
Time-dependent transport through single

molecules: nonequilibrium Greens functions
and TDDFT �

1 Introduction

The nomenclature quantum transport has been coined for the phenomenon
of electron motion through constrictions of transverse dimensions smaller
than the electron wavelength, e.g., quantum-point contacts, quantum wires,
molecules, etc. To describe transport properties on such a small scale, a quan-
tum theory of transport is required. In this section we focus on quantum
transport problems whose experimental setup is schematically displayed in
Fig. 1a. A central region of meso- or nano-scopic size is coupled to two metal-
lic electrodes which play the role of charge reservoirs. The whole system is
initially in a well defined equilibrium configuration, described by a unique
temperature and chemical potential (thermodynamic consistency). No cur-
rent flows through the junction, the charge density of the electrodes being
perfectly balanced. As originally proposed by Cini [1], we may drive the
system out of equilibrium by exposing the electrons to an external time-
dependent potential which is local in time and space. For instance, we may
switch on an electric field by putting the system between two capacitor plates
far away from the system boundaries, see Fig. 1b. The dynamical formation
of dipole layers screens the potential-drop along the electrodes and the total
potential turns out to be uniform in the left and right bulks. Accordingly,
the potential-drop is entirely limited to the central region. As the system size
increases the remote parts are less disturbed by the junction and the density
inside the electrodes approaches the equilibrium bulk-density.

There has been considerable activity to describe transport through these
systems on an ab initio level. Most approaches are based on a self-consistency
procedure first proposed by Lang [2]. In this steady-state approach based on
density functional theory (DFT), exchange and correlation is approximated
by the static local-density potential and the charge density is obtained self-
consistently in the presence of the steady current. However, the original jus-
tification involved subtle points such as different Fermi levels deep inside
the left and right electrodes and the implicit reference of non-local pertur-
bations such as tunneling Hamiltonians within a DFT framework. (For a
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Fig. 1. Schematic sketch of the experimental setup described in the main text. A
central region which also includes few layers of the left and right electrodes is cou-
pled to macroscopically large metallic reservoirs. a) The system is in equilibrium
for negative times. b) At positive times the electrons experience an electric field
generated by two capacitor plates far away from the system boundaries. Discarding
retardation effects, the screening of the potential-drop in the electrodes is instanta-
neous and the total potential turns out to be uniform in the left and right electrodes
separately.

detailed discussion we refer to Ref. [3].) The steady-state DFT approach has
been further developed [4–7] and the results have been most useful for under-
standing the qualitative behavior of measured current-voltage characteristics.
Quantitatively, however, the theoretical I-V curves typically differ from the
experimental ones by several orders of magnitude [8]. Several explanations
are possible for such a mismatch: models are not sufficiently refined, parasitic
effects in measurements have been underestimated, the characteristics of the
molecule-contact interfaces are not well understood and difficult to address
given their atomistic complexity. Another theoretical reason for this discrep-
ancy might be the fact that the transmission functions computed from static
DFT have resonances at the non-interacting Kohn-Sham excitation energies
which in general do not coincide with the true excitation energies. Further-
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more, different exchange-correlation functionals lead to DFT-currents that
vary by more than an order of magnitude [9].

On the other hand, excitation energies of interacting systems are accessi-
ble via time-dependent (TD) DFT [10,11]. In this theory, the time-dependent
density of an interacting system moving in an external, time-dependent local
potential can be calculated via a fictitious system of non-interacting electrons
moving in a local, effective time-dependent potential. Therefore this theory is
in principle well suited for the treatment of nonequilibrium transport prob-
lems [3,12]. Below, we combine the Cini scheme with TDDFT and we describe
in detail how TDDFT can be used to calculate the time-dependent current
in systems like the one of Fig. 1. The theoretical formulation of an exact the-
ory based on TDDFT and nonequilibrium Green functions (NEG) has been
developed in Ref. [3] and shortly after used for conductance calculations of
molecular wires [13]. A practical scheme to go beyond static calculations and
perform the full time evolution has recently been proposed by Kurth et al.
[14]. The theory was originally developed for systems initially described by
a thermal density matrix. An extension to unbalanced (out of equilibrium)
initial states can be found in Ref. [15].

Here we also mention that another thermodynamically consistent scheme
has been proposed by Kamenev and Kohn [16]. They consider a closed system
(ring) and drive it out of equilibrium by switching an external vector poten-
tial. As the Cini scheme, this approach also overcomes the problem of having
two or more chemical potentials. Since the Kamenev-Kohn approach uses a
vector potential rather than a scalar potential, TD current DFT (TDCDFT)
would be the natural density-functional extension.

2 An exact formulation based on TDDFT

In quantum transport problems like the one discussed in the previous Section,
we are mainly interested in calculating the total current through the junction
rather than the current density in some point of the system. Assuming that
the electrons can leave the region of volume V in Fig. 1b only through the
surface S, then the total time-dependent current IS(t) is given by the time
derivative of the total number of particles in volume V . Denoting by n(r, t)
the particle density we have

IS(t) = −e
∫

V

dr
d
dt
n(r, t). (1)

Runge and Gross have shown that n(r, t) can be computed in a one-particle
manner provided it falls off rapidly enough for r → ∞ (this theory ap-
plies only to those cases where the external disturbance is local in space).
Therefore, we may calculate n(r, t), and in turn IS(t), by solving a ficti-
tious non-interacting problem described by an effective Hamiltonian Hs(t).
The potential vs(r, t) experienced by the electrons in Hs(t) is called the
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Kohn-Sham (KS) potential and it is given by the sum of the external po-
tential, the Coulomb potential of the nuclei, the Hartree potential and the
exchange-correlation potential vxc. The latter accounts for the complicated
many-body effects and is obtained from an exchange-correlation action func-
tional, vxc(r, t) = δAxc[n]/δn(r, t) (as pointed out in Ref. [17], the causality
and symmetry properties require that the action functional Axc[n] is defined
on the Keldysh contour). Axc is a functional of the density and of the initial
density matrix. In our case, the initial density matrix is the thermal density
matrix which, due to the extension of the Hohenberg-Kohn theorem [18] to
finite temperatures [19], also is a functional of the density.

Without loss of generality we will assume that the external potential
vanishes for times t ≤ 0. The initial equilibrium density is then given by∑

s f(es)|〈r|ψs(0)〉|2, where f is the Fermi function. The KS states |ψs(0)〉
are eigenstates of Hs(0) with KS energies es. For positive times, the time-
dependent density can be calculated by evolving the KS states according to
the Schrödinger equation

i
d
dt

|ψs(t)〉 = Hs(t)|ψs(t)〉. (2)

Thus,
n(r, t) =

∑
s

f(es) |〈r|ψs(t)〉|2, (3)

and the continuity equation, ṅ(r, t) = −∇ · jKS(r, t), can be written in terms
of the KS current density

jKS(r, t) = −
∑

s

f(es) Im[ψ∗
s (r, t)∇ψs(r, t)], (4)

where ψs(r, t) = 〈r|ψs(t)〉 are the time-dependent KS orbitals. Using Gauss
theorem and the continuity equation it is straightforward to obtain

IS(t) = e
∑

s

f(es)
∫

S

dσ n̂ · Im[ψ∗
s (r, t)∇ψs(r, t)], (5)

where n̂ is the unit vector perpendicular to the surface element dσ.
The switching on of an electric field excites plasmon oscillations which

dynamically screen the external disturbance. Such a metallic screening pre-
vents any rearrangements of the initial equilibrium bulk-density, provided
the time-dependent perturbation is slowly varying during a typical plasmon
time-scale (which is usually less than a fs). Thus, the KS potential vs under-
goes a uniform time-dependent shift deep inside the left and right electrodes
and the KS potential-drop is entirely limited to the central region.

Let us now consider an electric field constant in time. After the transient
phase, the current will slowly decrease. We expect a very long plateau with
superimposed oscillations, whose amplitude is inversely proportional to the
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system size. As the size of the electrodes increases the amplitude of the os-
cillations decreases and the plateau phase become successively longer. The
steady-state current is defined as the current at the plateau for infinitely large
electrodes.

What is the physical mechanism leading to a steady-state current? In
the real system, dissipative effects like electron-electron or electron-phonon
scatterings provide a natural explanation for the damping of the transient
oscillations and the onset of a steady state. However, in the fictitious KS
system the electrons are non-interacting and the damping mechanisms of the
real problem are described by the local potential vxc. We conclude that for any
non-interacting system having the geometry of Fig. 1, there must be a class of
time-dependent local potentials leading to a steady current. Below, we use the
NEG techniques to study under what circumstances a steady-state current
develops and what is the underlying physical mechanism. We also show that
the steady-current can be expressed in a Landauer-like formula in terms of
fictitious transmission coefficients and one-particle energy eigenvalues.

3 Non-equilibrium Green functions

The one-particle scheme of TDDFT corresponds to a fictitious Green function
G(z; z′) which satisfies a one-particle equation of motion on the Keldysh
contour of Fig. 2, {

i
d
dz

− Hs(z)
}

G(z; z′) = δ(z; z′). (6)

It is convenient to define the projectors Pα =
∫

α
dr|r〉〈r| onto the left or

right electrodes (α = L,R) or the central region (α = C). Although the r
basis is not differentiable, the diagonal and off-diagonal matrix elements of
the kinetic energy remain well defined in a distribution sense. We introduce
the notation

Oαβ ≡ PαOPβ , (7)

where O is an arbitrary operator in one-body space. Here and in what follows,
we use boldface for operators in one-particle Hilbert space. The uncontacted
KS Hamiltonian is E ≡ HsLL + HsCC + HsRR while V ≡ Hs − E accounts
for the contacting part. Since V LR = V RL = 0, from Eqs. (1-6) the current
from the α = L,R electrode to the central region is

Iα(t) = e

∫
dr i

d
dt

〈r|G<
αα(t; t)|r〉

= e

∫
dr 〈r|V αCG<

Cα(t; t) − G<
αC(t; t)V Cα|r〉. (8)

We define the one-particle operator Qα(t) in the central subregion C as

Qα(t) = G<
Cα(t; t)V αC (9)
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Fig. 2. The Keldysh contour γ is an oriented contour with endpoints in 0− and
−iβ, β being the inverse temperature. It constitutes of a forward branch going from
0− to ∞, a backward branch coming back from ∞ to 0+ and a vertical (thermic)
track on the imaginary time axis between 0+ and −iβ. The variables z and z′ run
on γ.

and write the total current in Eq. (8) as

Iα(t) = 2e Re [Tr {Qα(t)}] , α = L,R, (10)

where the symbol Tr denotes the trace over a complete set of one-particle
states of C.

For the noninteracting system of TDDFT everything is known once we
know how to propagate the one-electron orbitals in time and how they are
populated before the system is perturbed. The time evolution is fully de-
scribed by the retarded or advanced Green functions GR,A, and the initial
population at zero time, i.e., by G<(0, 0) = if(Hs(0)), where f is the Fermi
distribution function [since Hs(0) is a matrix, so is f(Hs(0))]. Then, for any
t, t′ > 0 we have [1,12,20]

G<(t, t′) = iGR(t, 0)f(Hs(0))GA(0, t′) = GR(t, 0)G<(0, 0)GA(0, t′), (11)

and hence
Qα(t) =

[
GR(t, 0)G<(0, 0)GA(0, t)

]
Cα

V αC . (12)

The above equation is an exact result. For noninteracting electrons, Eq. (12)
agrees with the formula obtained by Cini [1]. Indeed, the derivation by Cini
does not depend on the details of the noninteracting system and therefore it
is also correct for the Kohn-Sham system, which however has the extra merit
of reproducing the exact density. The advantage of this approach is that the
interaction in the leads and in the conductor are treated on the same footing
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via self-consistent calculations on the current-carrying system. It also allows
for detailed studies of how the contacts influence the conductance properties.
We note in passing that Eq. (12) is also gauge invariant since it does not
change under an overall time-dependent shift of the external potential which
is constant in space. It is also not modified by a simultaneous shift of the
classical electrostatic potential and the chemical potential for t < 0.

Let us now focus on the long-time behavior and work out a simplified
expression. We introduce the uncontacted Green function g which obeys Eq.
(6) with V = 0, {

i
d
dz

− E(z)
}

g(z; z′) = δ(z; z′). (13)

The g can be expressed in terms of the one-body evolution operator S(t)
which fullfils

i
d
dt

S(t) = E(t)S(t), with S(0) = 1. (14)

The retarded and advanced components are

gR,A(t; t′) = ∓i Θ(±t∓ t′)S(t)S†(t′), (15)

while the lesser component g<(t; t′) = igR(t; 0)f(E(0))gA(0; t), since also the
uncontacted system is initially in equilibrium [cf. Eq (11)].

We convert the equation of motion for G into an integral equation

G(z; z′) = g(z; z′) +
∫

γ

dz̄ g(z; z̄)V G(z̄; z′), (16)

γ being the Keldysh contour of Fig. 2. The TDDFT Green function G pro-
jected in a subregion α = L,R or C can be described in terms of self-energies
which account for the hopping in and out of the subregion in question. Con-
sidering the central region, the self-energy can be written as

Σ(z; z′) =
∑

α=L,R

Σα, Σα(z; z′) = V Cα g(z; z′)V αC . (17)

Eqs. (16-17) allow to express Qα in terms of the projected Green function
onto the central region, G ≡ GCC , and Σ. Below we shall make an extensive
use of the Keldysh book-keeping of Section 2.2. After some tedious algebra
one finds

Qα(t) =
∑

β=L,R

[
GR · Σ<

β ·
(
δβα + GA · ΣA

α

)]
(t; t) (18)

+
∑

β=L,R

[
GR · Σ� �GM �Σ

�
β ·

(
δβα + GA · ΣA

α

)]
(t; t)

+ i
∑

β=L,R

GR(t; 0)
[
GM �Σ

�
β ·

(
δβα + GA · ΣA

α

)]
(0; t)

+
(
GR(t; 0)GM(0; 0) − i

[
GR · Σ� �GM

]
(t; 0)

) [
GA · ΣA

α

]
(0; t).
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Here we briefly explain the notation used. The symbol “·” is used to write∫ ∞
0

dt̄f(t̄)g(t̄) as f ·g, while the symbol “�” is used to write
∫ −iβ

0
dτ̄ f(τ̄)g(τ̄ ) as

f �g. The superscripts “M”, “�”, “	” in Green functions or self-energies denote
the Matsubara component (both arguments on the thermic imaginary track),
the Keldysh component with a real first argument and an imaginary second
argument and the Keldysh component with an imaginary first argument and
a real second argument, respectively.

Let us now take both the left and right electrodes infinitely large and
thereafter consider the limit of t→ ∞. Then, only the first term on the r.h.s.
of Eq. (18) does not vanish as both G and Σ tend to zero when the separation
between their time argument increases. Thus, the long-time limit washes out
the initial effect induced by the conducting term V . Moreover, the asymptotic
current is independent of the initial equilibrium distribution of the central
device. We expect that for small bias the electrons at the bottom of the left
and right conducting bands are not disturbed and the transient process is
exponentially short. On the other hand, for strong bias the transient phase
might decay as a power law, due to possible band-edge singularities.

Using the asymptotic (t, t′ → ∞) relation [12]

G<(t; t′) =
[
GR · Σ< · GA

]
(t; t′) (19)

we may write the asymptotic time-dependent current as

Iα(t) = 2e Re
[
Tr

{[
GR · Σ<

α

]
(t; t) +

[
G< · ΣA

α

]
(t; t)

}]
. (20)

Eq. (20) is valid for interacting devices connected to interacting electrodes,
since the non-interacting TDDFT Green function gives the exact density. It
also provides a useful framework for studying the transport in interacting
systems from first principles. It can be applied both to the case of a constant
(d.c.) bias as well as to the case of a time-dependent (e.g., a.c.) one. For
noninteracting electrons the Green function G of TDDFT coincides with the
Green function of the real system and Eq. (20) agrees with the formula by
Wingreen et al. [21,22].

4 Steady state

Let us now consider an external potential having a well defined limit when t→
∞. Taking first the thermodynamic limit of the two electrodes and afterward
the limit t→ ∞ we expect that the KS Hamiltonian Hs(t) will globally con-
verge to an asymptotic KS Hamiltonian H∞

s , meaning that limt→∞ E(t) =
E∞ = const. In this case it must exist a unitary operator S̄ such that

lim
t→∞S(t) = exp[−iE∞t] S̄. (21)
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Then, in terms of diagonalising one-body states |ψ∞
mα〉 of E∞

αα with eigenvalues
e∞mα we have

Σ<
α (t; t′) = i

∑
m,m′

e−i[e∞
mαt−e∞

m′α
t′]V Cα|ψ∞

mα〉〈ψ∞
mα|f(Ē0)|ψ∞

m′α〉〈ψ∞
m′α|V αC ,

(22)
where Ē0 = S̄ E0S̄† and E0 ≡ E(t = 0). For t, t′ → ∞, the left and right
contraction with a nonsingular V causes a perfect destructive interference for
states with |e∞mα−e∞m′α| � 1/(t+t′) and hence the restoration of translational
invariance in time

Σ<
α (t; t′) = i

∑
m

fmαΓ mαe−ie∞
mα(t−t′), (23)

where fmα = 〈ψ∞
mα|f(Ē0)|ψ∞

mα〉 while Γ mα = V Cα|ψ∞
mα〉〈ψ∞

mα|V αC [23].
The above dephasing mechanism is the key ingredient for the appearance of
a steady state. Substituting Eq. (23) into Eq. (20) we get the steady state
current

Iα = −2e
∑
mβ

fmβ

[
Tr

{
GR(e∞mβ)Γ mβGA(e∞mβ)Im[ΣA

α (e∞mβ)]
}

+δβαTr
{
Γ mαIm[GR(e∞mα)]

}]
(24)

with GR,A(ε) = [ε− E∞
CC − ΣR,A(ε)]−1. Using the equalities

Im[GR] =
1
2i

[GR − GA], [GR − GA] = [G> − G<] (25)

together with

[G>(ε) − G<(ε)] = −2πi
∑
mα

δ(ε− e∞mα)GR(e∞mα)Γ mαGA(e∞mα) (26)

and
Im[ΣA

α (ε)] = π
∑
m

δ(ε− e∞mα)Γ mα, (27)

the steady-state current in Eq. (24) can be rewritten in a Landauer-like [24]
form

JR = −e
∑
m

[fmLTmL − fmRTmR] = −JL. (28)

In the above formula TmR =
∑

n T nL
mR and TmL =

∑
n T nR

mL are the TDDFT
transmission coefficients expressed in terms of the quantities

T nβ
mα = 2πδ(e∞mα − e∞nβ)Tr

{
GR(e∞mα)Γ mαGA(e∞nβ)Γ nβ

}
= T mα

nβ . (29)

Despite the formal analogy with the Landauer formula, Eq. (28) contains
an important conceptual difference since fmα is not simply given by the Fermi
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distribution function. For example, if the induced change in effective potential
varies widely in space deep inside the electrodes, the band structure Ē0

αα

may be completely different from that of E∞
αα. However, if we asymptotically

have equilibrium far away from the central region, as we would expect for
electrodes with a macroscopic cross section, the change in effective potential
must be uniform. To leading order in 1/N we then have

Eαα(t) = E0
αα + δvα(t), (30)

and E∞
αα = E0

αα + δvα,∞. Hence, except for corrections which are of lower
order with respect to the system size, Ē0

αα = E0
αα and

fmα = f(e∞mα − δvα,∞). (31)

We emphasize that the steady-state current in Eq. (28) results from a pure
dephasing mechanism in the fictitious noninteracting problem. The damping
effects of scattering are described by Axc and vxc. Furthermore, the current
depends only on the asymptotic value of the KS potential, vs(r, t → ∞),
provided that Eq. (30) holds. However, vs(r, t → ∞) might depend on the
history of the external applied potential and the resulting steady-state current
might be history dependent. In these cases the full time evolution can not
be avoided. In the case of Time Dependent Local Density Approximation
(TDLDA), the exchange-correlation potential vxc depends only locally on
the instantaneous density and has no memory at all. If the density tends to
a constant, so does the KS potential vs, which again implies that the density
tends to a constant. Owing to the non-linearity of the problem there might
still be more than one steady-state solution or none at all.

5 A practical implementation scheme

The total time-dependent current IS(t) can be calculated from the KS orbitals
according to Eq. (5). However, before a TDDFT calculation of transport can
be tackled, a number of technical problems have to be addressed. In particu-
lar, one needs a practical scheme for extracting the set of initial states of the
infinitely large system and for propagating them. Of course, since one can
in practice only deal with finite systems this can only be achieved by apply-
ing the correct boundary conditions. The problem of so-called “transparent
boundary conditions” for the time-dependent Schrödinger equation has been
attacked by many authors. For a recent overview, the reader is referred to
Ref. [25]. Below, we sketch how to compute the initial extended states and
how to propagate them (we refer to Ref. [14] for the explicit implementation
of the algorithm).

The KS eigenstate ψs=Ej of the Hamiltonian Hs(0) is uniquely specified
by its eigenenergy E and a label j for the degenerate orbitals of this energy.
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It is possible to show that the eigenfunctions of Im[GR
CC(E)] can be ex-

pressed as a linear combination of the ψEj projected onto the central region.
If we use Ng grid points to describe the central region, the diagonalization
in principle gives Ng eigenvectors but only a few have the physical meaning
of extended eigenstates at this energy. It is, however, very easy to identify
the physical states by looking at the eigenvalues: only few eigenvalues are
nonvanishing. The corresponding states are the physical ones. All the other
eigenvalues are zero (or numerically close to zero) and the corresponding
states have no physical meaning. This procedure gives the correct extended
eigenstates in the central region only up to a normalization factor. When
diagonalizing Im[GR

CC(E)] with typical library routines one obtains eigen-
vectors which are normalized to the central region. Physically this might be
incorrect. Therefore, the normalization has to be fixed separately. This can
be done by matching the wavefunction for the central region to the known
form (and normalization) of the wavefunction in the macroscopic leads.

Once the initial states have been calculated we need a suitable algorithm
for propagating them. The explicitly treated region C includes the first few
atomic layers of the left and right electrodes. The boundaries of this region
are chosen in such a way that the density outside C is accurately described by
an equilibrium bulk density. It is convenient to write Eαα(t), with α = L,R,
as the sum of a term Eα which is constant in time and another term Uα(t)
which is explicitly time-dependent, Eαα(t) = Eα + Uα(t). In configuration
space Uα(t) is diagonal at any time t since the KS potential is local in space.
Furthermore, the diagonal elements Uα(r, t) are spatially constant for metallic
electrodes. Thus, Uα(t) = Uα(t)1α and UL(t) − UR(t) is the total potential
drop across the central region. Here 1α is the unit operator for region α. We
write Hs(t) = E(t)+V = H̃(t)+U(t), with U(t) = UL(t)+UR(t). For any
given initial state ψ(0) = ψ(0) we calculate ψ(tm = m∆t) = ψ(m) by using a
generalized form of the Cayley method

(1 + iδH̃
(m)

)
1 + i δ

2U (m)

1− i δ
2U (m)

ψ(m+1) = (1− iδH̃
(m)

)
1− i δ

2U (m)

1 + i δ
2U (m)

ψ(m), (32)

with H̃
(m)

= 1
2 [H̃(tm+1) + H̃(tm)], U (m) = 1

2 [U(tm+1) + U(tm)] and δ =
∆t/2. It should be noted that our propagator is norm conserving (unitary)
and accurate to second-order in δ, as is the Cayley propagator. Denoting by
ψα the projected wave function onto the region α = R,L,C, we find from
Eq. (32)

ψ
(m+1)
C =

1− iδH(m)
eff

1 + iδH(m)
eff

ψ
(m)
C + S(m) −M (m). (33)

Here, H
(m)
eff is the effective Hamiltonian of the central region:

H
(m)
eff = E(m)

CC − V CL
iδ

1 + iδEL
V LC − V CR

iδ
1 + iδER

V RC , (34)
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with E(m)
CC = 1

2 [ECC(tm+1) + ECC(tm)]. The source term S(m) describes the
injection of density into the region C. For a wave packet initially localized in
C the projection onto the left and right electrode ψ(0)

α vanishes and S(m) = 0
for any m. The memory term M (m) is responsible for the hopping in and out
of the region C. Eq. (33) is the central result of our algorithm for solving the
time-dependent Schrödinger equation in extended systems. We refer to Ref.
[14] for the implementation details.
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Fig. 3. Time evolution of the current for a double square potential barrier when
the bias is switched on in two different manners: in one case, the bias UL = U0 is
suddenly switched on at t = 0 while in the other case the same bias is achieved with
a smooth switching UL(t) = U0 sin2(ωt) for 0 < t < π/(2ω). The parameters for
the double barrier and the other numerical parameters are described in the main
text.

As an example we consider a one-dimensional system of non-interacting
electrons at zero temperature where the electrostatic potential vanishes both
in the left and right leads. The electrostatic potential in the central region
is modeled by a double square potential barrier. Initially, all single particle
levels are occupied up to the Fermi energy εF . At t = 0 a bias is switched on in
the leads and the time-evolution of the system is calculated. The numerical
parameters are as follows: the Fermi energy is εF = 0.3 a.u., the bias is
UL = 0.15, 0.25 a.u. and UR = 0, the central region extends from x = −6 to
x = +6 a.u. with equidistant grid points with spacing ∆x = 0.03 a.u.. The
electrostatic potential vs(x) = 0.5 a.u. for 5 ≤ |x| ≤ 6 and zero otherwise.
For the second derivative of the wavefunction (kinetic term) we have used a
simple three-point discretization. The energy integral in Eq. (5) is discretized
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with 100 points which amounts to a propagation of 200 states. The time step
for the propagation was ∆t = 10−2 a.u..

In Fig. 3 we have plotted the total current at x = 0 as a function of time
for two different ways of applying the bias in the left lead: in one case the
constant bias UL = U0 is switched on suddenly at t = 0, in the other case
the constant U0 is achieved with a smooth switching UL(t) = U0 sin2(ωt) for
0 < t < π/(2ω). As a first feature we notice that a steady state is achieved and
that the steady-state current does not depend on the history of the applied
bias, in agreement with the results obtained in Section 4. Second, we notice
that the onset of the current is delayed in relation to the switching time t = 0.
This is easily explained by the fact that the perturbation at t = 0 happens
in the leads only, e.g., for |x| > 6 a.u., while we plot the current at x = 0. In
other words, we see the delay time needed for the perturbation to propagate
from the leads to the center of our device region. We also note that the higher
the bias the more the current exceeds its steady-state value for small times
after switching on the bias.

6 Conclusions

In conclusion, we have described a formally exact, thermodynamically consis-
tent scheme based on TDDFT and NEG in order to treat the time-dependent
current response of electrode-junction-electrode systems. Among the advan-
tages we stress the possibility of including the electron-electron interaction
not only in the central region but also in the electrodes. We have shown
that the steady state develops due to a dephasing mechanism without any
reference to many-body damping and interactions. The damping mechanism
(due to the electron-electron scatterings) of the real problem is described
by vxc. The nonlinear steady-state current can be expressed in a Landauer-
like formula in terms of fictitious transmission coefficients and one-particle
energy eigenvalues. Our scheme is equally applicable to time-dependent re-
sponses and also allows for calculating the (transient) current shortly after
switching on a driving external field. Clearly, its usefulness depends on the
quality of the approximate TDDFT functionals being used. Time-dependent
linear response theory for dc-steady state has been implemented in Ref. [26]
within TDLDA assuming jellium-like electrodes (mimicked by complex ab-
sorbing/emitting potentials). It has been shown that the dc-conductance
changes considerably from the standard Landauer value. Therefore, a sys-
tematic study of the TDDFT functionals themselves is needed. A step be-
yond standard adiabatic-approximations and exchange-only potentials is to
resort to many-body schemes like those used for the characterization of op-
tical properties of semiconductors and insulators [27] or like those based on
variational functionals [28]. Another path is to explore in depth the fact that
the true exchange-correlation potential is current dependent [29].
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We also have shown that the steady-state current depends on the his-
tory only through the asymptotic shape of the effective TDDFT potential vs

provided the bias-induced change δvα is uniform deep inside the electrodes.
(This is the anticipated behavior for macroscopic electrodes.) The present
formulation can be easily extended to account for interaction with lattice vi-
brations at a semiclassical level. The inclusion of phonons might give rise to
hysteresis loops due to different transient electronic/geometrical device con-
figurations (e.g., isomerisation or structural modification). This effect will be
more dramatic in the case of ac-driving fields of high frequencies where the
system might not have enough time to respond to the perturbation.
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