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A density-functional formalism comparable to the Hohenberg-Kohn-Sham theory of the
ground state is developed for arbitrary time-dependent systems. Tt is proven that the single-
particte potential v( Tr) leading to a given v-representable density »{ Tr) is uniquely deter-
mined so that the corresponding map v— # s invertible. On the basis of this theorem, three
schemes are derived to calculate the density: a set of hydrodynamical equations, a stationary
action principle, and an effective single-particle Schridinger equation.

PACS numbers: 31.10.+2z, 03.65.-w

Density-functional methods have become an im-
portant tool in the treatment of many-body prob-
lems in atomic, molecular, solid state, and nuclear
physics.! The successful application to stationary
systems has recently sparked new interest in treat-
ing time-dependent (1d) problems in terms of den-
sity functionals: Atomic? and nuclear’ scattering
processes, photoabsorption in atoms,® and the
dynamical response of inhomogeneous metallic sys-
tems> ® have been successfully discussed.

However, as yet, a fundamental existence the-
orem comparable to the theorem of Hohenberg and
Kohn’ (HK) could not be demonstrated for arbi-
trary td systems. To illustrate the difficulties in-
volved we shall first give an outline of how such a

theorem should look in a general td situation. The
starting point is the td Schrédinger equation (SE)

P90 (0/8r=H(N®(n, d(1y)=d, (1)

{(atomic units are used throughout this paper). The
Hamiltonian H() =T+ V() + W is assumed to
consist of the Kinetic energy

T=3 fdril(T)= 1D, (),

a td, local, and spin-independent single-particle po-
tential

V(=3 [ rv(Tod] (F)g,(F),

and some spin-independent particle-particle interac-
tion

W= %Eszs,faﬂr fd3r' Py (T) t}l}( Tyw(T, ?')gl;sr( e, (T).

By solving the td SE (1) with various potentials
v(Tr) and a fixed initial state &, we obtain a map
Fw(T)— &), Next we calculate the densities
n (T = (DA (F)|®())with 7(T)= 3, (T)
Xy (T) for all the td wave functions resulting
from F.  This defines another map G-
v(T1— n(Tr. In order to establish a td version
of the HK theorem one has to show that G is inver-
tible. Of course, we cannot expect an exact 1-1
correspondence since for two potentials V(t) and
V(1) differing by an additive merely td scalar func-
tion C(1) the corresponding wave functions will
differ by a merely td phase ® (1)} = ¢~ Wd () with
a(r) = C(1), so that the resulting densities will be
identical, #( T =n(Fs). However, if it is possi-
ble to establish the invertibility of & up to such an
additive td function then the wave function is fixed
by the density up to a td phase via $(r)
=FG~'n(Tt) and any expectation value
{(®()|O|d()) can be regarded as a functional of
the density (the ambiguity in the phase cancels out
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provided O contains no time derivatives).

The proof of the traditional HK theorem is based
on the Rayleigh-Ritz principle. The difficulty for td
systems arises from the fact that no minimum prin-
ciple is available; the action integral

|'1 "

a= [ a@@lis/ai— Anle) (2)
provides only a stationary peint (but, in general, no
minimum) at the solution of the td SE (1). So far,
a HK-type theorem has been proven only for two
special cases®: (a) If the potentials v(T¢) are re-
stricted to functions having a periodic dependence
on time the proof can be based either on the
Rayleigh-Ritz principle for steady states’ or on the
minimum property of the ‘‘adiabatic’’ td ground-
state energy.'® (b) For potentials consisting of a
fixed static part and a small td perturbation
v(TH)=vo(T)+ v, (TH the inverse of G can be
constructed within linear-response theory.!! 12
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The aim of this paper is 1o establish a genceral
theory for v-representable densities which applies
to arbitrarv 1d situations: In the first part {theorem
1) we shall prove the invertibility of . Except tor
the requirement of being expandable tnto a Tavior
series with respect Lo the time coordinate, no re-
strictions will be imposed on the set of admissible
potentials. The second part of the paper (consisting
of three further theorems) will provide a theoreticul
basis for practical schemes to calculate the td densi-
ty.

Theorem | —For every single-particle potential
v{Tr) which can be expanded into a Taylor series
with respect to the time coordinate around r=r;. a
map G:w(Ti)— n(Tr) is defined by solving the
time-dependent Schridinger equation with a fixed
initial state ®(ty) =y and calculating the corre-
sponding densities # ( Tr). This map can be invert-
ed up 1o an additive merely time-dependent func-
tion in the potential.

Proof.—Let v{ 71} and v'(T't) be two potentials

—

which differ by more than a td function, i.e.,
v(TH v (T ¢(1). This does of course not
exclude that the potentials are identical at 1=,
However, since the potentials can be expanded into
i Taylor series around ¢y, there must exist some
minimal nonnegative integer & such that

k
5%[14?‘.')—-11’(“r'r)]l,-,ﬁ#const. (3)

The only thing to prove is that the densities n ( T'/1)
and n'( T1) corresponding to v(T¢) and v'( Tr) are
different if (3) is fulfilled with some k=0. In a
first step. we show that the corresponding current
densities j(Tr) and j'( T1) are different. It should
be noted that the particle and current densities cor-
responding to v(Tr) and v (T are of course
identical at the initial time t since we consider only
wave functions which evolve from a fixed initial
state @

The time evolution of the current density ts most
easily discussed by means of the equation of motion

'_:'_;<¢(!)|é({)l¢,“)) =<¢(;)1J%O(H+ [O(!).f:](f)]lq)(f)). 4

Using T(TN = (@ ()| T(T) (1)) with

TP =013,V (T, (T)—b, (TIVE,(T)]],

one obtains

FaT (T =(dWITT)VHDDn).

(5)

Since & (1) and ®'{¢) evolve from the same initial state @y, Eq. (5) leads to

%[T(?r)— TUTO m gy = (Dl [T TV H (1) = H (1) |} = in(F1o) V[0 Trp) —v'(Fip)].

If the potentials differ at r= rQ_[i.e., if (3} holds for k =0] then the right-hand side of this equation will be
different from zero and thus j (T¢) and j (71 will become different infinitesimaily later than 7y If the
minimum integer k for which (3) holds is greater than zero then Eq. (4) has to be applied k times. Deriva-
tives of the potentials with respect to space coordinates [as far as required to calculate the commutators in
(4)] are assumed to exist. After some straightforward algebra one obtains

k
| W (FD v (FDlm g #0.

K+ 1.
[,é’»‘_{l [T(?,)_T’(f’r)],_,0= :'n(?'rn)V[

Again this means that j (T1) and j'(T) will become different infinitesimally later than tq which completes
the proof for the current vectors.
Next we consider the corresponding densities. By use of the continuity equation we have

(8/80) n(T1)—n(TNl= —diviT(Fo-T(Fn)l.
Taking the (& + 1)st derivative of this equation and using the above result for the current densities we ob-
tain
k42

k
B%[n(?t)—n'(“r‘f)]|;-:o= ~diva(Try) -V %[v(?f)—v’(?r)n,-,o . (6)
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It remains to be shown that the right-hand side of (6} cannot vanish if (3) holds. The proof is by reductio ad
absurdum: Assume that div{n( Tip) Vu (T )] =0 with «( T) # const; then

0= dr u(T)divin(Fi)Vu(7)]= — [ (T Tu T+ +n(Ti) [Vud(7)]-dT,

If the initial density #( Tt,) falls off rapidly enough
to ensure that the surface integral vanishes we can
conclude n(T)[Vu(r)]*=0. This is in contra-
diction to w(T)#const provided n{TFi) is
reasonably well behaved (we merely have to ex-
clude that the initial density vanishes in precisely
those subregions of space where w =const, if such
regions exist at all). Thus, the right-hand side of
(6) cannot vanish which proves that the densities
n(Tt) and n'(T1) become different infinitesimally
later than 1.

Theorem 2.—There exists a three-component
density functional P[#l(Tr which depends
parametrically on (Tt} such that the exact particle
and current densities can be determined from a set

of “*hydrodynamical’’ equations
an(Tt)/or=—div] (T, (7
37 (Try/ar=Plal(T1), (8)

with _initial  conditions n(Try) = (DglA ()| dy)
and j (Try)= (dJOIJ (T){dy).

Proof.—Since the exact particle and current den-
sities always satisfy the continuity equation {7) it is
sufficient to prove Eq. (8). From theorem 1 we
know that the potential is determined by the density
up to an additive td function C(r). This in turn
fixes the wave function within a td phase factor:
D) =e N[ n]l(r) where ¥(nl(7) is defined as
the wave function obtained for the choice C (1) =0.
By insertion into (5) the desired Eq. (8) is immedi-
ately obtained if the functional P is chosen as

PBini(Tt)
= — (AT ELAWDIY (D). (9)

Theorem 3.—The action integral (2) can be
represented as a functional of the density A [n]. If
the potential v(Tt) is chosen such that no additive
time-dependent function can be split, the total ac-
tion can be writlen as

Al =Bla= [ [ar n(FOw(m,  (10)

where B1(n] is a umiversal functional of the density

J

f

in the sense thal the same dependence on # (Tt)
holds for all external potentials v{Tr). 41{n] has a
stalionary point al the exact density of the system,
l.e., the exact densily can be computed from the
Euler equation

8A/6n(T1)=0. (an

Progf— Although the wave function @®{1) is
fixed by the density only within a 1d phase factor,
the matrix element

(®(D]id/3r —T— W = V(1 |d(1))

is uniquely determined since the function C () con-
tained in the potential ¥ (1) is precisely cancelled by
the time derivative of the phase a(r)=C{(1) [see
discussion following Eq. (1}]. Therefore, the action
(2) is a unique functional of the density and can be
written as (10) if B[#] is chosen as

Blal=f, (W inl(Dlidfar~T—W 1w [nl ().

(12)

The universality of B follows trivially from the
construction. Since the action {2) is stationary for
the exact solution of the td SE (1), the correspond-
ing density functional (10) must be stationary for
the exact td density of the system.

In order to derive a practical scheme comparable
to the Kohn-Sham formalism!? we first define
another density functional by

Stal= [ ar (e inl(nliafar - Pl (nl()
(13)

which is, of course, universal in the same sense as
Bln]l. It should be pointed out that the particle-
particle interaction has been kept fixed so far If we
compare two different interactions W and W’ then
the corresponding functionals Sy [n] and S,.[n]
will in general be different. Now let Soln] be the
particular functional (13) for the case W =0, i.e.,
for noninteracting particles. Then, in analogy to the
stationary case, the “‘exchange-correlation’ part of
the action can be defined as

A,c{n}=L;]d1<W[n](r)!Wlw[n](r))—%J::dtfd%fd%’n("r‘t)w(?', T (T'1) + Sl nl = Syl nl.

(14)

Theorem 4.—The exact time-dependent density of the system can be computed from

n(T) =3¢/ (Fre, (T,

(15)
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where the single-particle orbitals ¢ ;{ 7¢) fulfill the time-dependent Schrédinger equation

(i3/81+ VDS AT = v Tr:n (T (T 1) (16)
with an effective one-particle potential given by
veff{f'r,n(f'f)]zv(?’f)+fd3r’n(?'r)w(?', TY4+84,/6n0TT). (17)

Proof.— With use of the definition of the exchange-correlation functional (14), the stationary action princi-

ple {11) yields

8A4/8n(T1)=0=8S5ydn(T1)— [v(‘r"!)+fd3r’ AT Ow(T, T)+84,/0n(T)].

This is precisely the Euler equation for a system of
independent particles moving in the effective poten-
tial (17). Therefore, the exact density of the sys-
tem carn be obtained from a set of single-particle or-
bitals fulfilling the effective id SE (16},

It should be emphasized that the functionals
Plr), Blnl, and A, [nl as given by (9), (12), and
(14), respectively, are defined only for wu-
representable densities. The functionals remain un-
defined for those densities # ( T¢) which do not cor-
respond to some potential v{Tf). This fact may
cause mathematical problems, e.g., when variations
54 [n] with respect to arbitrary densities are re-
quired. At present, it is not clear how large the set
of v-representable td densities is.

In the theory presented here, &, is an arbitrary
but fixed initial state. Therefore, the functionals
P{nl, Blnl, etc., are defined only for 1d densities
which all have the same initial shape n(T1y). For
this reason, td theory presented above cannot be
compared directly to the siationary Hohenberg-
Kohn-Sham theory since the initial densities corre-
sponding 1o stationary ground states are of course
all different. However, if the initial state &, is al-
lowed to vary within the set of nondegenerate
ground-state wave functions, it is easy to prove in-
vertibility of the extended map G:(dyv(T1))
— n(T1)." For the set of densities obtained in
this way, theorems 2, 3, and 4 hold in precisely the
form given above and can be shown to reduce to
the common Hohenberg-Kohn-Sham theory in the
limit of stationary ground states.'?

Theorems 2, 3, and 4 provide a theoretical basis
for three different practical schemes: If one is able
to construct the functionals P{nl, Blxl, or 4, [n]
within a reasonable approximation then the corre-
sponding densities can be calculated from (7) and
(8), (11), and (15)-{17), respectively. On the ex-
act level the three schemes proven here are, of
course, completely equivalent. However, the most
attractive alternative to calculate approximate densi-
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ties is provided by the td Kohn-Sham scheme
(theorem 4) since it will produce a quantum
mechanical (wiggle} structure in the most natural
way.
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