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Abstract

Starting from a formally exact density-functional representation of the frequency-
dependent linear density response and exploiting the fact that the latter has poles
at the true excitation energies, we develop a density-functional method for the
calculation of excitation energies. Simple additive corrections to the Kohn-Sham
single-particle transition energies are derived whose actual computation only re-
quires the ordinary static Kohn-Sham orbitals and the corresponding eigenvalues.

Numerical results are presented for spin singlet and triplet energies.

1 Introduction

In recent years, density-functional theory (DFT) [1, 2, 3, 4, 5] has enjoyed increas-
ing popularity in the field of quantum chemistry. The computational simplicity of
the Kohn-Sham scheme and the availability of reliable exchange-correlation (xc)
functionals allow accurate calculations even for very large systems [6, 7]. The tradi-
tional density functional formalism of Hohenberg, Kohn and Sham [1, 2] is mainly
a ground-state theory. In view of the advantages of DFT, a generalization allowing
the calculation of excitation spectra is highly desirable, especially since most exper-
imental data are obtained by spectroscopical techniques. One might be tempted to
interpret the Kohn-Sham single-particle energy differences as excitation energies.
This interpretation, however, has no rigorous basis and in practice the Kohn-Sham
orbital energy differences deviate by 10-50% from the true excitation energies. An-
other deficiency of the Kohn-Sham orbital energy spectrum is the fact that it shows
no multiplet-splittings.

To deal with excited states, several extensions of ground-state DFT have been
proposed which rely either on the Rayleigh-Ritz principle for the lowest eigenstate
of each symmetry class [8, 9, 10] or on a variational principle for ensembles [11, 12,
13, 14, 15, 16]. A practical difficulty of these approaches is that the respective xc
energy functionals depend on the symmetry labels of the state considered or on the

particular ensemble. Until today, little is known about the explicit form of these



excited-state xc functionals although significant progress has recently been made in
the ensemble formalism [17, 18, 19, 20, 21, 22].

In this article we are going to elaborate on a different approach [23, 24, 25]
to the calculation of excitation energies which is based on time-dependent density-
functional theory (TDDFT) [26]. In the linear response regime TDDFT has been
applied rather successfully to the photo-response of atoms and molecules [27, 28,
29, 30, 31]. Dynamical hyperpolarizabilities have also been calculated [32] and first
applications beyond the perturbative regime have emerged [33, 34, 35]. For a recent
review of TDDFT and its applications, see [36].

To calculate excitation energies from TDDFT we use the fact that the frequency-
dependent linear density response of a finite system exhibits discrete poles at the
true (correlated) excitation energies of the unperturbed system. It can be shown
[23] that the exact linear density response of an interacting system can be written as
the linear density response of a noninteracting (Kohn-Sham) system to an effective
perturbation. The basic idea is to use this formally exact representation of the
frequency-dependent linear density response to calculate the shifts of the Kohn-
Sham orbital energy differences (which are the poles of the Kohn-Sham response
function) towards the true excitation energies in a systematic way. This programme
has recently been carried out [23] rather successfully to the calculation of singlet
excitation energies. The purpose of the present article is to extend the scheme to
incorporate spin degrees of freedom. This will allow us to calculate the excitation

energies of spin multiplets.

2 Method

The frequency-dependent linear density response ni,(r,w) of interacting electrons
with spin ¢ to a frequency-dependent perturbation v1,(y,w) is usually written in

terms of the full response function Yy, as
nie(r,w) = Z/d3y Xow (T, ¥ w)v1 (¥, w) - 1)

Alternatively, the exact frequency-dependent spin-density response can be calcu-

lated (self-consistently) from

mo0,6) = 3 [ @ xeon e,y 10(3:4) @)
as the response of noninteracting (Kohn-Sham) particles subject to the effective
potential
1
vs1v(y,w) = v (y,w) + Z/d3y’ <|y —51* frevwr (y,y’;w)> mw (y',w) . (3)

Here the spin-dependent exchange-correlation kernel fy. is given by the Fourier

transform of
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with respect to (¢t —t'). The proof that Eqs. (2) - (4) represent the ezact linear
spin-density response of the interacting system is based on the spin-dependent gen-
eralization [37] of TDDFT. The argument follows step by step the proof for the
spin-independent case given in Ref. [23] and will therefore not be repeated here.
The response-function s of the Kohn-Sham system can be expressed in terms of

the unperturbed static Kohn-Sham spin orbitals ¢;, as
$jo (r) B} (v) 97, (') o (r')

w — (€jo — €ko) + N

Xs oo’ (rarl;w) =050’ Z(fko - fja)

5.k

(5)

where fro, fjo are the Fermi-occupation factors (1 or 0). The summations in
(5) run over all unperturbed Kohn-Sham orbitals, including the continuum states.
Note that the Kohn-Sham response function (5) is diagonal in the spin variable
and exhibits poles at frequencies wjrs = €j; — €xs corresponding to Kohn-Sham
single-particle excitations within the same spin space. In order to calculate the

shifts towards the true excitation energies Q of the interacting system, we rewrite
Eq. (2) as

, 1
Z/dB (au’(sr_ Z/d staury7 )(|y y,|
+fxcw/’ (yvyl;w)))nlv y7 Z/d stm/ r,y,w )Uly(y, ) (6)

In general, the true excitation energies {2 are not identical with the Kohn-Sham
excitation energies wjr,. Therefore, the right-hand side of Eq. (6) remains finite for
w — €. Since, on the other hand, the ezact spin-density response n1,, has poles at
the true excitation energies (2, the integral operator acting on nj, on the left-hand
side of Eq. (6) cannot be invertible for w — €. This is easily seen by reductio
ad absurdum: Assuming the inverse operator existed, its action on both sides of
Eq. (6) would result in a finite right-hand side for w — Q in contradiction to the
fact that nj,, remaining on the left-hand side, has a pole at w = Q.

Consequently, the true excitation energies ) are characterized as those frequen-
cies where the integral operator acting on the spin-density vector in Eq. (6) is not
invertible or, equivalently, where the eigenvalues of this operator vanish. If the
delta-function in Eq. (6) is integrated out the true excitation energies Q are those

frequencies, where the eigenvalues A(w) of

/d3 ! /d Y Xsov (T, y;w) <|y—1y 0 + frevw (¥, ¥'5 w)) Yo (' w) =
Mw)ve(r,w)  (7)

satisfy
A(Q)=1. (®)

This condition rigorously determines the true excitation spectrum of the interacting

system considered.



For notational convenience, we introduce double indices ¢ = (4, k) so that wy, =
€jo — €re denotes the excitation energy of the single-particle transition (jo — ko).

Moreover, we define

Do (r) = ko (r)"djo(r), 9)
fro = fio (10)

Qo

and set

gqo Z/d3 ! /d3y<1>qg <|y_17y,| +fxcau’(}’7yl;w)> 'YV’(ylvw)' (11)

With these definitions, Eq. (7) takes the form

Z%gqa( ) = AMw)ye(r,w). (12)

Solving this equation for v, (r,w) and reinserting the result on the right-hand side
of Eq. (11) leads to
Z Z Miael) o () = Mw)ar (@) (13)

w— wqg/+m

Here we have introduced the matrix elements

Moo o1 (W) = agror /dST /d37'l (I)Za(r) <# + fxcoor (r,r’;w)) Dyor(r').

e — |
(14)
Note that the summation in Eq. (13) extends over all single-particle transitions
q'c’' between occupied and unoccupied Kohn-Sham orbitals, including the contin-
uum states. Up to this point, no approximations have been made. In order to
actually calculate A\(w), the eigenvalue problem (13) has to be truncated in one
way or another. One possibility is to expand all quantities in Eq. (13) about one

particular KS-orbital energy difference wp,:

() = anlopr)+ By (15)
AMw) = j(_wg) + B(wpr) + ... (16)

The matrix elements with wy,; # wy e can be expanded into a Taylor series

W= Wyo +1) Wpe —Wyer +1  dw (W — wge + i1

| w-wman

Wpr
whereas, for wpr = wg’, the matrix elements have to be represented by a Laurent

series
Mqo' q'a’ (w) — Mqa q'o’! (wp'r) + dMqo’ o (UJ)
W= Wyor T4 W= Wpr 17 dw

... (18)

Wpr
Inserting Eqgs. (15) - (18) in Eq. (13) the coefficients A and B are readily identified.

If the pole wy, is non-degenerate one finds:

A(wpr) = Mpr pr (wpr) (19)



and

dMT-,— ]. MTIO-IwTMIUITwT
B(wp‘r): p7Pp + pPT4q (P) q P(IJ). (20)

dw M, w Wpr — Wylg! + 8
Wpr pror (Wpr) g o' Epr pT gor T

The corresponding eigenvector (in lowest order) is given by

1

&o = quup‘r(wp‘r)ng (21)

with (pr) fixed. The number &, is free and can be chosen to properly normalize
the vector £.
If the pole wy; is p-fold degenerate,

Wpiry = Wppry = -+ - = Wp,r, = Wo, (22)

the lowest-order coefficient A in Eq. (16) is determined by the following matrix

equation
Z piTi kak ) I(JZ%C = A"( ) 1(7?7)'1 ’ i=1... - (23)

In general, one obta.lns p different eigenvalues A; ... A,. Then the remaining com-

ponents of the corresponding eigenvectors £ can be calculated from

[

Z 4o Pk Tk wO 61(171:2% ) (24)

An( k

g(n) -

once the eigenvalue problem (23) has been solved. Assuming that the true excitation
energy {1 is not too far away from wyq it will be sufficient to consider only the lowest-

order terms of the above Laurent expansions. In particular, we set

A (wo)
A it 2 25
n(@) w— wo (25)
The condition (8) and its complex conjugate, A\*(Q2) = 1, then lead, in this order,

to a compact expression for the excitation energies:
Q, = wo + RA4, (wg) . (26)

This is the central result of our analysis. Eq. (26) shows that a single KS pole
can lead to several many-body excitation energies. The corresponding oscillator
strengths can be obtained [25] from the eigenvectors £(™ and the KS oscillator
strengths.

3 Application to closed-shell systems

In this section, we will apply the above formalism to systems with spin-unpolarized
ground states. For these systems, the Kohn-Sham orbital eigenvalues are degenerate
with respect to the spin variable, which implies a lack of spin-multiplet structure in

the Kohn-Sham spectrum. In the following, we demonstrate how this is restored by



the lowest-order corrections (26). Assuming that there are no further degeneracies
besides the spin degeneracy, Eq. (23) reduces to the following (2 x 2) eigenvalue

problem:

Z Mpopor (wo)€po (wo) = Aps(wo) - (27)
o'=1{

For spin-saturated systems, one finds Mptpr = Mpyp, and Mprp, = Mppt, so that
the eigenvalues of Eq.(27) are given by

A2 = Mptpt £ Mptp, - (28)
By Eq. (26), the resulting excitation energies are:

3
Q2

wo + R{Mprpt + Mprpy } (29)
wo + R{Mptpr — Mprp, } - (30)

Inserting the explicit form of the matrix elements (14) one finds

0 = wo+ 2§R/d3r/d3r' @, (r) (ﬁ + fxc(r,r';wo)) ®,(r") (31)

Q= wp+2R / &r / 01 B3 ()12 G (1,13 00) B, () (32)
where )
Fre(rx'sw) =5 D7 frcoor (115w) (33)
o,0'==+1
and .
ch(r7 rl;w) =712 Z (U : al)fxCUa' (I’, rl;w) ) (34)
4'UIO o,0'=%1

po denotes the Bohr magneton. For simplicity, we have dropped the spin index of
®,, in Eqgs. (31) and (32). (This is possible only if the unperturbed KS ground-state
determinant is spin-saturated since, in this case, ¢;4(r) = ¢;, (r) for all j5.)

The quantity Gy, gives rise to exchange and correlation effects in the Kohn-
Sham equation for the linear response of the frequency-dependent magnetization
density m(r,w) = po(ne(r,w) — ny(r,w)) [37].

The fact that the magnetization density response naturally involves spin-flip
processes, suggests that ), represents the spin triplet excitation energies of many-
electron systems with spin-saturated ground states. The corresponding spin singlet
excitation energies, on the other hand, are given by ;. This assignment will be

given further support by the numerical results presented in the next section.

4 Results and Discussion

Apart from the truncation of the expansions (15) - (18), two further approximations

are necessary in the described TDDFT-calculation of excitation energies:

(i) The frequency-dependent xc kernels fyx. and Gy have to be approximated.



(ii) The static Kohn-Sham orbitals entering Eqs. (31) and (32) through Eq. (9)

stat
xc

have to be calculated with an approzimate (static) potential v

As an application of the method, we consider the lowest excitation energies of
the alkaline earths and the elements of the zinc series. Here, in addition to the
degeneracy with respect to the spin index, the s — p transitions under consideration
are threefold degenerate in the magnetic quantum number m of the “final” state.
Hence, we have six degenerate poles and Eq. (23) is a (6 x 6) eigenvalue problem. In
our case, however, the matrix My, ; p,r, in Eq. (23) consists of three identical (2 x 2)
blocks, leading only to two distinct corrections, independent of m, as it should be.
The resulting triplet states are still degenerate with respect to the total angular
momentum quantum number because the spin-orbit coupling is not accounted for
in the non-relativistic Kohn-Sham equations.

In tables 1 - 4 we show excitation energies calculated from Eqs. (31) and (32).
The calculation of Table 1 employs the ordinary local density approximation (LDA)
5tat (using the parametrization of Vosko, Wilk and Nusair [38]) and the so-called
‘adiabatic’ LDA (ALDA) for the xc kernels:

for v

2

FAPA L], 15 ) = 8(r — 1) (pekom

6—p2 (pexc (pa C)) ‘(pZTbo (r), ¢=0) (35)

and [39]

1 82 hom

ALDA /. — _ ! -
ch [no](r,r ’w) = 5(1’ r ),U,%TL(I') 8C2 (exc (pv C)) |(p:’n,0(r)’€:0) :

(36)

For the xc energy per particle, €29™, of the homogeneous electron gas and its

second derivative with respect to the relative spin polarization ¢ := (ny—ny)/n, also
called the xc-contribution to the “spin-stiffness coefficient”, we use the parametriza-
tion of Ref. [38].

The calculation of Table 2 uses the x-only optimized effective potential (OEP)

stat
xC

for vt in the approximation of Krieger, Li and Iafrate [40] and for fy. the kernel

2|5, St ()i ()

v —1'| o (r) 0 (r")

fTDOEP
X

c [NO] (I', I'I; LU) = y (37)

which is based on the time-dependent OEP method in the x-only approximation
[23, 41].

The mean absolute deviation from the experimental singlet spectrum for the
excitation energies calculated from Eq. (31) is 36 mryd for the pure LDA calculation
of Table 1 and 11 mryd for the x-only OEP calculation of Table 2.

In Table 3 we show the results of a “hybrid” calculation (OEP+ALDA) which
employs the x-only OEP for v3%3* and the ALDA (including local exchange and
correlation terms) for the xc kernels. The results of this calculation are of similar
quality as the x-only OEP calculation of Table 2. The mean absolute deviation

from experiment is 15 mryd. Thus, for the singlet spectrum, the OEP values are



clearly superior to the LDA results and are also better than the usual LDA-Agcp
values, which deviate on the average by 27 mryd from the experimental data. This
can be traced back to the sensitivity of the unoccupied orbitals and their energy
eigenvalues to the asymptotic behavior of the Kohn-Sham potential. One major
reason for the superiority of the optimized effective potential is the fact that it is self-
interaction free and therefore has the correct —1/r tail (while the LDA potential falls
off exponentially). We note in passing that since the optimized effective potential
decreases correctly for all orbitals, it is also superior to the Hartree-Fock (HF)
potential which is self-interaction free only for the occupied orbitals but not for
the unoccupied ones. Consequently, HF orbital-energy differences are typically too
large.

The triplet spectrum obtained from Eq. (32) within the LDA deviates on the
average from experiment by 9 mryd, which is slightly better than the mean absolute
deviation of 10 mryd of the LDA-Agcr spectrum. However, in spite of the fact that
the OEP provides self-interaction free orbitals, it reproduces the triplet spectrum
less accurately: the average deviation from experiment is 55 mryd, as can be seen
from Table 2. This is a consequence of the fact that we have employed the time-
dependent z-only approximation for the kernel fyc,or. This approximation neglects
the correlation between electrons of antiparallel spin and leads to an xc kernel which
is diagonal in spin space. Accordingly, from Egs. (33) and (34), we have within the
x-only TDOEP

GIPORF [n](r. 1/, 10) = %fEPOEP n)(r, s 0) (38)
0

We expect that the OEP triplet energies can be improved considerably by adding

appropriate correlation terms [42, 43] to the TDOEP xc kernels. This expectation

stat
XC

is backed by the observation that when the x-only OEP approximation of v$2* is
combined with a local density prescription (ALDA) for exchange and correlation
in the xc kernels fy. and Gyc, the triplet spectrum is reproduced fairly well by
Eq. (32). This can be seen from Table 3, where the calculated triplet spectrum
deviates on the average by 15 mryd from the experimentally measured one.

To complete the discussion of the various approximate xc functionals employed,
we list the singlet-triplet separations for the lowest S — P transitions of the alkaline
earth elements and the zinc series in Table 4. Obviously, by calculating 1 — Qs from
Egs. (31) and (32), the Kohn-Sham excitation energies wg and hence all the errors
contained in the Kohn-Sham eigenvalues cancel out. Again, the mean absolute
deviation § from experiment clearly shows that singlet-triplet splittings are well
reproduced only if correlation is included in the xc kernels. The best results are

obtained when the ground-state potential is self-interaction free (OEP+ALDA).



5 Summary and Conclusion

We have developed a formally exact scheme of calculating excitation energies from
TDDFT. Within that scheme, we arrived at compact approrimate expressions for
the excitation energies which performed quite well in practical calculations of singlet
and triplet excitations. The calculation involves only known ground-state quanti-
ties, i.e., the ordinary static Kohn-Sham orbitals and the corresponding Kohn-Sham
eigenvalues. Thus the scheme described here requires only one self-consistent Kohn-
Sham calculation, whereas the so-called Agcr procedure involves linear combina-
tions of two or more self-consistent total energies [9].

In spite of the fact that we focused our attention to the lowest transition energies
of closed shell systems, and spin-multiplets, the method is also capable of dealing
with spatial multiplets, higher excitations and open-shell systems. Work along these

lines is in progress.
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QLDA

LDA

Atom | State | Qexp Q(Agcr) | wg

Be 1P 10388 | 0.399 0.331 0.257
3Py 0.200
3p 0.200 | 0.192 0.181 0.257
3P, | 0.200

Mg 'py 10319 | 0.351 0.299 0.249
3Py | 0.199
3P | 0.199 | 0.209 0.206 0.249
3P, | 0.200

Ca 1P 0.216 | 0.263 0.211 0.176
3P |0.138
3P 0.139 | 0.145 0.144 0.176
3Py | 0.140

Zn 1Py | 0.426 | 0.477 0.403 0.352
3Py 0.294
3P | 0.296 | 0.314 0.316 0.352
3P, | 0.300

Sr 1py 10198 | 0.241 0.193 0.163
3Py | 0.130
3P, | 0.132 | 0.136 0.135 0.163
3P, | 0.136

Cd 1Py ] 0.398 | 0.427 0.346 0.303
3Py, | 0.274
3P, | 0.279 | 0.269 0.272 0.303
3P, | 0.290

Table 1: The lowest S—P excitation energies of various atoms. The experimental
values (first column) [44] are compared with results calculated from Eq. (31) for
the singlet and from Eq. (32) for the triplet (second column) and with ordinary
LDA-Agcr values (third column). The LDA was employed for v3¥3* and the ALDA

for the xc kernels. The corresponding Kohn-Sham orbital-energy differences wg are

shown in the last column (All values in rydbergs).
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Atom | State | Qexp | QOFF | Q(Ascr) | w§EF

Be 1P 0.388 | 0.392 0.331 0.259
5B, | 0.200

3p 0.200 | 0.138 0.181 0.259
3p, | 0.200

Mg 1P 0.319 | 0.327 0.299 0.234
5B, | 0.199

3p; 0.199 | 0.151 0.206 0.234
3Py 0.200

Ca 1p 0.216 | 0.234 0.211 0.157
5B, | 0.138

3p 0.139 | 0.090 0.144 0.157
3Py 0.140

7Zn 1p 0.426 | 0.422 0.403 0.314
5Py | 0.204

3P 0.296 | 0.250 0.316 0.314
3P, | 0.300

Sr 1p 0.198 | 0.210 0.193 0.141
5B, | 0.130

3p 0.132 | 0.081 0.135 0.141
3Py 0.136

Cd 1P 0.398 | 0.376 0.346 0.269
5P, | 0.274

3p 0.279 | 0.211 0.272 0.269
3P, | 0.290

Table 2: The lowest S—P excitation energies of various atoms. The experimental
values (first column) [44] are compared with results calculated from Eq. (31) for
the singlet and from Eq. (32) for the triplet (second column) and with ordinary
LDA-Agcp values (third column). The x-only optimized effective potential was
used for v8%% and the approximate TDOEP kernels (37), (38). The corresponding

Kohn-Sham orbital-energy differences wy are shown in the last column (All values

XC

in rydbergs).
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Atom | State | Qexp | QOFPHALDA | O(Ager) | w§FP

Be 1P 0.388 0.398 0.331 0.259
5B, | 0.200

3p 0.200 0.196 0.181 0.259
3p, | 0.200

Mg 1P 0.319 0.329 0.299 0.234
5B, | 0.199

3p; 0.199 0.196 0.206 0.234
3Py 0.200

Ca 1p 0.216 0.236 0.211 0.157
5B, | 0.138

3P, 0.139 0.129 0.144 0.157
3Py 0.140

7Zn 1p 0.426 0.417 0.403 0.314
5Py | 0.204

3P 0.296 0.280 0.316 0.314
3P, | 0.300

Sr 1p 0.198 0.211 0.193 0.141
5B, | 0.130

3p 0.132 0.117 0.135 0.141
3Py 0.136

Cd 1P 0.398 0.370 0.346 0.269
5P, | 0.274

3p 0.279 0.239 0.272 0.269
3P, | 0.290

Table 3: The lowest S—P excitation energies of various atoms. The experimental
values (first column) [44] are compared with results calculated from Eq. (31) for the
singlet and from Eq. (32) for the triplet (second column) and with ordinary LDA-

Agcr values (third column). The x-only optimized effective potential was used for

stat

UXC

The corresponding Kohn-Sham orbital-energy differences wg are shown in the last

column (All values in rydbergs).
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and the ALDA (including exchange and correlation terms) for the xc kernels.




Atom
Be

EXP | LDA | OEP | OEP+ALDA | Ascr
0.188
0.188 | 0.207 | 0.253 0.202 0.150
0.188
0.120
0.120 | 0.142 | 0.175 0.133 0.094
0.120
0.077
0.077 | 0.118 | 0.144 0.107 0.067
0.076
0.132
0.130 | 0.164 | 0.172 0.136 0.087
0.126
0.067
0.066 | 0.105 | 0.129 0.094 0.058
0.062
0.124
0.119 | 0.158 | 0.165 0.131 0.074
0.108
0 0.033 | 0.057 0.018 0.028

Mg

7n

Sr

Cd

N = O = OIN = O|IN = O|IN = O = Oy

Table 4: Singlet-triplet separations for the lowest S — P transitions of various
atoms calculated with different approximations of the xc-functionals (see text) in
comparison with experimental values [44] (EXP). J is the total angular momentum
quantum number of the triplet state. § denotes the mean absolute deviation of the

calculated values from the experimental ones (All values in rydbergs).
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