution,

while fig. 6b gives the “anomalous” Hartree energy – both these terms have already been

taken into account by eq. (113). Figure 6c is the generalization of the normal exchange

energy, and yields

(126)

nεunif
x = −1

4

∫

d3k

(2π)3

∫

d3k′

(2π)3
4π

|k − k′|2
[

1 − ξk
Ek

tanh

(

β

2
Ek

)] [

1 − ξk′

Ek′

tanh

(

β

2
Ek′

)]

,

where Ek =
√

ξ2k + |∆(k)|2 and ξk = k2/2 − µKS.

In second order, some of the diagrams are divergent due to the long range of the

Coulomb interaction. This is a well known fact, already present in the non-superconduct-

ing gas, that can be cured by performing partial resummations of infinite subsets of

diagrams. The simplest of these is the random phase approximation (RPA)[91], which

includes the most divergent terms in every order, and is exact in the high-density limit.
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Fig. 7. – The RPA diagrams.

The RPA for superconductors includes all the normal and anomalous bubble diagrams

as indicated in fig. 7. The resummation leads to, after evaluating the spin sums,

(127) nεunif RPA
c =

1

2β

∑

νn

∫

d3q

(2π)3

{

log

[

1 − ΠKS(q, νn)
4π

q2

]

+ ΠKS(q, νn)
4π

q2

}

,

with the even Matsubara frequencies νn = 2nπ/β. ΠKS is the irreducible KS polarization

given by

ΠKS(q, νn) =
2

β

∑

ωn

∫

d3k

(2π)3

{

GKS(k, ωn)GKS(k + q, ωn + νn)

+FKS(k, ωn)F †
KS(k + q, ωn + νn)

}

,(128)

with the odd Matsubara frequencies ωn = (2n+ 1)π/β.

To gain some insight in the relative importance of the anomalous Hartree, the ex-

change and the RPA contributions, we calculated these for a simple s-wave model ∆KS(k),

(129) ∆KS(k) = µ δ e−
(k/kF−1)2

σ2

where kF is the Fermi wave vector, and δ and σ are (dimensionless) parameters.

The results are summarized in figs. 8, where we show different contributions to the

condensation energy per unit volume. (The energy per unit volume is simply the energy

per unit particle times the density, e = nε.) The different curves are: the difference

of exchange energies, eSx − eNx , in the superconducting (S) and normal (N) states, the

negative difference −(eSRPA − eNRPA) of the corresponding RPA correlation energies, the

anomalous Hartree energy, eAH, and the total condensation energy, econd. In the left

panel of fig. 8 these energies are plotted versus the parameter δ for σ = 1, while in the

right panel the same quantities are plotted as functions of σ for δ = 0.01. These two

plots were obtained for rs = 1, and the temperature was set to zero. The dependence

of the energies on the parameters σ and δ turns out to be rather smooth. The largest

positive contribution comes from the anomalous Hartree term, and is almost canceled

by the RPA correlation energy difference (eSRPA − eNRPA). The exchange part is positive,
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Fig. 8. – Energies versus δ for an s-wave pair-potential with σ = 1 (left panel), and energies
versus σ for a pair-potential with δ = 0.01 (right panel). Both panels were calculated for rs = 1
and T = 0 K.

but much smaller (almost an order of magnitude) than the other two terms. The same

statement holds true for 0.01 ≤ δ × 100 ≤ 1, 0.01 ≤ σ ≤ 1 and rs = 0.1, 1, 2, 3, 4, and 5.

In the conventional s-wave superconductors, the pairing mechanism is phononic, and the

above Coulombic positive-energy contributions reduce superconductivity.

3
.
3.4. Construction of the explicit functional. As we have seen, from many-body

perturbation theory we obtain the xc free energy as an explicit functional of the potentials

ε̃unif
xc [µKS,∆KS(k)]. However, in the SCLDA we need the xc free energy of the uniform

gas written as a functional of the densities, i.e., εunif
xc [n, χ(k)]. From the Hohenberg-

Kohn theorem for superconductors we know that the pair of potentials is in a one-to-one

correspondence with the pair of densities, so we can write

µKS = µKS[n, χ(k)] ,(130a)

∆KS(k) = ∆KS[n, χ(k)] .(130b)

The desired density functional can then be written as

(131) εunif
xc [n, χ(k)] = ε̃unif

xc [µKS [n, χ(k)] ,∆KS [n, χ(k)]]

The functionals (130) can be constructed explicitly with the help of relations (115) applied

to the uniform electron gas

n =

∫

d3k

(2π)3

[

1 − ξk
Ek

tanh

(

β

2
Ek

)]

(132a)

χ(k) =
1

2

∆KS(k)

Ek

tanh

(

β

2
Ek

)

.(132b)

In practice, to obtain the potentials {µ̃KS, ∆̃KS(k)} given some densities {ñ, χ̃(k)}, we

follow the steps:
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1. First, invert equation (132b), for the given inverse temperature β, to obtain the

relation ∆KS(k) = D(µKS, χ̃(k)). This mapping can be obtained analytically at

zero temperature, but will have to be evaluated numerically otherwise.

2. Insert D into (132a), to obtain the density as a function n(µKS).

3. Solve numerically the resulting equation, ñ = n(µ̃KS), and find µ̃KS.

4. Insert µ̃KS into the inverse function D, to obtain ∆̃KS(k) = D(µ̃KS, χ̃(k)).

This concludes the construction of the SCLDA density functional, equation (121). Un-

fortunately, there were no applications of the SCLDA to real materials up to now.

4. – Conclusions

In this article we reviewed two extensions of ground-state DFT, the first to time-

dependent systems (TDDFT), and the second to the phenomenon of superconductivity

(SCDFT). The construction of both theories is similar, and follows closely the develop-

ment of ordinary DFT. The first step is the election of the densities that will be used as

basic variables of the theory. In TDDFT one uses the time-dependent density, n(r, t),

while in SCDFT the choice falls on the pair of densities {n(r), χ(r, r′)}. The formal

foundations are then given by a Hohenberg-Kohn like theorem and by a Kohn-Sham

scheme, where the complexities of the many-body system are cast into the form of xc

potentials.

Although several different xc functionals have been proposed over the years, the local

density approximations still remain the most widespread. The basic idea behind an

LDA is very simple: One assumes that the inhomogeneous system behaves locally like

a uniform electron gas. This somewhat crude approximation is able to describe quite

complex effects. For example, when the LDA is used in the context of TDDFT, it is able

to predict very accurately linear response spectra of finite systems. For extended systems

the situation is more complicated: although EELS spectra of different materials come

out in quite good agreement with experiment, the LDA fails to reproduce the optical

absorption spectrum of semiconductors.

Certainly, the development of new, better, xc functionals does not end with the LDA.

For ground-state DFT we now have available very accurate GGAs, meta-GGAs, orbital

functionals, etc. The variety is not so large for TDDFT and SCDFT, but the pursuit for

xc functionals is still an active field of research. However, it is clear that the electron-gas

will continue to be one of the most important paradigms in any future development.
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