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Abstract

Fundamental aspects of the ensemble-density functional approach
to the calculation of excited state energies are reviewed. Attention is
given to the quasi-local density approximation for the equiensemble
exchange-correlation energy functional. In particular, compared with
experimental data, numerical results for the excitation spectrum of
the Helium atom produce an estimate of the deviations introduced by
that approximation.



1 Introduction

The ensemble approach, developed in the past decade, provides a simple ex-
tension of Density Functional Theory to excited states [1]. That approach,
proposed originally by Theophilou [2], is analogous to Mermin’s finite temper-
ature formalism [3], which focuses attention on the grand-canonical density
at temperature § = 1/kpf:

p’ =Tr {e*ﬂHﬁ} /Tr {eiﬂH}, (1)
where p is the density operator and H the grand-canonical Hamiltonian for
an interacting electron system in an external potential v(r).

The (finite) ensemble theory likewise focuses attention on an average
density, but its averaging involves a finite number M of states. Considering
the equiensemble, for example, one defines the arithmetic average

P = 3 (mpim) /M (2)

where |m) is the mth eigenstate of H, counted in order of increasing energy
E,.

In analogy with the termal averages in the canonical ensemble, averaged
physical properties can be defined in the finite ensemble. Of special interest
are the average energies £M (M =1,2,...), from which the eigenvalues of H
can be obtained. Again taking the equiensemble as an example, we have

Ey=MEM — (M - 1)EMt =M1 4 M(eM — M. (3)

At the formal level, this simple relation (which has no analogue in the thermal
ensemble) determines the excited state energies, for as shown below, the en-
semble approach produces formally exact expressions relating the ensemble-
averaged energies to the ensemble-averaged density and the single-particle
eigenvalues of Kohn-Sham-like equations. At the practical level, this scheme
nevertheless involves an essential difficulty, since the ensemble-density func-
tional theory—Ilike the ground-state and the thermal-ensemble theories—
requires an approximation for exchange-correlation energy functional to be-
come operative, and since the local density approximation (LDA), so conve-
nient for the ground-state and the thermal functionals, is inappropriate for
the finite-ensemble exchange-correlation energy functional [4].
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To overcome this difficulty, Kohn [4] has proposed a quasi-local density
approximation (QLDA), obtained by identifying the equiensemble with the
thermal ensemble. This paper, which briefly reviews the fundamentals of
the ensemble-density approach, gives special attention to that approximate
form for the exchange-correlation functional. In special, to consider a con-
crete application of the QLDA, we discuss numerical results for the excitation
spectrum of the He atom. The calculated excitation energies are in fair agree-
ment with the experimental results; an analysis of the deviations reveals two
main sources of error: (i) like the LDA, the QLDA incorporates spurious self-
interactions, and (4i) the accuracy of the QLDA fluctuates with M, so that
relatively large errors are introduced in the subtraction on the right-hand
side of Eq.(3). The former source can be easily neutralized, by measuring
energies from the ionization threshold or by introducing self-interaction cor-
rections analogous to Perdew’s and Zunger’s [5]. The latter is more resistant.
To eliminate it, an alternative approximation would be necessary, but fortu-
nately, it is not very serious, the deviations it introduces amounting to less
than 20% of the energies measured from the ionization threshold.

Following these preliminary considerations, a recapitulation of the essen-
tial features of the finite-ensemble approach will be presented in Section 2.
To keep the notation short, a non-degenerate spectrum is considered, the
extension to arbitrary degeneracy being trivial. Section 3 discusses general
aspects of the QLDA and Section 4 the results it produces for the He atom.
Conclusions are summarized in Section 5.

2 Ensemble Method

The finite-ensemble approach is founded on a generalized Rayleigh-Ritz prin-
ciple, applicable to excited states [6]. That principle states that, considered
the Hilbert space £ of the eigenstates of a Hamiltonian H, considered its M

lowest-lying eigenvalues Ey, ..., Ej;, an orthonormal set of M trial states
|p1), -, |dnr), and M positive weights wy > wy > ... wyy, then

M M

m=1 m=1

This principle has a number of special cases and corollaries; most notable
among these are the Rayleigh-Ritz principle for equiensembles [7] and the
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variational principle brought to light by Léwdin [8]. The reader is referred to
the original papers for clear discussions of those two theorems and to Ref. 6
for the conditions under which the equality holds in (4).

On the basis of the variational principle for ensembles, it is straightfor-
ward [9] to establish a Hohenberg-Kohn theorem and a Kohn-Sham scheme
for the ensemble density

M M
P (r) = 3 wn(mlpim)/ D wn, ()
m=1 m=1
where the superscript W represents the set {wq, ws, ..., wys}.

Practical considerations dictate two choices for this set of weights. Since
the QLDA applies exclusively to the equiensemble, it is convenient to con-
sider either equiensemble (i.e., equal) weights or weights that reduce to the
equiensemble in appropriate limits. In the former case, one chooses

wy=...=wy =1/M, (6)
and in the latter,
wy = W (0<w<1/M).

These definitions ensure that Y w,, = 1, making superfluous the denominator
on the right-hand side of Eq.(5). For w = 0 and for w = 1/M, Eq. (7)
reduces to the equiensembles with multiplicities M — 1 and M, respectively.
We shall refer to this interpolation between neighboring equiensembles as the
fractional occupation ensemble.

2.1 Kohn-Sham equations.

The single-particle Kohn-Sham equations for both ensembles, (6) and (7),
have the same form:

(=T a0 b ) = el o), )

Here the superscript on the single-particle energies e}-’V and wavefunctions

@} (r) remind us that they depend on the weights wy, (m =1,..., M). The
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single-particle potential is

lpl(r +/| '+ ), (9)
where as in the ground-state formalism,

Vo [P1(r) = 0B [p"]/0p" (r). (10)

Given an expression for the exchange-correlation energy functional EY [p],
one can solve these equations self-consistently, the ensemble density obtained
from the single-particle wavefunctions ¢; and eigenvalues ¢; as

P = 3 w3 Sl (0 (1)

where fj, is the occupation (zero or unity) of the jth orbital <p}’V in the mth
lowest-lying noninteracting (i.e., Kohn-Sham) eigenstate.

2.2 Excitation energies.

Different procedures distinguish the calculation of excitation energies in the
two ensembles. In the equiensemble method, after solving the Kohn-Sham
Egs. (8-11), one computes the enquiensemble energies M given by [9]

M _ oM _ 1 pM (r)p™ (1) '
EY = €& 2/—\7" — drdr
= [ M @)udp™)(r) + EX[pM), (12)

where £ M= wn, > [im€; denotes the equiensemble energy for the non-
interacting system. Once the ensemble energies M are found, Eq.(1) deter-
mines the excited-state energies.

In the fractional occupation method, a relation analogous to Eq.(12) can
be derived [9]. It is nevertheless most convenient to differentiate this relation
with respect to the weight w, defined in Eq.(7), which yields a more compact
expression for the difference between two equiensemble energies [9]:

1 0E [p"]

M _eM-1_ oM _ oM-1_ 1
6 g 53 55 +M aw pW7 (3)



where the derivative with respect to w is taken at the fixed density p"
determined by solving the Kohn-Sham equations.
Particularly interesting is the form Eq.(13) takes when M = 2. In this
case, EM = (E; + E,)/2 and EM~! = Fy, so that Eq.(13) becomes
0Bz "]

Ey—E =€V,  — V4 =2l 21 14
2 1 N+1 N aw W ( )

where e}y and €y, are the energies of the highest occupied and of the lowest
unoccupied levels in the noninteracting ground state, respectively.

For w = 0 one recovers the M = 1 equiensemble, i.e., the ground state.
With w = 0 Eq.(14) therefore relates the first excitation energy to the dif-
ference between single-particle eigenvalues of the ground-state Kohn-Sham
equations. This shows that, in principle, one can determine the first exci-
tation energy by solving the ground-state equations; the calculation of the
optical-excitation gap in semiconductors, a long-standing problem in Den-
sity Functional Theory, can in principle be carried out by this procedure. In
practice, however, an approximation for the last term on the right-hand side
of Eq.(14) is required. Unfortunately, no such approximation is currently
available.

In the opposite extreme, w = 1/2, one recovers the M = 2 equiensem-
ble and the ensemble density p'(r) is the arithmetic average between
the ground-state and the first excited-state densities. By substituting the
ground-state exchange-only potential for the ensemble exchange-correlation
potential in Egs. (9) and (10) and by neglecting the last term on the right-
hand side of Eq.(14) one obtains Slater’s transition state prescription [10] for
the calculation of the first excitation energy. This simple derivation of the
transition state method shows that, to refine that time-honored procedure,
one needs an improved approximation for the ensemble exchange-correlation
energy functional. This topic is discussed next.

3 The Quasi-Local Density Approximation.

Even in the case of slowly varying densities, the LDA provides a poor ap-
proximation for the ensemble exchange-correlation energy functional. To
show this, we consider an ensemble comprising a finite number M of states
and recall that the Local Density Approximation associates a homogeneous



interacting electron gas with the non-homogeneous system one is generally
interested in. Since the homogeneous system is infinite, for any m < M, the
energies of the mth excited state and of the ground state in the homoge-
neous interacting electron gas are identical. It follows that, in the LDA, the
ground-state and the ensemble exchange-correlation energy functionals are
identical. The local density form is therefore clearly inadequate to describe
systems of finite size, and a non-local form is required.

Kohn [4] has constructed a quasi-local density approximation by first
identifying the equiensemble with the thermal ensemble and then applying
the LDA to the latter. For equiensemble multiplicity M, the two ensembles
are equivalent in the M — oo limit. Thus, for large M, the thermal ensemble
is expected to provide a good approximation to the equiensemble. This is
confirmed by the numerical results in Section 4.

The two ensembles are identified by choosing the thermal-ensemble tem-
perature # to make identical the entropies of the two ensembles. If the entropy
of the thermal ensemble is computed in a local density approximation, we

have
fae[pw](r) dr =kpgln M. (15)

where following traditional notation, o?[p"](r) indicates the entropy per unit
volume of the interacting system o’ for a homogeneous interacting system
with density equal to the local density p™ ().

3.1 Exchange-correlation functionals.

Eq.(15) substitutes thermal averages for the equiensemble averages in the
definition

Bl = B (o)~ 7o) 5 [ S drar = [ ptryutry a0

of the equiensemble exchange-correlation energy functional, which can there-
fore be written

Bl = Bl - 120 - 5 [ A v [y dn )

where a different temperature 6; has been associated with the kinetic energy
functional, because that functional refers to a non-interacting ensemble and
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thus must be identified with a thermal ensemble through the relation
/ % [p"(r) dr = kyln M (18)

(where oy is the entropy per unit volume for a noninteracting homogeneous
gas), instead of Eq.(15).

With the usual definition of the thermal ensemble [11] exchange-
correlation energy functional E?,[p], Eq.(17) can be written

Ey(pl = Eb.lp] + T [p) — T [p). (19)

Now that all quantities on the right-hand side are thermal averages, one
can take advantage of the LDA to write

BVl = [ ebloltr)dr+ [{8lpl) = ()} ar,  (20)

where e, and t? are the exchange-correlation and kinetic energy of an inter-
acting and a noninteracting homogeneous systems at temperature 6, respec-
tively. Finally, an approximation for the equiensemble exchange-correlation
potential is easily obtained by functionally differentiating Eq.(20) with re-
spect to p(r), at fixed entropy. This yields

vael)(r) = W[l (r) = wlpl(r), (21)

where p? (%) represents the chemical potential of a homogeneous interacting
(noninteracting) gas at the temperature 6.

3.2 Practical and operational aspects.

With Egs. (15) and (18) defining the two temperatures 6 and 6, practical
computations of the equiensemble energy proceeds as follows. Given an initial
approximation for the potential vs(r), one solves Eq.(8) and determines the
single-particle wavefunctions and energies. From them, through Eq.(11), one
computes the ensemble-averaged densities p" (1) and then the two tempera-
tures, by solving numerically Eqgs. (15) and (18). Eq.(21) then provides an
approximation for the exchange-correlation potential on the right-hand side
of Eq.(9) and the cycle can be repeated. Once self-consistency is reached
within a pre-established accuracy, the resulting density is substituted in Egs.
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(12) and (20), thus determining the equiensemble energy in the equiensemble
approach.

In the fractional occupation approach, an additional approximation is
necessary to define the derivative on the right-hand side of Eq.(13). Since
that derivative is taken at constant density, and since the only available
approximation—the QLDA—covers exclusively the equiensemble, it is conve-
nient to resort to the following finite-difference formula interpolating between
the M — 1-state (i.e., w = 0) and the M-state (w = 1/M) equiensembles:

Ew 1/2M[p]

G = M{BLT M) - BL2p)) (22)

By choosing w = 1/2M on the left-hand side, we reduce the error in this
expression to O(1/M?). The exchange-correlation potential v2=1/2M needed
to compute p¥=1/2M is likewise determined by interpolation:

v M [l (r) = {0l M p](r) + vl () } /2, (23)

again with an error of O(1/M?). In the QLDA, the two equiensemble poten-
tials on the right-hand side are given by Eq.(21).

The solution of the Kohn-Sham equations now proceeds as in the
equiensemble method, and Eq.(22) determines the equiensemble energy dif-
ferences.

The current status of the homogeneous electron gas problem, recently re-
viewed by Dandrea et al. [12], favors practical applications of both schemes.
Expressions for the exchange-correlation energy are available [12; 13]; of
these, the most accurate is the form proposed by Tanaka et al. [13], which
has been employed in the numerical computation reported in Section 4.

4 Numerical Results.

Figure 1 displays equiensemble energies calculated in the equiensemble ap-
proach as a function of 1/ VM, to distribute more evenly the plotted data.
The experimental energies, equiensemble averaged, are also shown. Although
in fair agreement with the experimental values, the calculated &M overes-
timate them systematically. Moreover, as M — oo, as indicated by the
horizontal arrows pointing to the vertical axis, while the experimental values



tend to the ionization threshold, EEXFT = —4Ry, the calculated ones tend to
the LDA approximation, ELPA = —3.725Ry. Since most of the discrepancy
between these two threshold energies is due to the spurious self-interactions
included in the LDA, the same self-interactions must respond for the discrep-
ancy between the centered circles and the triangles in the figure.

This suggests that one add to the QLDA self-interaction corrections anal-
ogous to those of Perdew’s and Zunger’s [5]. An equally effective, if more
primitive, solution is to compare the equiensemble energies measured from
the LDA ionization threshold FLPA with the experimental averages reckoned
from EEXFT. As Table 1 shows, the agreement is then very good.

As expected, the agreement improves as M increases and the equivalence
between the equiensemble and the thermal ensemble becomes more precise.
The convergence to the experimental values in nonuniform, however. In fact,
the percentual error in the table is a decreasing function of the number of
angular momenta in the multiplet. Observing that a more complete set of
angular momenta represents better the homogeneous gas, we associate this
nonuniform convergence with the LDA in Egs. (20) and (21).

Table 1 also compares the equiensemble energy differences calculated by
the two ensemble approaches with the corresponding experimental values.
While the remarkable agreement between the two methods indicates that
the additional approximation in the fractional occupation approach affects
insignificantly the accuracy of the calculation, the nonuniform convergence of
the equiensemble energies to the experimental values is an important source
of error in the calculated equiensemble energy differences. Through Eq.(3),
this error is transmitted to the calculated excited-state energies. As a conse-
quence, as Figure 1 shows, when compared with the experimental energies the
excited-state energies calculated by either method display oscillatory errors
with relatively large amplitude.

5 Conclusions

The quasi-local density approximation turns the ensemble-density functional
formalism into a practical calculational procedure. The approximation is
based upon the equivalence between the equiensemble and the thermal en-
semble, exact in the limit of large ensemble multiplicity. Currently available
expressions for the exchange-correlation energy of a homogeneous electron



gas at finite temperature are sufficiently accurate to support practical imple-
mentations of the program.

The accuracy of the approximation is centrally limited by selfinteractions
inherent in the local density approximation. Corrected for these interactions,
the approximation yields equiensemble energies in good agreement with the
experimental results. This agreement becomes more precise as the ensem-
ble multiplicity grows, but depends on the number of angular momenta in
each multiplet. The nonuniform accuracy affects perversely the accuracy of
the equiensemble energy differences and consequently the accuracy of the
calculated excited-state energies. In spite of this, of the limited number
of electrons, and in spite of the rapidly varying density of the system here
considered—the He atom—the agreement with the experimental excitation
energies is fair.
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FIGURE CAPTIONS

1. Equiensemble energies calculated by the equiensemble approach (cir-
cles) compared with equiensemble averaged experimental energies (tri-
angles) for the ensembles of He states indicated in Table I as functions
of 1/ v/M where M is the ensemble multiplicity. The dashed lines guide
the eye to the infinite-multiplicity limits, which coincide with the ex-
perimental and LDA ionization thresholds , respectively, indicated by
the horizontal arrows pointing to the vertical axis.

2. Excited-state energies calculated in the equiensemble (solid lines)and
fractional occupation (dashed lines) approaches, compared with the
experimental energies in the He spectrum (bold lines). All energies have
been averaged over spin, are subtracted from the ionization threshold
(see text), and are classified by total electronic angular momentum.
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Table 1: Equiensemble energies measured from ELPA = —3.725Ry, and en-
ergy differences in the equiensemble (EQ) and fractional occupation (FO)
approaches, compared with the experimental (EXPT) equiensemble energies,

measured from EEXPT = —4.Ry, and differences.
Highest
M Multiplet EEXPT  gFQ AEE?  AEFO  AEEXPT

1T 1S -1.807 -L.047( 8%)

5) 2S -0.630 -0.727(15%) 1.220 1.240 1.177
17 2P -0.370 -0.386( 4%) 0.341  0.346 0.260
21 3S -0.325 -0.345(6%) 0.041 0.041 0.045
33 3P -0.249 -0.265(6%) 0.081 0.083  0.077
53 3D -0.197 -0.200( 2%) 0.065 0.067 0.052
57 4S -0.188 -0.192( 2%) 0.008 0.008 0.009
69 4P -0.166 -0.171( 3%) 0.020 0.020 0.022
89 4D -0.143  -0.146( 2%) 0.025 0.024 0.023

117 4F -0.124  -0.123( 1%) 0.024 0.023 0.019
121 5S -0.121  -0.120( 1%) 0.002  0.002 0.003
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