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1. INTRODUCTION

Owing to the rapid e
�

xperimental progress in the
field of laser physics, ultrashort laser pulses of v
�

ery
high intensities ha
�

ve become available in recent years.
The electric field produced in such pulses can reach or
e� ven exceed the strength of the static nuclear Coulomb
field experienced by an electron on the first Bohr orbit.
In the hydrogen atom, this electric field is of the order
of 5.1 �

 

×

 

 10

 

9
�

 

 V/m, which corresponds to the electric field
amplitude of an electromagnetic plane w� ave of inten-
sity 3.51 �

 

×

 

 10

 

16

 

 W/cm

 

2
�

 

. If an atom is placed in the focus
of such a laser pulse one observ� es a wealth of novel
phenomena [1–3] which cannot be e� xplained by ordi-
nary perturbation theory.

The advent of short laser pulse experiments has
revealed evidence of a significantly enhanced produc-
tion of doubly char
�

ged noble gas atoms [4]. Recently,
in high-precision measurements covering a wide
dynamical range of intensity-dependent ionization
�
[5, 6], a “knee” structure in the double ionization yields
of Helium has been observ� ed. Up to an intensity of
roughly 3 �

 

×

 

 10

 

15

 

 W/cm

 

2
�

 

, the double-ionization yields

 

ar� e orders of magnitude

 

 above the signal that one
w� ould expect from a “sequential” mechanism, where
the second electron only comes from the ionization of
�
He

 

+

 

. The He

 

+

 

 and the He

 

2+

 

 curves saturate at the same
intensity, indicating that the ionization does proceed
nonsequentially.

The salient feature of enhanced double ionization
�

suggests the e� xistence of a “direct” process where the
amount of ener� gy absorbed from the radiation field is
shared among the tw� o electrons. Needless to say, that
the so-called “single-acti
�

ve electron approximation”
[7, 8], which is based on the assumption that just one
electron at a time is being acti� ve in the interaction with
the e
�

xternal laser field, is not capable of describing
these ef
�

fects. Perturbative methods [9–11] and the solu-
tion of theoretical models based on a simplified dielec-
�
tronic interaction [12] underline the importance of
�

time-dependent electron–electron correlation during
�
the process. Further e
�

vidence of the fact that electron
correlation leads to qualitati ve effects in intense laser–
atom interactions w� as gained from the recent solution
of the time-dependent Schrödinger equation of a one-�
dimensional model atom [13].
�

The double-ionization measurements constitute the
�

most distinct manifestation of electron correlation in
the physics of intense laser–atom interactions, making
�
indispensable a nonperturbati
!

ve quantum mechanical
description of interacting electrons in strong, time-
�
dependent e
�

xternal fields. In principle, this requires the
full solution of the three-dimensional time-dependent
Schrödinger equation for interacting man
"

y-particle sys-
tems. 
�

Work along these lines for the helium atom has
already be� gun [14–16], but even with the use of modern
massi# vely parallel computers, the problem is barely
tractable. Clearly
�

, in view of its computational advan-
tages, time-dependent density functional theory [17,
�
18] opens up a viable route towards the exploration of
the physics of time-dependent man
�

y-particle systems.
It pro
$

vides an in principle exact alternative to account
for the fully correlated character of the problem by vir-
tue of the time-dependent e
�

xchange-correlation poten-
tial. 
�

The solution of the time-dependent Kohn–Sham
equations brings within reach a fully nonlinear time-�
dependent 
�

 

all electr� on

 

 treatment of atoms in strong
laser fields.

2. INTEGRA
%

TION OF THE TIME-DEPENDENT 
KOHN–SHAM EQUATIONS

By virtue of the theorem of Runge and Gross [17],
e� very observable can, in principle, be calculated from
the time-dependent density
�

. In the framework of time-
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—In this work we address the problem of multiple ionization of atoms in strong laser fields (in the
infrared and visible range). To this end we numerically solve the full, three-dimensional time-dependent Kohn–
Sham equations for a Helium atom in a strong laser field at w
&

avelengths of 780 and 614 nm. Explicit density
functionals for the calculation of ionization probabilities are de
'

veloped. From the results, we will draw conclu-
sions about the role of electronic correlation in the ionization dynamics and about the v( alidity of present-day
e) xchange-correlation potentials.
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dependent density functional theory
*

, this density can be
obtained from+

(1)
,

(
,

 

N
-

 

 being the number of electrons) with orbitals 

 

ϕ

 

j
.

 

σ/

 

(
,

 

r

 

, 

 

t0

 

)
1

satisfying the time-dependent K2 ohn–Sham equation+

(2)
,

(atomic units are used throughout). In practice, the
,
time-dependent e
3

xchange-correlation potential 4

 

v

 

xc5

 

 has
to be approximated. 
3

The total 

 

external6

 

 potential experi-
enced by the electrons in the helium atom (in dipole7
approximation and length g8 auge) is gi8 v9 en by7

(3)
,

The electric fi
:

eld of the laser with frequenc7 y ;

 

ω

 

 and peak
strength 2

 

E
<

 

0
=

 

 is assumed to be polarized along the

 

z>

 

-direction, and can further be characterized by an
*

en7 v9 elope function 7

 

f
?

 

(
,

 

t0

 

).
1

Throughout the propagation, the equidistant time-8
steps were chosen according to 2

 

∆

 

t0

 

 

 

≤

 

 (4

 

U

 

p0@

 

)
1

 

–1

 

, with

 

U

 

p0@

 

 =  being the ponderomotiv9 e potential at7
the peak of the pulse.
3

To a+ v9 oid spurious refl+ ections at the grid boundary7 ,
absorbing boundary conditions are introduced: 8 After
each time step, the orbitals are multiplied by a function7
which is unity on the interior of the grid and then fA alls8
to zero lik
3

e cos7

 

1/4

 

 ov9 er a width of roughly ten percent of7
the respecti
3

v9 e total grid size.7
Due to axial symmetry
B

, discretization in cylindrical;
coordinates leads to a nonuniform rectangular grid inC
the (
3

 

ρ

 

, 

 

z>

 

)-plane. In the 
1

 

z>

 

-direction, the dimension of the
grid is goD v9 erned by the classical amplitude 7

 

α

 

classE

 

 =

 

E

 

0
=

 

/
F

 

ω

 

2

 

 of the quiv9 er motion of an electron in the electric7
fi
G

eld 7

 

E
<

 

0
=

 

 at the peak of the pulse. The grid w
:

as chosen to8
include the classical amplitude 

 

α

 

classE

 

 at least 4 times,
i.e., 
H

 

|

 

z>

 

|

 

 < 

 

z>

 

maxI

 

 with 

 

z>

 

maxI

 

 > 2

 

α

 

classE

 

. At the same time, the
J

stepsize 2

 

∆

 

z>

 

 cannot be too large, in order to permit prop-D
ag8 ation of suf8 ficiently larC ge momentum components ofD
the w
3

a8 v9 efuntion.7
The integration of the single-particle equations isD

performed using the standard fiK nite-difference repre-
sentation of the kinetic-ener2 gy operatorD . T

:
o obtain the+

ground state densityD , diagonalization of the Hamilton
matrix without eL xternal fi4 eld is performed.7

The time-dependent orbitals are labelled by the indi-
:

ces characterizing their initial state: the orbital C

 

ϕ

 

1

 

sM

 

(
,

 

rN

 

, 

 

t0

 

)
1

nO rN t0,( )
P

ϕ j
Q rN t0,( )

P 2
R

j
Q

1=

N
S
∑=

i
∂
T
t0∂

T----ϕ j
Q rN t0,( )

P

=  ∇2
R

2
------– v rN t0,( )

P
r3
U

'd
V nO rN ' t0,( )

P
rN rN '–

---------------- v xcW nO[ ] rN t0,( )
P

+X∫+X +X 
 

× ϕ j
Q r t0,( )

P

v r t0,( )
P

E0
Y f
?

t0( )
P
z> ωt0( )

P
sin2 2

Z
r
---.–=

E
<

0
Y2 4ω2( )

P
⁄

 

describes an electron which initially occupied a 1
*

 

s[

 

orbital.+

3. DENSITY
\

-FUNCTIONAL 
J

APPR
J

O
]

A
J

CH
^

TO IONIZA
]

TION YIELDS

A possible way to defi8 ne ionization probabilities is
by means of a geometrical concept. By di
_

viding the9
space 2 `

 

3
a

 

 into two re+ gions, the analyzing vD olume + A
J

(which has to be appropriately chosen), and its comple-
,
ment L

 

B
b

 

 = c

 

3
a
\
d
A, the norm of the correlated two-particle+

wA a8 v9 efunction can be written as7

(4)
,

The second term (AB) in (4) is equal to the probability
of fi+ nding one electron inside the volume + A and simul-
taneously fi
3

nding the other electron outside the volume+
A This is interpreted as single ionization. In analogy,
the third term (BB) in (4) is gi
3

v9 en the interpretation of7
double ionization. 
*

The abo
:

v9 e interpretation rests on the7
assumption that (i) those components of the time-8
dependent w
*

a8 v9 e function which belong to the contin-7
uum at the end of the pulse, hae v9 e propag7 ated a8 wA ay from8
the nucleus so that their contrib
3

ution to the norm insidee
the analyzing v
3

olume can be ne+ glected and (ii) that theD
analyzing v8 olume is lar+ ge enough so that the bound-stateD
population is well represented by the norm inside K A.

J
Even with the most po7 werful supercomputers toA

date, the calculation of the time-dependent, three-
*
dimensional, fully correlated w
*

a8 v9 efunction remains a7
computationally eC xtremely demanding task [16].

In the frame
f

wA ork of time-dependent density func-+
tional theory on the other hand, much of the numerical
3
load can be circumvented because the central equations7
to be solv
3

ed, the time-dependent K7 ohn–Sham equa-+
tions (1), (2), are only single-particle Schrödinger
3
equations. 7 The basic variable within this scheme, ho8 w-A
e7 v9 er7 , is the time-dependent density

V
 nO (
,
rN , t0 ) rather than

1
the time-dependent w
3

a8 v9 e function. 7 The K
:

ohn–Sham+
determinant, b
*

uilt from the orbitals satisfying equationse
(1), (2) is solely designed to reproduce the ph
,

ysical;
density
*

. Besides that, the Kohn–Sham determinant has+
no rigorous physical meaning. Moreo; v9 er7 , due to the
nonlinear character of the time-dependent Kohn-Sham+
equations, the K7 ohn–Sham determinant lacks the prin-+
ciple of superposition: It is well knoC wn from the solu-A
tion of the time-dependent Hartree–F
3

ock (TDHF)+
equations, which, in the case of Helium, can be7
regD arded as a special case of the time-dependent K8 ohn–+
Sham equations, that stable transition probabilities can
g
usually not be calculated from e TDHF wa8 v9 e functions.7

1 r3
U

1 r3
U

2
R Ψ
h

rN 1 rN 2
R t0, ,( )

P 2
R

d
V

A
i∫d

V
A
i∫=

+ 2 r3
U

1 r3
U

2
R Ψ r 1 r 2

R t0, ,( )
P 2
R

d
V

B
j∫d

V
A
i∫

+ r3
U

1 r3
U

2
R Ψ r 1 r 2

R t0, ,( )
P 2
R
.d

V
B
∫d

V
B
∫
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The projection of a TDHF wa8 v9 e function on stationary7
states often gi2 v9 es probabilities oscillating in time e7 v9 en7
in the absence of an external field.7

By virtue of the Runge–Gross theorem, ev9 ery7
observ+ able can be e8 xpressed as a functional of the den-4
sity2 . The k

:
e7 y problem is ho; w to construct these func-A

tionals in e
3

xplicit terms. In the special case of tw4 o-elec-+
tron systems, the diagonal of the time-dependent tw
3

o-+
particle density matrix isK

(5)
,

The tw
:

o-particle density matrix in turn is related to the+
density via the pair
*

-correlation function

(6)
,

which satisfiA es the important sum rule7
(7)
,

Physically; , the product nO (
,
r 2, t

0 )1 gl (
,
r 1, r 2, t

0 ) is the (condi-
1

tional) probability to fi
3

nd an electron at m (
,
rN 2
n , t0 ), if we

1
know that there is an electron at A (

,
r 1, t

0 ). 1 The crucial point
is that the pair
H

-correlation function can, in principle
e7 xactly4 , be expressed as a functional of the density:4
gl [nO ](

o
rN 1, r

N
2, t
0 ).1

W
p

ith the pair-correlation function being a functional
of the time-dependent density+ , the expressions for sin-4
gle- and double-ionization probabilities of helium readD

(8)
,

(9)
,

(10)
,

In practice, the density functional approach to
f

wA ards the8
calculation of ionization inC v9 olv+ es tw7 o basic approxima-+
tions:
3

(1) 
,

The time-dependent density is calculated using
some approximate e2 xchange-correlation potential.

(2) 
,

The functional dependence of the pair
:

-correla-
tion function 
3

gl  on the density nO  in (8)–(10) is only
approximately kno8 wn.A

Γ
q

rN 1 r 2
R t0, ,( )

P
2 Ψ r 1 r 2

R t0, ,( )
P 2

.=

gl rN 1 rN 2 t0, ,( )
P
 := 

Γ r 1 r 2
R t0, ,( )

P
nO r 1 t0,( )

P
nO r 2 t0,( )

P-----------------------------------

r3
U

2n
O rN 2 t0,( )

P
gl rN 1 rN 2 t0, ,( )

P
1–( )
P

d
V

∫ 1.–=

P
0
Y

t0( )
P

=  
1
2
Z--- r3

U
1 r3

U
2
R nO rN 1 t0,( )

P
nO rN 2

R t0,( )
P
gl nO[ ] rN 1 rN 2

R t0, ,( )
P

d
V

A
i∫d

V
A
i∫

P
+1r

t0( )
P

rnO r t0,( )
P3

U
d
V

A
i∫=

– r3
U

1 r3
U

2
R nO r 1 t0,( )

P
nO r 2

R t0,( )
P
gl nO[ ] r 1 r 2

R t0, ,( )
P

d
V

A
∫d

V
A
∫

P
+2

t0( )
P

1 rnO r t0,( )
P3

U
d
V

A
∫–=

+
1
2
--- r3

U
1 r3

U
2n
O r 1 t0,( )

P
nO r 2

R t0,( )
P
gl nO[ ] r 1 r 2

R t0, ,( )
P
.d

V
A
∫d

V
A
∫

3.1. Exact Exchange-Only Limit, Mean-Field 
s

Approacht
In a “Hartree–F
f

ock w+ orld,+ ” the exact w4 a8 v9 e functions7
of man+ y-particle systems w; ould be Slater+ -determi-
nants. For Helium, the e+ xact pair-correlation function
in this exchange-only limit is simply a constant:

(11)
,

Substituting the e
g

xchange-only pair4 -correlation func-
tion from equation (11) into (8)–(10), the ionization
3
probabilities of helium are giK v9 en by7

, (12)
,

, (13)
,

, (14)
,

where we haA v9 e defi7 nedm
(15)
,

F
u

ormulas (12)–(14) could ha+ v9 e been obtained directly7
from (4) by substituting an
v

y determinantal w; a8 v9 efunc-7
tion for the e
3

xact w4 a8 v9 e function 7 Ψ
w

. In particular,
approximating the true w8 a8 v9 e function in a 7 mean-fix eld6
sense by the K2 ohn–Sham determinant, equations (12)–+
(14) represent the most straightforw
,

ard w8 ay to e8 xtract
information about ionization probabilities from a time-
dependent K
*

ohn–Sham calculation. Ho+ weA v9 er7 , this
notion sacrifim ces the joint probability character of theC
tw
3

o-particle density matrix, and one is left with just an+
uncorrelated product of single-particle densities.e

3.2. Corr
s

elation Contributions6
The definition of the x-only limit for the pair-corre-

lation function suggests to distinguish between
e7 xchange and correlation contributions to the paire -cor-
relation function. Combining the ey xact e4 xchange4
e7 xpression (11) with the correlation contrib4 ution e gl cz  in
the density-functional approach (8)–(10), e
3

xactifies the7
mean-fiL eld e7 xpressions (12)–(14) by adding correlation4
correctionsC

(16)
,

(17)
,

gl x nO[ ] r 1 r 2 t0, ,( )
P 1

2
---.=

P
0
Y

t0( )
P

N
-

1s{ t0( )
P 2
R

=

P
| +1

t0( )
P

2
Z

N
-

1s{ t0( )
P

1 N
-

1s{ t0( )
P

–( )
P

=

P
+2r

t0( )
P

1 N
-

1s{ t0( )
P

–( )
P 2
R

=

N
-

1s{  := 
1
2
Z--- rnO rN t0,( )

P3
U

d
V

A
i∫ r φ

}
1s{ rN t0,( )

P 2
R
.

3
U

d
V

A
i∫=

P
0
Y

t0( )
P

N
-

1s{ t0( )
P 2
R

=

+
1
2
--- r3

U
1 r3

U
2
R nO r 1 t0,( )

P
nO r 2

R t0,( )
P
gl c~ nO[ ] r 1 r 2

R t0, ,( )
P
,d

V
A
∫d

V
A
∫

P
| +1

t0( )
P

2
Z

N
-

1s{ t0( )
P

1 N
-

1s{ t0( )
P

–( )
P

=

– r3
U

1 r3
U

2
R nO rN 1 t0,( )

P
nO rN 2 t0,( )

P
gl c~ nO[ ] rN 1 rN 2 t0, ,( )

P
,d

V
A
i∫d

V
A
i∫
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(18)
,

In the literature, a v
f

ariety of approximate function-8
als for the pair correlation function 8 gl  hav9 e been put for7 -
wA ard [19–22] which allo8 w for quite accurate calcula-A
tions of ground-sate properties of man
3

y-particle sys-;
tems [23]. 
3

At present, the properties of an explicitly
time-dependent0  pair-correlation function are a rather
unee xplored topic. For the time being, we will thus use+
e7 xisting functionals, de4 v9 eloped for stationary systems,7
in the spirit of an adiabatic approximation: 
H

The pair
:

-
correlation function at time C t0  is modeled by ev9 aluating8
the ground-state functional at the time-dependent den-
3
sity:2

(19)
,

Since, for tw
g

o-electron systems, the e+ xact time-depen-4
dent pair
*

-correlation function in the x-only limit is
giD v9 en by equation (11), spatial and temporal nonlocal-7
ity can be viewed as pure electron correlation efA fects in
these systems.
3

A pair
J

-correlation function suitable for our calcula-
tions can be deduced within the self-interaction correc-
3
tion (SIC) scheme of Perde
3

w and Zunger [24]. FA or tw+ o+
electrons, only “self-e7 xchange” is present which, in the4
SIC scheme, is treated e
g

xactly. For the correlation con-+
trib
3

utions, the parametrization of Perdee w and A W
p

ang8
[22] was emplo8 yed.;

As a second functional, we tested a coordinate space
J

model for L gl cz , dev9 eloped by 7 A.D. Becke [21] (tak7 en at7
full coupling strength of the electron–electron interac-
tion):
3

(20)
,

where A γ�  is determined by the sum rule (7). For the+
damping f
*

actor 8 F
�

, analytic approximations like 7 F
�

1(
,
x� ) =
1

, F
�

2
n (, x� ) = (1 + 

1
x� )
1
e6 –x�  or F

�
3
a (, x� ) = 

1
 hav9 e been7

chosen. C As extension of the original work of Beck+ e, we7
propose to use a “correlation length” which is inK v9 ersely7
proportional to the Hartree potential K vH

� :

(21)
,

3.3. 
s

Approximations for the Tt ime-Dependent 
Exchange-Correlation Potential in Helium6

For the time-dependent e+ xchange-correlation poten-
tial occurring in the time-dependent K
3

ohn–Sham equa-+
tions (1), (2), we ha
3

v9 e emplo7 yed the follo; wing func-A
tionals:
3

P
| +2r

t0( )
P

1 N
-

1s{ t0( )
P

–( )
P 2
R

=

+X 1
2
Z--- r3

U
1 r3

U
2
R nO rN 1 t0,( )

P
nO rN 2

R t0,( )
P
gl c~ nO[ ] rN 1 rN 2

R t0, ,( )
P
.d

V
A
i∫d

V
A
i∫

gl nO[ ] rN 1 rN 2 t0, ,( )
P

gl st
�
a� t
�

ρ[ ] rN 1 rN 2,( )
P

ρ n� t�( )
�

=
.≈

gl c~M� o� d
�

e� l
�

nO[ ] r 1 r 2
R,( )
P

=  
r 1 r 2

R– z> ↑↓ r 1( )
P

–( )
P
nO r 1( )

P
2
Z

1 z> ↑↓ rN 1( )
P

+X( )
P
nO rN 2( )

P-----------------------------------------------------------F
� γ� rN 1 rN 2–( )

P
,

x�( )
P

sech2 e6 x� 2
–

z> ↑↓
4C↑↓

vH

------------ with A C↑↓, 0.62
�

.= =

3.3.1. 
�

The time-dependent
Hartr ee–F� ock (TDHF) potential�

For tw+ o-electron systems, the e+ xchange potential

(22)
,

of the restricted Hartree–F+ ock equations is identical+
with the A exact6  exchange-only potential in a time-depen-4
dent K
*

ohn–Sham treatment of helium.+

3.3.2. 
�

The adiabatic local density
�

appr� oximation�
The easiest w
:

ay to go be8 yond the e; xchange-only4
approximation, is to use the so-called “adiabatic” local8
density approximation (ALD
*

A). It emplo
J

ys the func-;
tional form of the static LD
3

A with a time-dependent
J

density:
*

(23)
,

In the actual calculations, the parametrization of Per
f

-
de
*

w and A W
p

ang [25] w8 as used for the correlation part.8

3.3.3. 
�

The time-dependent SIC-potential
�

F
u

or the Helium atom, the e+ xpression for the time-4
dependent SIC (TDSIC) e
*

xchange-correlation poten-4
tial reads
3

(24)
,

(where 
,

ζ = (nO ↑ – nO ↓)/
1

nO  is the relativ9 e spin polarization).7
Like in 7 TDHF, the exchange part is treated exactly. In
the time-dependent calculations, the correlation poten-
3
tial w
3

as e8 v9 aluated using the parametrization of Perde8 wA
and 8 W

p
ang [25].8

3.3.4. 
�

A model potential
�

To obtain a correlation potential with a nonlocal+
functional dependence on the density, we start out from
the (coupling-constant a
3

v9 eraged) e7 xpression of the cor4 -
relation enery gy which results from the model correla-D
tion hole of equation (20) [21]:
3

(25)
,

v x�TDHF
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--- d
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W
p

ith expression (21) proposed here, the resulting cor-
relation potential

(26)
,

e7 xhibits a truly nonlocal functional dependence on the4
density
*

. In combination with exact exchange (22), this
forms a self-interaction free exchange-correlation

potential K  for the helium atom. The only extra
ef7 fort in using this potential consists in an additional
e7 v9 aluation of a Coulomb-type inte8 gral in (26). FD or the+
ground state of helium, this functional yields an eigen-D
v9 alue and a correlation ener8 gy which are vD ery close to7
the e
3

xact DFT v4 alues [26]. In the time-dependent case,8
 is ev9 aluated at the time-dependent density8 .

4. IONIZATION OF HELIUM
IN 
f

A 780-
J

nmm  FIELD

W
p

e ha7 v9 e calculated the ionization probabilities for7
Helium using a 6-c
¡

ycle laser pulse of frequenc; y ; ω =
0.0584 a.u. (1.6 eV) with a trapezoidal en
�

v9 elope func-7
tion: the en
3

v9 elope function in (3) w7 as linearly ramped8
from zero to one ov9 er the fi7 rst two c+ ycles, held constant;
for the following twA o laser c+ ycles and fi; nally ramped
do
*

wn linearly oA v9 er the last tw7 o c+ ycles of the pulse. ; The
:

peak intensities vK ary between 2 8 × 1014 W/cm
p 2 and

1.14 × 1016 W/cm
p 2

n
.

Due to the high ponderomotiv9 e ener7 gy of the elec-D
tron, a resolution of up to 11000 time steps per optical
3
cC ycle is needed. F; or all runs, the boundaries of the+
cC ylindrical analyzing v; olume + A were fi

J
x4 ed at –7 z> A

¢  = z> A
¢  =

ρA = 20 a.u.1 
The intensity-dependent probability for single ion-
:

ization of helium obtained from the mean-fi
H

eld e7 xpres-4
sions (12)–(14) at the end of the pulse is displayed in2
Fig. 1. F
u

or all four approximations to the e+ xchange-cor4 -
relation potential vxc(

,
r, t0 ), the probability for singly

1
ionized helium reaches its maximum of 0.5 around an
intensity of 4 × 1015 W/cm

p 2. The subsequent decrease
in probability is typical of the single-atom response.
Then the He
: + population is depleted in fa8 v9 or of the dou-+
bly char
_

ged ion production. In current eD xperiments, this4
beha
_

vior is not resolv9 ed o7 wing to the spatial intensityA
profiK le of the laser focus [27], which gi

£
v9 es rise to a7

monotonic increase of the ion yield due to the eL xpan-4
sion of the focal v2 olume.+
1 This choice is arbitrary, but the results are not very sensitive to

this choice. For a choice of –z¤ A
¢

 minI  = z¤ A
¢

 max = ρA
¢  = 10 a.u. the

results differ only slightly, due to the small percentage of the pop-
ulation in the range between 10 a.u. to 20 a.u.

v cWM� o� d
�

e� l
�
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�
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�
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�
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�

e� l

In our calculations, the saturation intensity tends to
be shifted to
_

wA ards higher intensities for tw8 o reasons:+
First, the pulse lengths employed are roughly a f; actor of8
10 shorter than the experimental pulses. A lower satu-A
ration intensity occurs when the pulse is longery . Sec-
ond, the binding ener+ gy of the initial fiD nite-difm ference

v
orbital is ele+ v9 ated by 4% compared to that of the true8
helium ground state.
¥

Below the saturation intensityA , the single-ionization
probabilities from Fig. 1 comply with the eigenK v9 alues8
of the initial orbitals. Due to the local approximation of+
the e
3

xchange contrib4 ution, the LDe A ground-state
J

orbital is much more weakly bound than in the remain-+
ing approximations. Hence, the ionization probabilities
H
in 
H

ALD
J

A (23) are signifi
J

cantly larC ger than the probabil-D
ities obtained in TDHF (22), TDSIC (24) and from the
model potential (26).

The intensity-dependent double
V

-ionization proba-
bilities, calculated from the mean-fi
_

eld equation (14) at7
the end of the pulse are gi
3

v9 en in Fig. 2. Compared to the7
calculated ionization probability from the ground-stateC
of the He+ +¦  ion (SEQ), we observe an enhanced proba-7
bility for the production of doubly char
_

ged ions fromD
the ground state of the neutral He atom.
3

For high intensities, the double-ionization curv+ e has7
to mer
3

ge with the single-ionization from the groundD
state of He2 +, since, in the saturation region of the HeD +

yield (i.e., after an almost complete depletion of neutral;
helium in the focus) the He+ ion becomes the dominat-
ing source for the production of doubly ionized species.
H
In the literature, this notion has been termed a “sequen-
f
tial” process (SEQ). Strictly speaking, no clear defi
3

ni-m
tion of a “sequential” or “nonsequential” process is
3
possible due to the indistinguishability of electrons.K
Both electrons are activ9 e at the same time. Experimen-7
tally
3

, on the other hand, one only observes a fi7 nal
de
*

gree of ionization after the laserD -atom interaction has
died of
*

f.
v

Ho
¡

weA v9 er7 , independent of the choice of the
e7 xchange-correlation potential, the calculated probabil-4
ities are too high for the intensities beyond the maxi-;
mum of the single ionization probability. Hence, the
calculations do not reproduce the fC amous “knee” struc-8
ture which is observ
3

ed in the double-ionization yield of7
helium in the e
¥

xperiment of 4 W
p

alk8 er 7 et al.6  [6]. Below theA
intensity of 4 
H

× 1015 W/cm
p 2, the double-ionization

probabilities are agK ain highest in 8 ALDA, followed byA
quite some interv§ al by the results of the model poten-8
tial, which are ag
3

ain close to the 8 TDHF results. 
:

At
J

higher intensities, both the 
¥

TDHF and the MODEL
:

curvC e mer7 ge with the D TDSIC curve. Interestingly7 ,
around 8 I = 4 × 1015 W/cm

p 2—at the maximum of the sin-
gle-ionization probabilities—the D ALDA-results cross
the results from the other
3

, self-interaction free poten-
tials, resulting in a 
3

lower ionization probability than
obtained with the remaining three potentials. But,+
despite this some
*

what loA wer probability in that inten-A
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sity re2 gion, the D ALD
J

A results are still f
J

ar from repro-8
ducing a “knee” structure.
*

A decisi
J

v9 e measure for the ionization dynamics is7
proK vided by the ratio of double-ionization yields to sin-9
gle-ionization yields. D The He

: 2+
n

/He
F +¦  ratio of the experi-4

mental data [6] varies by about a f8 actor of 10 for inten-8
sities between 102 14 and 1015 W/cm

p 2
n
, and exhibits a dis-4

tinctly mark
3

ed plateau (with an e7 xperimental value of8
about 0.002) which e8 xtends up to the onset of “sequen-4
tial” He
3 2+ production. In Fig. 3 we hav9 e compiled the7
ratios of the double-ionization probabilities to singley
ionization probabilities calculated for the dif
H

ferent
v

e7 xchange-correlation potentials employed. In contrast;
to e
3

xperiment, the ratios sho4 w a vA ariation of about 48
orders of magnitude, and a lack of an+ y plateau struc-;
ture. Hence, compared to e
3

xperiment, the calculated4
double-ionization probabilities are too small for lo
*

wA
intensities, b
H

ut too lare ge for higher intensities. D The sit-
:

uation is a bit less see v9 ere in 7 ALDA. The ratios calcu-
lated in 
£

ALD
J

A intersect with those obtained in the
J

remaining approximations at the intensity where the
single-ionization yields ha2 v9 e their maximum (4 7 ×
1015 W/cm

p 2
n
). Evidently
1

, the functionals employed are;
not able to reproduce the features present in the strong-
fi
G

eld double ionization of helium.7

So f
g

ar8 , our analysis was entirely based on the mean-8
field e7 xpressions (13) and (14) for the ionization prob-
abilities. 8 T

:
o go be+ yond this limit, we use the concept of;

the pair
3

-correlation function of Section 3.
The SIC pair
:

-correlation function [24] as well as the
coordinate space model (20) treat the eC xchange hole of4
helium e
¥

xactly4 , thus conserving the bulk of informatione
already contained in the uncorrelated equations (12)–(14),8
leading to corrections around the mean-field descrip-7
tion. 
3

The resulting ionization probabilities are then
giD v9 en by the e7 xpressions (17) and (18). To this end, we+
e7 xamine the correlation correction

(27)
,

e7 v9 aluated at the densities obtained from a 8 TDSIC cal-
:

culation for vC arious peak intensities at the end of the8
6-
©

cC ycle, 780-nm pulse.;
If the system is only weakly ionized, the density is

still concentrated around the nucleus, and, o2 wing to theA
sum rule (7) a rather small v2 alue of the inte8 gral (27) isD
e7 xpected. At higher intensities, the highly excited den-
sity becomes more dif2 fuse and, due to the fi

v
nite vm olume+

ef7 fects, the contrib
v

ution from (27) increases in magni-e
tude. 
3

A countercurrent ef
J

fect is the decrease of the
v

norm inside m A. Hence, as a function of intensity
J

, we

r3
U

1 r3
U

2n
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Fig. 1. Calculated He+ ion probabilities from the ground
state of the Helium atom irradiated by a 6-cycle (16 fs),
780-nm laser pulse, using equation (13) and for different
exchange-correlation potentials (see text).

Fig. 2. Calculated double-ionization probabilities from the
ground state of the Helium atom irradiated by a 6-cycle
(16 fs), 780-nm laser pulse, using equation (14) and for dif-
ferent exchange-correlation potentials (see text).
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7
i

e7 xpect the correlation contrib4 ution (27) to possess ane
e7 xtremum.4

From Fig. 4, all three approximations to the correla-
u

tion correction agree within an order of magnitude. 
3

The
:

tw
3

o model correlation holes gi+ v9 e an almost v7 anishing8
correction for loC w intensities. A The correction obtained
from the SIC pair-correlation function exhibits a
marked change in sign. 7 This is in accordance with our
anticipation from the plot of the He8 2+/He

F + ratio. How-A
e7 v9 er7 , although the resulting corrections point in the
right direction, they y are still too small to account for a;
visible correction in the ionization spectra.9

4.1. Ionization of Helium in a 614-nm Field

The fi
:

rst ey xperimental e4 vidence of a “knee” struc-9
ture of the He
3 2+

n
 ion yield in the intensity region aroundD

1015 W/cm
p 2 was found at a w8 a8 v9 elength of 614 nm [5].7

At this wa8 v9 elength, a free electron acquires about7
38% less ponderomoti
\

v9 e ener7 gy (at the peak of theD
pulse) compared to the 780 nm case, which someK whatA
mitigL ates the numerical ef8 fort in

v
v9 olv+ ed in a numerical7

propagK ation of the K8 ohn–Sham orbitals. + W
p

e solv7 ed the7
time-dependent K
3

ohn–Sham equation (2) using a sin+ 2
n
-

pulse enK v9 elope7
(28)
,

with A T = 58 optical cycles (120 fs) of the e; xternal field7
of frequenc+ y ; ω = 0.0742 a.u. (2 eV) for peak intensities
between 5 
_

× 1014 W/cm
p 2 and 9 × 1015 W/cm

p 2. The max-
imum temporal resolution was 2000 time steps per8
optical c+ ycle. F; or the e+ xchange-correlation potential,4

f
?

t0( )
P π�

T
---t0 

 2sin2=

the time-dependent SIC functional of equation (24) w
3

as8
emplo7 yed.;

Using a relati
j

v9 ely long pulse length, the maximum7
of the calculated ionization probability of He+ + is
e7 xpected to be close to the experimentally observed sat-7
uration of the Hee + ion yield.

In Fig. 5 we gi
f

v9 e probabilities for singly and doubly7
ionized helium, calculated from equations (13) and
H
(14) after the pulse has been turned of
,

f.
The single ionization probability reaches its maxi-
:

mum around an intensity of 3 L × 1014 W/cm
p 2

n
. By com-

paring the calculated double ionization probabilitiesK
with the probability for single ionization out of theA
ground state of HeD +, we observe that the obtained dou-7
ble ionization probabilities are too lar
_

ge in the reD gionD
abo8 v9 e 3 7 × 1014 W/cm

p 2. Apparently, the experimentally
measured feature of a “knee” in the He2+ yield as a
function of intensity is ag
v

ain missing. 8 Also, the plot of
J

the ratios of double ionization probability to single ion-
3
ization probability
H

, shown in Fig. 6 reA v9 eals a strong7
v9 ariation of about 4 orders of magnitude, without an8 y;
clear sign of the onset of a plateau reC gion.D

W
p

e also calculated the correlation corrections (27)7
to the mean-fi
3

eld results of the ionization probabilities7
(13) and (14). 
,

The resulting corrections, using the cor
:

-
relation hole (20) with three dify ferent damping func-

v
tions 
3

Fi (see Section 3.2), ev9 aluated with the density at8
the end of the 614-nm pulse, are gi
3

v9 en in Fig. 7. 7 Again,8
the corrections are too small to gi
3

v9 e a visible correction7
to the ionization probabilities obtained from the uncor
3

-
related expressions (13) and (14). Nev9 ertheless, around7
an intensity of 3 8 × 1014 W/cm

p 2, near the maximum
probability for HeK +¦  production, a marked increase in7

k
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Fig. 3. Comparison of the ratios of double-ionization prob-
ability to single-ionization probability calculated from
equations (13) and (14) for helium in a 780-nm laser
field using the TDHF, ALDA, TDSIC and the Model
potential.�

Fig. 4. Correlation corrections (27) to the mean-field equa-
tions (12)–(14), evaluated for final densities at various
intensities, using three different approximations to the cor-
relation hole (see text). The densities were obtained from a
TDSIC calculation.
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magnitude sets in, reducing the double ionization prob-
ability8 .

5. DISCUSSION


Ob
]

viously9 , the approximations to the correlation
functionals used are yet not sufficiently accurate toC
reproduce the typical “knee” feature in the ionization
spectrum of helium at 780 and 614 nm. 2 The different
sources of error in question are (i) the approximate2
e7 xchange-correlation potentials used in the K4 ohn–+
Sham equation (2) and (ii) the approximate pair
g

-corre-
lation f
£

actors entering e8 xpressions (12)–(14).4
To pro+ vide a rationale for the latter9 , we note that
(1) 
�

The modeling of a correlation f
:

actor8 , being at the
heart of the quantum man
¥

y-body problem, is a formida-;
ble task e
_

v9 en for the ground state of man7 y electron sys-;
tems. 
3

Arbitrarily accurate and, at the same time, univ9 er7 -
sal correlation f2 actors are not a8 v9 ailable to date.8

(2) Most approximations to the correlation f
�

actors8
e7 xplicitly require the e4 v9 aluation of the sum rule (7) dur8 -
ing the calculation. Ho
H

weA v9 er7 , such a prescription is
barely numerically tractable in the case of ionization
_
studies, since it in2 v9 olv+ es numerical inte7 grations oD v9 er7
v9 ery lar7 ge grids.D

(3) 
�

Approximations which circumv
J

ent this problem,7
are mostly based on the homogeneous electron g8 as and8
are geared to a good representation of the 8 spherical[
average�  of the exchange-correlation hole. In particular,
this applies to the LD
3

A. Nev9 ertheless, also impro7 v9 ed7
functionals like the SIC [24] and the real-space model7
of equation (20) only pro+ vide an approximation to the9
angular a8 v9 erage of the hole function around some ref-7
erence point.7

(4) 
�

The application of ev9 en the best a7 v9 ailable8
grl ound-statet  functional to such highly excited systems
like an atom in a strong laser pulse has its ob7 vious lim-9
itations.

(5) Strictly speaking, one has to use e
�

xplicitly time-4
dependent correlation f
*

actors 8 gl cE [nO ](
o

r, r ', t0 ), which are
1

capable of dealing with highly eC xcited states also in a4
nonperturbativ9 e situation. Moreo7 v9 er7 , explicitly time
dependent correlation f
*

actors should account for mem-8
ory ef+ fects, i.e., the correlation factor 8 gl cE (� t0 ) at time 

1
t0  is

determined not only by the density 
*

nO (
�
t0 ) at the same
1

point in time bK ut depends on the density ve alues 8 nO (
�
t0 ') at

all pre8 vious times 9 t0 ' ≤ t0 . Such memory effects are com-
pletely neK glected in the present adiabatic treatment.D

Another quantity which has to be approximated in a
J

density functional approach is the e
*

xchange-correlation4
potential K vxc5 . The comparison between the (mean-fi

:
eld)7

ionization probabilities in 
H

ALD
J

A with the ionization
J

probabilities calculated from the other functionalsK
rev9 eals that the time-dependent density—and hence the7
whole dynamics of the system—can be strongly inflA u-e
enced by the choice of the e7 xchange-correlation poten-
tial. 
3

After all, it is the density which determines the ion-
J

ization probability
H

.
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Fig. 5. Calculated probabilities for single ionization (full
line) and double ionization (dashed line) from the ground
state of the Helium atom irradiated by a 58-cycle (120 fs),
614-nm laser pulse, using equations (13) and the TDSIC
exchange-correlation potential. The dotted line represents
the ionization probability out of the ground state of the He+¦
ion (SEQ).

Fig. 6. Ratios of double-ionization probability to single-ion-
ization probability at various intensities, calculated from
equations (13) and (14) for helium in a 614-nm laser field
using the TDSIC exchange-correlation potential.
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For a one-dimensional model atom with a softened+
Coulomb interaction, Lappas and v
^

an Leeuwen ha8 v9 e7
solv2 ed the full time-dependent Schrödinger equation7
including an external 780 nm laser field [13]. 7 Their
results are reproduced in Fig. 8. From the twy o-particle+
wA a8 v9 efunction, the7 y were able to reproduce the “knee”;
structure in the double ionization probability of helium.2
Ev
�

en if the corresponding e7 xact densities of the one-4
dimensional model system are inserted in the mean-
*
field equations (13) and (14), a distinct, although7
shifted “knee” structure is still visible in the intensity2
dependent ionization probability
*

. This suggests that an
impro
H

v9 ed approximation of the e7 xchange-correlation4
potential alone will account for the qualitatiK v9 e essence7
of the “knee” feature. Ho+ weA v9 er7 , we note from Fig. 8
that the double ionization probabilities, which result
3
from the insertion of the exact 1-dim densities into the
mean-field e7 xpressions (13) and (14), are too high by
about a f8 actor of four in the plateau re8 gion. D Thus, in
comparison to time-dependent Hartree–FC ock, the infl+ u-e
ence of the e7 xchange-correlation potential and the pair4 -
correlation fC actors is equally important on a quantita-8
ti
3
v9 e measure.7

6. SUMMAR
©

Y AND CONCLUSION

The results of our simulations hav9 e confi7 rmed that
the time-dependent Hartree–F
3

ock approximation,+
which neA glects electron correlation, fD ails to reproduce8
the correct ionization dynamics of helium. In principle,
3
time-dependent density functional theory of
3

fers a pos-
v

sibility to include these correlation ef2 fects in a numeri-
cally tractable wC ay8 . In this work, we presented the fi+ rst
density functional study of multiple multiphoton-ion-
*
ization of helium in strong laser fields. In our calcula-7
tions, the w
3

a8 v9 elengths of the incident radiation were7
chosen to be 780 and 614 nm, according to the eC xperi-4
mental situation [5, 6]. Functionals are constructedL
which alloA w the calculation of ionization probabilitiesA
from the time-dependent density alone. To this end tw+ o+
basic approximations are in
_

v9 olv+ ed: (i) the time-depen-7
dent e
*

xchange-correlation potential and (ii) the time-
dependent pair correlation function need to be approx-
*
imated. 
H

As a matter of f
J

act, it turned out that the estab-8
lished 
£

stationary[  correlation functionals, which were
emplo7 yed in the spirit of an adiabatic approximation,;
are not suf8 ficient to correct for the defects of the C TDHF
approximation. 8 A large part of the correlation error (atD
the frequencies considered here) is already contained in
3
the time-dependent densities. Hence, to obtain a quali-
3
tati
3

v9 ely correct dynamics, the (time-dependent)7
e7 xchange-correlation potential needs to be impro4 v9 ed in7
the fi
3

rst place. Evy en a correlation potential which7
depends nonlocally on the density
*

, and which repro-
duces the ground-state properties of helium almost
*
e7 xactly [26] leads only to a marginal improD v9 ement o7 v9 er7
the Hartree–F
3

ock results in the time-dependent case.+
Hence, for a proper description of time-dependent
¡
strong-fi2 eld phenomena (in the optical re7 gion) with theD
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Fig. 7. Negative correlation corrections (27) to the mean-
field equations (12)–(14), evaluated for the densities at the
end of the 614-nm pulse at various intensities, using the
model correlation hole function (20) with three different
damping functions. (For intensities between 3 × 1014 W/cm

' 2
(

and 5 × 1014 W/cm
' 2

(
, the corrections obtained with the

Gaussian damping function, F3
) , change sign and are hence

omitted in the figure.)

Fig. 8. Single (filled triangles) and double (filled squares)
ionization probabilities of a fully correlated one-dimen-
sional helium atom when irradiated by a 780-nm 6-cycle
laser pulse. The results from insertion of the exact one-
dimensional densities in the mean-field equations (13) and
(14) are represented by empty triangles and squares (taken
from [13]).
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density 
*

n+ (
�
r, t, ) as a basic v

-
ariable, highly nonlocal func-.

tionals (both spatially and temporally) are required.
/

The first nonlocal functionals of this kind were recently
proposed [28, 29], b0 ut so f1 ar not implemented in time-.

dependent K
*

ohn–Sham calculations.2
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