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TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

Time-dependent density functional theory of spin-polarized systems is based on
the fact [1, 2] that the exact time-dependent spin densities n, (rt) = (V(t)|n,(r)|¥(¢))
of an interacting many-particle system subject to time-dependent potentials vey; o (rt)
can be calculated from the orbitals of an auxiliary noninteracting system, i. e.

no(rt) = Y- |65 (1) (1)

The orbitals ¢;,(rt) satisfy the time-dependent Kohn-Sham equations (atomic units
are used throughout)

i (0/01) §jo(xt) = (= V?/2+ vo(rt)) ¢jo(xt) , j=1,... N, (2)

with suitable initial conditions ¢;,(rty) chosen to represent the spin densities ng,(r) =
(Wo|fy(r)|Wy) of the initial (many-body) state Wy at time ¢ = ¢y. The time-dependent
local effective potential in Eq. (2) is given by the sum of the external potential, the
Hartree-potential and the time-dependent exchange-correlation (xc) potential

n(r't)
v — 1|
with the total density n(rt) = Y, n,(rt). To date, most applications of the time-
dependent Kohn-Sham scheme (1) — (3) fall in the linear response regime (see e.g. [3]
for a recent review). In this limit, one considers electronic systems subject to external
potentials of the form

Vs (T) = ot (Tt) + / & ¥ oo (rh) 3)

| woe(r) ; 1<t
Vest o (1) = { Voo () +v1o(rt) 5 t>tg 4)

where vy, (r) denotes the static external potential of the unperturbed system (e. g. a
nuclear Coulomb potential plus a static magnetic field that couples to the electronic
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spin only) and v;,(rt) is a time-dependent perturbation. We assume that at times
t < to the system is in the ground state corresponding to vy, (r). In this case, the
time-dependent density is a functional of the external potential alone also at ¢t = ¢y and
the full 1-1 correspondence

Do)} {no(rt)) )

is guaranteed for the interacting system [1, 2]. This 1-1 mapping can be established
for any particle-particle interaction, in particular also for vanishing particle-particle
interaction. Consequently, the time-dependent density n(rt) uniquely determines the
time-dependent effective potential (3) as well:

foe)} L e} ()

Combining (5) and (6) we see that the time-dependent external potential vexs,(rt) and
the effective potential v, (rt) are also in 1-1 correspondence:

1-1

{vo(rt)} | {veo(rt)} (7)

The above statements can be used to establish a relation between the density-
density response function of the noninteracting (Kohn-Sham) system

dng(rt)

dvy (rt) ®)

Xsoo’ (I‘t, rltl) =

v[no]
and the density-density response function of the interacting electron system

_0ng(r,t) /d3 /d ((5517)10 r,t) ov,(x,7) o

6vext0' (r t’

Koo (1 X5 6) = ) S 0.1,

Obviously, they are connected via the functional derivative

dv,(r, t)

_ 9%\ | ) o ¢
(S/Uext . (r” t’) (50'0- 5(1' r ) (5(t )

no
0t —7)  OUgeo(r,t)\ oOn,(x,7)
3 d co 9 I . 1
+;/d v / ’ Ir — x| * 0Ny, (X, 7) ) Vet or (T, 1) (10)
of the map (7) by the Dyson-type relation

Xoo' (T, 1) = Xsoor (xt,2'8') + > /d3ac /dT /d?’m' /dr' Xsov (T, t, X, T)

x = x|

5(r — 7/
X (M + fXCUV' (Xa T, le TI)) Xv'a! (X,, Tlv I',, tl) ’ (11)

where the so-called time-dependent exchange-correlation kernel

0y o (I‘, t)

JX(:O’O” Ijtjllj tl .
( ) 6?10! (I'I,tl)
no

(12)

is a functional of the ground-state spin densities {ng,(r)}. Eqgs. (11) and (12) constitute
an exact representation of the linear density response of the interacting system. A
detailed discussion of its formal properties and of applications can be found in [3].
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In the following, we are going to describe an approach to the construction of
fxcoor (rt, 1/, ') based on the recently proposed [4] time-dependent version of the so-
called optimized potential (OEP). This method leads to vy, as a function of (rt) via
solution of an integral equation rather than to v«., as an explicit functional of the spin
densities. The definition (12) can therefore not be applied directly. It turns out however
that the central equation (11) holds for a quantity fxcse(r,%,1’,t") defined through an
integral equation which is quite analogous to - though more complicated than - the
integral equation for the OEP.

THE TIME-DEPENDENT OPTIMIZED EFFECTIVE POTENTIAL

For stationary systems, a given expression for the total energy E[p;,| of an N-
electron system as a functional of a set of spin orbitals {¢;,(r)} (e. g. the Hartree-Fock
total energy functional in the exchange-only case) is the starting point for the construc-
tion of the OEP [5, 6]. Then, the variationally best local effective potential is deter-
mined for each spin orientation such that, when inserted in a stationary single-particle
Schrodinger equation, it yields the set of N = 3, N, eigenfunctions (corresponding to
the N, lowest eigenvalues) that minimize E[gj,]. Although built from orbitals, this
scheme is in fact a true density functional method, since, by virtue of the theorems of
Hohenberg and Kohn and Kohn and Sham, the computed orbitals are functionals of
the density.

In practice, the full OEP scheme is computationally considerably more demanding
than traditional density functional schemes since it requires the numerical solution of
an integral equation for each wvy.,(r). There exists, however, an approximate OEP
scheme, recently proposed by Krieger, Li and Iafrate (KLI) [7, 8], which is numerically
as easy to handle as the ordinary Kohn-Sham scheme. This simplified OEP has been
applied very successfully to the calculation of atomic properties [9, 10, 11].

In order to derive a time-dependent generalization of the OEP we consider an N-
electron system subject to a potential of the form (4) which, for all times up until ¢,
has been in the ground state associated with the static external potential vy, (r). We
assume that the corresponding stationary OEP problem has been solved for that sy-
stem, i. e. a local effective potential for each spin orientation and a set of N spin orbitals
{pjo} (with energy eigenvalues ¢;,) minimizing a given energy functional E|p,,| are
assumed to be known. Our goal is to determine the time evolution of the system under
the influence of the total external potential vey, (rt) = vo, (r) + v1,(rt) from o up until
an arbitrary later time ¢;. Note that in this section we do not linearize with respect to
v1(rt) but develop the full time-dependent theory. The construction of an optimized
local effective potential starts with the quantum mechanical action

Algiol = 2 %j /_t dt [d'r g3, (xt) (1 0/0t + V°/2) 630 (x1)
By [ ;odt / 37 1y (X Vexeo (1) — % /t ;dt / Br / 2y M _ Aldin] (13)

v r—r|
written as a functional of N = Y-, N, time-dependent spin orbitals {¢;,(rt)}. In the
following we will not refer to any specific approximation for the exchange-correlation

functional Ayc[¢;,]. We mention however, that in an exchange-only theory Ay, would
be replaced by the time-dependent Hartree-Fock (TDHF') expression

A==y [ t;dt [ [@ 65, (650 (610 (065, (xt) /1 = . (14)

o 4,5 T



The orbitals are solutions of the time-dependent Schrédinger equation (2) with the
initial condition ¢;,(rt) = @;,(r) exp[—ic;,(t —to)] for —oo < t < ty. The local effective
potential v, (rt) has to be determined in such a way that the {¢;,(rt)}, resulting from
Eq. (2), render the total action functional A[¢;,| stationary. Therefore, we have to
solve the following variational problem:

3Algo] [ Albe] 80 Y) | SAlb) 385 ()Y _
S0, (ct) 2/ [ (5% 1] ou,t) T 0g, ) du(xd) ) =0

(15)
In order to compute the functional derivative 6A4/d¢;,, the first term of Eq. (13) has
to be integrated by parts with respect to the time coordinate. We impose the usual
boundary condition on ¢;,(rt) at t = t;, i. e. d@;,(rt;) = 0, thus obtaining a zero
boundary contribution. The other boundary contribution at ¢ = —oo vanishes, too,
because the action functional (13), in order to be well-defined, is to be calculated by
introducing the usual factor exp(nt) in the integrand and taking lim, .o+ after the
integration. Then, substituting Eq. (3) and making use of the fact that ¢, solves the
complex conjugate of the Schrédinger equation (2), we find

614[(/57'0’]

Sog () — [Vaeo (F8) = theejo (M) 5, (1'8) 602 = ¥) (16)

where
1 0Ax[d)s]

o (rt) o (rt)
and 6(z) denotes the usual step function (1 for z > 0, 0 for z < 0). An analogous
expression is obtained for §A/d¢3, which, for all reasonable (i. e. real) functionals
Al¢js], is the complex conjugate of (16).

In order to evaluate § A/dv, from Eq. (15), we further need the functional deriva-
tives 0¢;,/0v, and 6¢7%,/6v,. To this end, we consider the orbitals {¢;,(rt)} as un-
perturbed states, remembering that at t = ¢; the orbitals are held fized with respect
to variations in the total potential. We therefore start from ¢ = ¢, subject the sys-
tem to an additional small perturbation dv,(rt) and let it evolve backwards in time.
The corresponding perturbed wave functions ¢, (rt) are determined by the backward
Schrodinger equation

i (0/0t) ¢, (xt) = (= V2/2+ vy (xt) + v,(xt)) $, (xt) , j=1,...,N, (18)

with the initial condition ¢, (rt1) = ¢;,(rt;). The resulting first-order correction to
the wave function ¢;,(rt) under the influence of dv,(rt) is given by

chjg (I't) = (17)

5650 (rt) = i z / At [ 1" 1 (2'8)00, (1t ) g (¥ o (xt) (19)
from which we can read off the desired functional derivative
5(/5 (2t '
6’00 (I‘t) 2(500 Z ¢ka I't ¢]U(rt)¢lw( ) (tl - t) 9<t -t ) . (20)

Once again, 5(15;?0,/ 0v, leads to the complex conjugate expression. We can now insert
(16) and (20) in the variational equation (15), and the result is the time-dependent
OEP (TDOEP) integral equation for the local exchange-correlation potential vy, (rt):

t1 N
[ [ (Kt 7)Y g ()5, () (e (07F) = tscio ()] + ) = 0.

i j
(21)



The kernel K, (rt,r't") = 3321 ¢, (rt)dro (r't)0(t—1') can be identified with the Green’s
function of the system, which satisfies the differential equation

[i 0/t — (=V?2/2 + v, (t't)) | K, (rt,x't)) = —id(x — ')o(t — t') (22)

with the initial condition K, (rt,r't') = 0 for ¢ > ¢t. The TDOEP scheme is now
complete: the integral equation (21) has to be solved for vy, (rt) in combination with
the Schrédinger equation (2) and the differential equation (22) for K, (rt, r't’), both with
the appropriate initial conditions. It is easy to show that in the time interval [—oo, t;]
the exchange-correlation potential vy, (rt) is unique up to within an additive, purely
time-dependent function ¢(t) (as expected in view of the Runge-Gross theorem). Also
it can be demonstrated [12] that for time-independent external potentials (v, (rt) = 0)
the TDOEP reduces to the stationary OEP.

The implementation of the full TDOEP scheme is an extremely demanding task.
It is therefore highly desirable to construct approximations of vy, (rt) which are explicit
functionals of the orbitals {¢;,}, thereby avoiding the need to solve the integral equation
numerically. With similar manipulations as developed by KLI for the stationary case
[8, 9] one can derive the so-called TDKLI expression [4]

1
() ana (rt) (“xcja(rt) + u;kccja(rt))

na'z_rt) Zanja rt) [’l)xcya(t) - % (chja(t) + Hicja(t))]

Uxeo(rt) =

S

+

+ 4”0( szn.ﬂf I‘t) Kwdtl (chjo(tl) - xcgo(tl)) (23)

The tilde indicates that this is only an approximate solution of the TDOEP equation
(21) and the overbar is a shorthand notation for the orbital average, i.e. Uxcjo(t) =
J @1 njs(rt)vxejor(t). The last term of Eq. (23) vanishes identically for a large class of
exchange-correlation functionals A,. including all functionals depending on {¢;,} only
through the combinations ¢, (rt)¢},(r't) (such as the TDHF functional, Eq. (14)).
Eq. (23) is still an integral equation for @4.,. In contrast to the full TDOEP equation
it can be solved analytically [7]: Multiplying Eq. (23) by n,(rt) and integrating over
all space yields

Excko'(t) = wxck;g ZMk]U chga ) ) (24)
where
oo (1) = —— 3 o (1) - (e (01) + 2 (x2)
na I‘t . Jjo 2 XCj)o XC](T
- na(rt Zgn]a I't [1 (uXC]O'(t) +ﬂjccjo(t)):|
- e T [ (o) =) (29
and ()0 xt)
Mo (1) = [dor PR =0 (26)



Solving Eq. (24) for x.j,(t) requires inversion of the N, x N, matrix Ay;,(t) = 0x; —
My (t) and leads to
Ny

B (t) = 32 (477(0)) , oo (1) (27)

When Eq. (27) is substituted into Eq. (23), one obtains 0., (rt) as an explicit functional
of the orbitals {¢;,(rt)}. The TDKLI scheme has been applied successfully to the
nonperturbative description of atoms [13, 14, 15] and clusters [16] in strong laser pulses.

THE EXCHANGE CORRELATION KERNEL WITHIN THE TDOEP

In the previous section we presented the TDOEP scheme as a method to treat a
time-dependent interacting many particle system nonperturbatively. We now discuss
the linear density response to the time-dependent part of the external potential in the
TDOEP, and show how it is related to the TDDFT linear response formalism. Note
that to recover the Dyson-type equation (11) we have to establish an equation of the

form
Oxe o (1)

(svext o’ (rltl)

v(0)

= Z / d3y / dt fxe au(rta yT)Xl/O" (yTa rltl) (28)

where
ong(yT)

(svexta ( It,)
Within the TDOEP scheme the exchange-correlation potential does not depend ex-
plicitly on the spin densities n,. The density-dependence is only implicit through the
orbitals. Therefore the evaluation of the functional derivative dvy./dvexy is more com-
plicated than in ordinary TDDFT. The integral equation (21) does not even define vy,
as an explicit functional of only the occupied orbitals {¢;,;j = 1...N,} but contains
the Greens function K, (rt,r't'). For the moment we therefore imagine vy, to be a
functional of all orbitals {¢;,}. By applying the chain rule for functional derivatives
on the left hand side of Eq. (28) several times we obtain

OVsc o ( rt 3 3 ) 3
oot = “/dy/dr/d /dr/dy/dr
(5vxw rt (5¢Smy yT OVye o (Tt) 00F (yT vy (y'r)  onz(yT
% Z ( + myv >
0P (yT) vy (y'7!) 09k, (y7) dvy (y'T) 0Nz (F7) OVext o (Tt')

Comparison of (30) and (28) yields the following representation for the exchange-
correlation kernel

freoor (xt, 1Y) [Z/d?’y/dT/d?’ ’de

Xva! (YT I‘t ) (29)

(30)

5 (st Sty , Salt) ity ) Sty e
0Pmu (y7) 00 (Y'T') 007, (y7) v (y'7") / Ongr (2') L0 (0=6 1)
Here the functional derivatives d¢;,/0v, and dv,s/dn, refer to the mappings
Vo — {Pjo} (32)
Vg < {nja} (33)

defined by solution of the Schrédinger equation (2) for ¢ > ¢, under the initial condition
qﬁg?,) (rto) = @jo(r). The correspondence (33) between potentials and spin densities
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is one-to-one by the Runge-Gross theorem. The left hand side of Eq. (31) is to be
evaluated at the stationary orbitals qbg-?,) (rt) = ;o (r)e=(t%) corresponding to v(rt) =
v (r) for all times. For d¢;,/dv, we obtain from first-order perturbation theory

0;s,
53(3?) = —i0s0 Pjo(r’ Z¢ko’ (vt) oy, (x't)O(t — ') (34)

and for d¢7,, /v, the complex conjugate. The derivative dv,/dn, is the inverse of the
noninteracting density-density response function

Y 141 577,0 ri
Xsaa’(rt,rt) = ﬁ(r/t?)

= —i0(t —t)0e D (fro — fio ) Gio(rt)djo(x't ) Po (r't)) b, (rt) (35)

Jrk

(%s reduces to xs of (8) after inserting the stationary orbitals ¢(®(¢); the f;, are oc-
cupation factors). Thus multiplying Eq. (31) with Xs5(r't',¥t) from the right and
integrating over r't’ yields the following integral equation for the exchange-correlation
kernel

/ dt’ / a3r' { -y ( fmo' freoo (xt,2't') — g,((T()m, (rt,x't") >

¢m0' (}’7' mo—l ¢k:o‘ ¢ o’ (y7’)0(tl — T) —+ c.c. } = 0.
[ Z ’ Bjo (H)=052 (1)

(36)
where we used the abbreviation
1 OV o (Tt
g)(cTcngo’ (I't, rltl) :l * ! - ( ) ] ' (37)
o (F'1) 0mar (P8) |60

We emphasize that Eq.(36) is by no means restricted to the TDOEP but defines the xc-
kernel in any scheme involving a representation of a local xc-potential as a functional of
the orbitals rather than the spin densities. We observe that Eq.(36) is formally identical
with the integral equation for the time-dependent OEP xc-potential (21) with vy, (r't")
and uxcjo (r't") replaced by fycoo (rt,r't') and g)(i)w (rt, r't'), respectively. Consequently
it can be treated by the same approximation methods once the quantity g¥) has been
obtained from a functional v[{®;s}]-

Within the full TDOEP scheme one can still not evaluate the derivatives in (37)
directly because one has only an implicit knowledge of the functional form of vy [{¢;, }].
An exact procedure to overcome this difficulty is presented in the appendix and can be
outlined as follows: Acting with §/0¢;, on Eq. (21) one generates a system of integral
equations for the derivatives dvy./d¢;, of the xc-potential. These relations can be
combined with Eq. (37) to a single integral equation defining f. in terms of derivatives
0Axe/0¢js and 6% Axc/0d;s0¢5 of the xc-part of the action functional.

For practical calculations, however, it is desirable to devise a sufficiently simple
analytic approximation of fy.. To this end we consider the expression

appr |w g I‘t |2
e = 3 oot o) [ () + 0 (0 (38)
j a

as an approximate solution to (21), which means that we keep only the first term on
the right hand side of Eq. (23). In the static exchange-only case this procedure leads
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to the so-called Slater approximation [17]. Now we apply the same approximation to
(36), i.e., we set

r Pja’
R (yr,x't) 2‘2;; (9 (v, x't) + c.c.] (39)

and use the explicit analytical form (38) to evaluate (37). In the TD x-only approxi-
mation defined by (14) this scheme yields the compact expression

|k Fro@no (1) 0k ()

It — 1| ng o (r) Moo (r')

JEP(rt, 1) = = 6(t — t') 6por

XO'G' (40)
We remark that in general the Fourier transform of the xc-kernel defined by Eq. (36) is
frequency-dependent (even in the TD x-only case), a feature which is not accounted for
in the present treatment of this equation. However, for the special case of a two-electron
system treated within TD x-only theory, Eqs. (40) and (38) are the ezact solutions of
the respective integral equations, as is easily checked.

CALCULATION OF EXCITATION ENERGIES

The traditional Hohenberg-Kohn theorem guarantees that every observable of a
stationary physical system can be expressed in terms of its ground-state density. In
principle, this is also true for the set of excited-state energies: Knowledge of the external
potential, which is a unique functional of the ground-state density, allows the calculation
of any excited state and its energy. In practise, however, the description of excited
states within stationary density-functional theory is a notoriously difficult subject [18
— 33]. In particular, the Kohn-Sham eigenvalues, introduced as purely mathematical
constructs into density-functional theory, cannot simply be interpreted as excited-state
energies.

In this section we shall discuss a different approach to the calculation of excitation
energies which is based on time-dependent density functional theory in the linear re-
sponse regime [34, 35]. Similar ideas were recently proposed by Casida and coworkers
[36] on the basis of the one-particle density matrix.

Since the response functions (8) and (9) as well as the xc kernel (12) are func-
tionals of the ground-state density only, this approach represents a way of explicitly
constructing functionals for excitation energies in terms of ground state properties.

To calculate excitation energies from time-dependent density functional theory
we use the fact that the frequency-dependent linear density response of a finite system
exhibits discrete poles at the true excitation energies of the unperturbed system. Taking
the Dyson-type equation (11) for the interacting density-density response function,
the exact linear density response can be written as the linear density response of a
noninteracting (Kohn-Sham) system to an effective perturbation. The fundamental idea
is to use this formally exact representation of the linear density response to calculate
the shifts of the Kohn-Sham orbital eigenvalue differences (which are the poles of the
Kohn-Sham response function) toward the true excitation energies (which are the poles
of the interacting response function).

Inserting the Fourier transform (with respect to time) of relation (11) into the
equation

i, (r,w) = /d3yxau( LY w)v (v, w) (41)



for the frequency-dependent linear (spin) density response, one obtains the response
equation

Mot @) = 3 [ Ay et 0)vs10(y, ) (42)
of non-interacting particles subject to the effective perturbation

1
ly —y'|

Vs 1u(y’ CU) = vlll(y’ CU) + Z / d3y, ( + fxcuv’ (Ya yl; CU)> niy (y,’ CU) . (43)

Equations (42) and (43) have to be solved self-consistently for the frequency-dependent
linear spin density response ny,(r,w).

The response-function x; of the Kohn-Sham system can be expressed in terms of
the unperturbed static Kohn-Sham spin orbitals ¢;, as

Pjo (T) P ()05, () 1o (r')
w — (€joc — €ko) + 11

Xsoo! (r7 rl; OU) - (sao’ E(fka - fja)

gk

(44)

where fi,, fj, are occupation factors (1 or 0). The summations in (44) run over all
unperturbed Kohn-Sham orbitals, including the continuum states.

Note that the equations (42) and (43) are valid not only in the conventional for-
mulation but also in the OEP formulation of time-dependent density functional theory,
where the same Dyson-type relation (11) holds true as has been demonstrated in the
previous section. In particular, one can employ approximate exchange-correlation ker-
nels in Eq. (43) which were derived in the framework of the TDOEP.

In order to calculate the shifts from the KS single-particle energy differences to-
wards the true excitation energies 0 of the interacting system, we rewrite Eq. (42)
together with Eq. (43) as

2/d3y, (501/5(1' — y') — 2/d3y Xsau(ray; w)
X <; + fxcul/’ (y, yl; CU)) ) N1y (yl? w)

ly —y'|
= Z/d3yxsau(r,y;w)v1y(y,w)- (45)

In general, the true excitation energies €2 are not identical with the Kohn-Sham exci-
tation energies €;, — €x,. Therefore, the right-hand side of Eq. (45) remains finite for
w — €). Since, on the other hand, the exact spin-density response n1,, has poles at the
true excitation energies €2, the integral operator acting on n;, on the left-hand side of
Eq. (45) cannot be invertible for w — €2 (Assuming the existence of the inverse opera-
tor, its action on both sides of Eq. (45) results in a finite right-hand side for w — Q.
This leads to a contradiction since n;,, remaining on the left-hand side, has a pole at
w=Q).

Consequently, the true excitation energies {2 are characterized as those frequencies
where the eigenvalues of the integral operator acting on the spin-density vector in
Eq. (45) vanish. Integrating out the delta-function in Eq. (45), the true excitation
energies () are those frequencies, where the eigenvalues A\(w) of

Z’fdf‘y' ;/dg’stau(r,YQw) <|y _1 Y + fxc,,,,f(y,y';w)> Yo (y' w) =
Aw)e(r, ) (46)
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satisfy
AQ)=1. (47)
This condition rigorously determines the true excitation spectrum of the interacting
system at hand.
To facilitate the notation, we introduce double indices ¢ = (j,k) so that w,, =
€jo — €k denotes the excitation energy of the single-particle transition (ko — jo).
Moreover, we define

Pyo(r) := Pro(r) djol(r), (48)
Qgo = fka - fja (49)

and set
1
gqa Z/ds ! /d3y @qo’ (W + fxcm/’ (y; yl’ w)) Yo' (y/,w) . (50)
Using these definitions, Eq. (46) can be recast into

520wl e ) = M@ (rw). (51)

7 W— Wee +17

Solving this equation for 7, (r,w) and reinserting the result on the right-hand side of
Eq. (50) we arrive at

sy Marre @) e ) = M@ w), (52)

o w wq0:+zn

where we have introduced the matrix elements

My gor () = o / d*r / &' @2 () <|r—17r| + fxcwl(r,r’;w)> Do),  (53)

Note that the summation in Eq. (52) extends over an infinite number of single-
particle transitions ¢'c’ between occupied and unoccupied Kohn-Sham orbitals, so that
up to this point, no approximations have been made.

In order to actually calculate the excitation spectrum, the eigenvalue problem (52)
has to be truncated in one way or another. One possibility is to expand all quantities
in Eq. (52) about one particular KS-orbital energy difference w,, [34, 35]. The true
excitation energies ) are then determined by the solution of

Alwpr)
Q — wy,

Q) = + B(wpr) +...=1 (54)

For non-degenerate single-particle poles w,,, the coefficients in Eq. (54) are given by

A(wpr) = My pr(wpr) (55)
and i
M ]. M I 1 MI !
B(wPT) — _TPTPT T Z pT¢'o (w:m') qo p.T(pr) . (56)
dw Wpr MprT(pr) qlo./?épT pr — wao./ —|— Z’f]
If the pole w,, is p-fold degenerate, wp,;, = Wyyr, = ... = Wy 7, = wo, the lowest-order

coefficient A in Eq. (54) is determined by a p-dimensional matrix equation

Z DiTi PkTk W() gkak - An(wo)é-;()'?% ’ Z = 1 . @a (57)
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leading to p different coefficients A; ... A, in general. For excitation energies ) close
to wg, the lowest-order term of the above Laurent expansion will dominate the series.
In this single pole approximation (SPA), Eq. (54) reduces to

M (Q) ~ Anle)

~ :]_.
0w (58)

The condition (47) and its complex conjugate, A*(2) = 1, finally lead to to a simple
(approximate) expression for the exact excitation energies.

Qn ~ Wy + %An(wo) . (59)

For closed-shell systems, every Kohn-Sham orbital eigenvalue is degenerate with
respect to spin, i.e. the spin multiplet structure is absent in the bare Kohn-Sham
eigenvalue spectrum. Within the SPA, the dominant terms in the corrections to the
Kohn-Sham eigenvalues towards the true multiplet energies naturally emerge from the
solution of the (2 x 2) eigenvalue problem

Z Mypopor (wo)&por (wo) = Apo(wo) - (60)
o' =l

Then, the resulting excitation energies are:
Q12 = wo + R{Mpppr = Mppp, } - (61)

Using the explicit form of the matrix elements (53) one finds

0 = wy + 23?/d37"/d3r' ®’(r) (

Qy = wp + 2R / dr / A% @3 (r) 13 G (1, 775 w0) B, (1) (63)

+ fre(r, T w0)> ®,(r') (62)

v —

where, since we are dealing with spin saturated systems, we have dropped the spin-
index of ®,, for simplicity. The xc-kernels appearing in Egs. (62) and (63) are given
by

1
fxc(ra rl; (.d) =7 Z fxcaa’ (I', rl; w) (64)
4 o,0/=+£1
1
Gre(r,Tsw) = — D (00" freoo (1,7 w). (65)
4/10 o,0'=%1

The latter kernel, G, is responsible for the exchange and correlation effects in the
Kohn-Sham equation for the linear response of the frequency-dependent magnetization
density m(r,w) [2]. The fact that the magnetization density response naturally involves
spin-flip processes suggests that {25 can be attributed to spin triplet excitation energies
of many-electron systems. The corresponding spin singlet excitation energies, on the
other hand, are given by 2;.

Apart from the explicit calculation of the dominant contributions to the shifts of
the Kohn-Sham eigenvalue differences towards the true excitation energies, one can, in
principle, solve Eq. (52) directly. At the frequencies w = Q Eq. (52) can be written as

Z (Mqrf qa’ (Q) + ‘5q0 q’a'wqo) Bq’a’ (Q) = Qﬂqa (Q) ) (66)

ql o—/

11



where we have introduced

Bao (2) 1= &40 (2) /(2 — wgo) - (67)

Hence, the exact excitation energies €) are the exact solutions of the nonlinear matrix-
equation (66). Truncation of the infinite-dimensional matrix in Eq. (66) amounts to
the approximation of ¥(9) by a finite sum

(0 (r,v',w) Z Z ay (rl). (68)

Pt W — Wyo

X

Thus, instead of expanding about a single pole, we explicitly take into account several
poles of the noninteracting response function. Taking the adiabatic approximation for
the xc-kernels, the matrix elements M, ;. become real and frequency independent,
and the excitation energies Q are then given as the eigenvalues of the (Q x () matrix

Mo g0 (2= 0) + 040 g0 Wyo-

Results for the He Atom

In this section we report numerical results for excitation energies of the He atom
using the above formalism of time-dependent density functional theory. The scheme
generally involves three different types of approximations: (i) In the calculation of the
KS orbital energies one employs some approximation of the static xc potential vy.. (ii)
The xc kernel fy. needs to be approximated. (iii) The infinite-dimensional eigenvalue
problem (52) (or, equivalently, (66)) must be truncated in one way or another. The
aim of the present work is to investigate the effects due to the approximations (ii)
and (iii). In order to eliminate the errors (i) associated with the approximation for
the ground-state KS potential we employ the ezact xc potential of the He atom [37].
Table 1 shows the excitation energies of neutral helium, calculated in the single-pole
approximation (SPA) (Egs. (62) and (63)) and obtained from the truncated matrix
equation (66) in comparison with results of the nonrelativistic variational calculation
of Kono and Hattori [38] (column 8). The matrix equation (66) was solved using
N = 34 unoccupied Kohn-Sham orbitals of s or p symmetry. For each symmetry
class the resulting dimension of the (fully coupled but truncated) matrix in Eq. (66) is
(4N x 4N) (due to the spin-degeneracy of the KS orbitals of Helium and the fact that
the frequency dependent Kohn-Sham response function is symmetric in the complex
plane with respect to the imaginary axis).

The excitation energies resulting from equation (66) are listed in column 5 for
fALDA " the so called adiabatic local density approximation for the exchange-correlation
kernel [39], where the parametrization of Vosko, Wilk and Nusair [40] has been used for
the correlation energy per particle. In column 7 we list the excitation energies obtained
with the TDOEP kernel f%0, (Eq. (40)).

Within the accuracy of the figures given in the table, the results are converged with
respect to variations of the dimension of the matrix in Eq. (66). Hence, the remaining
difference between the results of the variational calculation [38] given in column 8 and
the values obtained from our TDDFT formalism (column 5 and 7) is entirely due to
the approximations in the xc kernels.

As also noted by Umrigar [41], it is a remarkable fact that for the exact Kohn-
Sham potential of Helium, the Kohn-Sham excitation energies €; — €, denoted Awxks
(column 3), are already very close to the exact spectrum, with Awks lying always
between the singlet and the triplet energies. Hence, our method yields correspondingly
small corrections towards singlet and triplet energies.

12



Table 1. Comparison of the excitation energies of neutral
helium, calculated from the exact xc potential by using
approximate xc kernels. All values are in Hartrees.

ALDA (xc) TDOEP (x-only)
State k—j Awkxs SPA  full®  SPA full*  exactP

ps o2 070 I TOL Grasr ores 0707
jis 3 0ssm 0U DUC Obis 080 08
pg te-rds 0sess (LS DSTO Osmo osvs 0870
s L d 0SS0 DR D% ossw s 08e
s om0 088 DUol e 08 Oseoo 08
g leoTe 089 ULl U Oswn st 080
s leo8s 08055 (Ul 0L Gk 080 0800
gis oS 0892 0o O Osord 085 0sor
ap looip 072 0T O Oraso Orei orrod
pp % o8 (Ul (T om0 0l 0840
bp 1o 082 GRne CS osie osme osier
ip looop osss (R (R 0sadl 0sei2  osas
Gp 10 0S8 GLC Ui 0so0i 0501 0800
rp e 085 il (S Gsar 0ser 0800
gp 1o omse oLl iR 0s0 05000 080
gip 1% 085 GLul (i oso osoro  0soro
Mean abs. dev.© 0.0011 0.0010 0.0010 0.0010

Mean percentage error 0.15% 0.13% 0.13%  0.13%
aUsing the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
PNonrelativistic variational calculation [38].
®Mean value of the absolute deviations from the exact values.




3S Series 1S Series

Figure 1. Quantum defects p, of the S and P series in Helium, calculated from the exact
Kohn-Sham potential of Helium using various approximations for the exchange correlation kernel

ALDA

(triangles up: fALDA ALDA ysing the parametrization of Ref. [40], diamonds:
TDOLY (Eq. 40)) in comparison with the values of a variational calculation (squares). The circles

denote the quantum defects of the uncorrected Kohn-Sham eigenvalues.

triangles down:

Comparing the results of the single-pole approximation (SPA) in columns 4 and
6 to the solutions of the “full” matrix equations in columns 5 and 7, respectively, we
see that there is very little change (from a few hundredth of a percent to at most one
half percent) in the resulting excitation energies. Thus we conclude that in helium the
single-pole approximation gives the dominant correction to the Kohn-Sham excitation
spectrum.

Figure 1 shows the quantum defects obtained from the calculated excitation ener-
gies. Except for the 1P series, the results for the quantum defects obtained with the
(x-only) TDOEP kernel (40) are closest to the exact values. Since expression (40) is
the exact solution of the integral equation (36) for two-electron systems in the x-only
limit, the remaining difference between the TDOEP results and the exact values can
be attributed to the lack of correlation terms in f{ 292", Their explicit incorporation
(within ALDA) into fy. reduces the singlet-triplet splitting, as can be seen from Table
2.
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Table 2. Singlet-triplet separations in
neutral helium calculated from the
exact xc potential by using various
approximate xc kernels. Calculated
from Eq. (0.65), using the lowest 34
unoccupied orbitals of s and p
symmetry. All values are in

mHartrees.
ALDA TDOEP
State  xc* x-only x-only exactP
25 32.7 42.2 45.2 29.3
38 94 11.1 10.8 7.4
45 4.0 4.7 4.3 2.9
55 2.1 2.4 2.2 1.4
65 1.3 14 1.2 0.8
7S 0.8 0.9 0.8 0.5
8S 0.6 0.6 0.5 0.3
95 04 0.5 04 0.2
2P 6.6 16.7 15.6 9.3
3P 2.6 4.5 4.7 2.9
4P 1.1 1.8 2.0 1.3
5P 0.6 0.9 1.0 0.6
6P 0.3 0.5 0.6 0.4
7P 0.2 0.3 0.4 0.2
8P 0.1 0.2 0.3 0.2
9P 0.1 0.2 0.2 0.1
dev.c 0.7 2.0 2.0

8Including correlation contributions in the
form of Vosko, Wilk and Nusair [40].

PTaken from Ref. [38]

®Mean absolute deviation from the exact
values



The TDOEP scheme offers a starting point for the construction of an approximate
xc kernel, which is not based on the homogeneous electron gas. Work along the lines
of improving the TDOEP kernels by the inclusion of suitable correlation contributions
is in progress.

On the other hand, we agree with the authors of Ref. [42] that the inaccuracies
introduced by approrimate ground-state exchange-correlation potentials can be sub-
stantial. In the LDA and in the popular GGAs for instance, the highest occupied
orbital eigenvalue is in error by about a factor of two, due to spurious self-interaction.
There may be error cancellations for the lower Kohn-Sham eigenvalue differences, but
in general one should not expect to get a reliable (Kohn-Sham) spectrum in LDA and
GGAs, because the respective potentials have the wrong behavior for large r. In addi-
tion, this causes the number of (unoccupied) bound KS states to be finite. It is very
unlikely that these defects will be cured by better approximations of fy. alone, since
the terms containing fy. only give corrections to the underlying Kohn-Sham eigenvalue
spectrum. Hence, the quantitiative calculation of excitation energies heavily depends
on the accuracy of the ground-state potential employed.

APPENDIX
The TDOEP integral equation for the exchange-correlation kernel

Within the TDOEP the functional derivatives dvy./d¢;, in (37) have to be ex-
tracted from the integral equation for the potential (21). To this end we rewrite the
latter as

Z/dt’/d?’r' { Xsoo! (T, Tt ) Vg o ('t)
i 0 S (s B1) = e () g ()65 () 1 )5, (11000 — ) }= 0

j’l

(69)

where the functions X;,, are defined in (35). We now act with §/d¢,,,» on Eq. (69)
which yields a system of coupled integral equations

51):,;0 o' (I"t’)

! 3 y —
Z/dt /d " Xsoo (T, rt)idqﬁm,/(y’f’)
! ! 6 : Ly * Ly
;/dt /d3?“ (W { +e 500’% (U:ccja’<rt) _uazcla’(rt))

OXsoo (Tt, T't")
0P (yITI)

and similarly for §/d¢z,, .. To make use of Eq. (70) we transform the integral equation
(36) for f.. by acting with X5, from the left

Z/dt'/d?’r'/dT'/d?’y’ Xsoor (Tt, T't") g%i,(r’t',y'T’))ZS,,,’,,(y'T',yT)

= Z/dt'/dsr'/dT'/dsy' Z)}sga,(rt, r't')

x |:(Svccc a’( ) (s¢mu ( ! I) + &U;Ec o’ (rlt,) (SQS:nu’ (y,T,)
0 (y'T") v, (yT) 0%, (y'r")  ov,(yT)

X Gy (10)50 () 1o ('8 (x0)0E — ) b Vaeor (') ) - (70)

(71)
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The functional derivatives d¢;,/dv, are given by (34). Now we can insert (70) in (71)
and obtain

Z/dt /d3 '/dT /d3y' Xo'o' (rt, vt fOEF, (r’t’,y'r’)x,(j(,)’)y(y'r’,yT)

_Z/dt’/d?”/dr/d?’y’Zl
{(+ﬂ@gaﬁ;z;;5§:(uuwwfﬂ>—u;w4ﬂ#x)@w@w¢%«fﬁ

7l
< G0 1) ) - e Uy | e T
+ {( +i5aa'ﬁ 37 (thaejor (01) = Wl (1'F) ) bjor (x1) 5, ('t
my! 3l
e (L), o | ) |
TR R R
(72)

X o (2t P (xt)0(t — 1) ) —

Eq. (72) is whithin the OEP an exact equation defining the exchange-correlation kernel
in terms of functional derivatives of the action functional A,.. After performing the
functional derivatives and inserting the stationary orbitals it takes the following form:

Z / dt’ / a3y / dr’ / d*y ng,), (rt, x't") fOEP, (r't',y'T')X,(,(,)?,,(y'T',yT)

= S bomdy [t [d' [ar [ @y o -v)oi — 1) S l

ey jlmk

1 1 b 1 5 0 Ac[{®j0}]
{ G50 (r'T) < G2y (Y'T) 6 (YT ror (y'7') 605, (y'7) ) 3jo (x't)
1 1 5 1 5 0 Azc[{dj0}]
o0 (r't) ( Gy (Y'T) 6 (Y'T') 1o (y'T') 605, (y'7) ) }

X Fy i (xt,v't)F5 o (y'T, }’T)]

dor. (x't")

$jo (1)=032 (1)

—i0(t = T)061 Y i (1)} (T)Omo (Y ko (¥ / ’r’ {

jlmk

6_i(€k‘7_€ma)(t_7) ( 6jk (P:,w-(rl)wla-(rl) [( fma fktf ) mca( ,) - U:(coc)ma(rl) :|

€lo — €mo + m

o) [+ 200 )

€ko — €Ejo T 11

—i(ejo—€ -7 9; :na r') o (r' *
+e (ejo—€10)(¢ )< ]I;QP—E( )Q_O:Z;) [( f]O' fla) mca( I)+uc(u(32)la(rl):|

B 5lm90;a(rl)¢’“”'(rl) [( fio — fla) vids (1) = ui%)ja(rl) D } '

€ko — €jo T 1)

where

Frpr ji (x4, 1) = jor (x8) §lr (X' ) b1 (') 1, (L) (74)



Some simplicfication of this equation can be achieved for action functionals depending
on the orbitals only through the spin density matrices [, (rt,r't') =3 fjo 0o (rt) ¢}, (r't").
In this case the OEP integral equations (21) for the stationary xc-potential and the
exchange-correlation kernel f,. .., respectively, read as follows:

dA
3 3 0 . 0 Tc o
/dt'/d r’/d 2 kO (rt; ', 2 1) ( 0O ('t)o(x' — 2') — 3T (@ 1) oo ) = 0.
(75)
and
/dt'/dT'/d3r'/d3z/d3y'/d3z' O (rt;z, v 1) KON (2 y', ' y7)

0% A,.
oL, (y',z'; 7)o, (x!, z; 1)

Trcov

% [ OEP(I"t’, y’r’)é(z _ I‘,)(S(Z’ _ y/) _

o () =030 (1) ]

= —i0(t—7)0 D 0ie(r)), () Pms(¥) ke (¥)

jlmk
6jk (0) 5ch
x o S Pmo | Veco T TR c >
( Go— g+ | 0L |40 A
o1 0A
. vm ) o) TC
< g Umca o > .
€ko ~ €jo + 1) e | 0l |40 o ) }
(76)
Here
WOt 1, 0) = 85 (Fio — fir ) 210 (005 (2) 010 1), ()~ o= 00(0 — 1)
4l
(77)

describes the density response of a noninteracting system to a nonlocal perturbation,
KONy T yT) =
=i Y (fno = fro ) P (&) 93 (9l )8 — 7). (7)
mk

is its adjoint and we adopted the notation

6Aa:c
< Pio | ,U:(c%)a - oT | Plo >
o |(0)
= [ [ o, (000050 - y) - S Y el (19
5F0 (rla yl) ¢(0)

We remark that the KLI approximation scheme amounts to replacing x° by

ROE ety 2 1) =40 (fja+fka—25jkfjo> 0jo (t) @5, (r') 1o (2) i, (r)0 (1) (80)
ik

and that the approximation (38) corresponds to skip here the term —20,f;,. These
manipulations can also be applied on the lhs of the integral equation (76). One is
also tempted to neglect the rhs of Eq. (76) because the here entering combination of
matrix elements (79) should be forced to be small by Eq. (75). In this way one gets
fully analytic approximations for fy.,,». The resulting expressions are however still
quite complicated. In the applications discussed in this paper they perform also not
better than the simple formula (39).
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