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1 Introduction

The aim of this review is to give a pedagogical introduction to our recently
proposed ab initio theory of quantum transport. It is not intended to be a
general overview of the field. For further information we refer the interested
reader to Refs. [1–3]. The nomenclature quantum transport has been coined
for the phenomenon of electron motion through constrictions of transverse di-
mensions smaller than the electron wavelength, e.g., quantum-point contacts,
quantum wires, molecules, etc. The typical experimental setup is displayed in
Fig. 1 where a central region C of meso- or nano-scopic size is coupled to two
metallic electrodes L and R which play the role of charge reservoirs. The whole
system is initially (at time t < 0) in a well defined equilibrium configuration,
described by a unique temperature and chemical potential (thermodynamic
consistency). The charge density of the electrodes is perfectly balanced and
no current flows through the junction.

As originally proposed by Cini [4], we may drive the system out of equilibrium
by exposing the electrons to an external time-dependent potential which is
local in time and space. For instance, we may switch on an electric field by
putting the system between two capacitor plates far away from the system
boundaries. The dynamical formation of dipole layers screens the potential
drop along the electrodes and the total potential turns out to be uniform in
the left and right bulks. Accordingly, the potential drop is entirely limited
to the central region. As the system size increases, the remote parts are less
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Region C
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Fig. 1. Schematic sketch of the experimental setup described in the main text.
A central region which also includes few layers of the left and right electrodes is
coupled to macroscopically large metallic reservoirs. The system is in equilibrium
for negative times.

disturbed by the junction, and the density inside the electrodes approaches
the equilibrium bulk density.

The Cini scheme can be combined with Time Dependent Density Functional
Theory (TDDFT).[5] In this theory, the time-dependent density of an inter-
acting system moving in an external, time-dependent local potential can be
calculated via a fictitious system of non-interacting electrons moving in a local,
effective time-dependent potential. Therefore this theory is in principle well
suited for the treatment of nonequilibrium transport problems.[6] However,
as far as the leads are treated as noninteracting, it is not obvious that in the
long-time limit a steady-state current can ever develop. The reason behind the
uncertainty is that the bias represents a large perturbation and, in the absence
of dissipative effects, e.g., electron-electron or electron-phonon scattering, the
return of time-translational invariance is not granted. In this review we will
show that the total current tends to a steady-state value provided the effective
potential of TDDFT is independent of time and space in the left and right
bulks. Also, the physical mechanism leading to the dynamical formation of a
steady state is clarified.

It should be mentioned that there has been already considerable activity in
the density functional theory (DFT) community to describe transport phe-
nomena through systems like the one in Fig. 1. Most approaches are limited
to the steady-state regime and are based on a self-consistency procedure first
proposed by Lang.[7] In this steady-state approach based on DFT, exchange
and correlation is approximated by the static Kohn-Sham (KS) potential and
the charge density is obtained self-consistently in the presence of the steady
current. However, the original justification involved subtle points such as dif-
ferent Fermi levels deep inside the left and right electrodes (which is not
thermodynamically consistent) and the implicit reference of non-local per-
turbations such as tunneling Hamiltonians within a DFT framework. (For a
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detailed discussion we refer to Ref. [8].) Furthermore, the transmission func-
tions computed from static DFT have resonances at the non-interacting KS
excitation energies which in general do not coincide with the true excitation
energies.

Our TDDFT formulation, as opposed to the static DFT formulation, is ther-
modynamically consistent, is not limited to the steady-state regime (we can
study transients, AC responses, etc.) and has the extra merit of accessing the
true excitation energies of interacting systems.[9]

We will first use the nonequilibrium Green’s function (NEGF) technique to
discuss the implications of our approach. For those readers that are not fa-
miliar with the Keldysh formalism and with NEGF, in Section 2 we give an
elementary introduction to the Keldysh contour, the Keldysh-Green functions
and the Keldysh book-keeping. The aim of this Section is to derive some of
the identities needed for the discussion (thus providing a self-contained pre-
sentation) and to establish the basic notation. In Section 3 we set up the
theoretical framework by combining TDDFT and NEGF. An exact expres-
sion for the time-dependent total current I(t) is written in terms of Green
functions projected in region C. It is also shown that a steady-state regime
develops provided 1) the KS Hamiltonian globally converges to an asymptotic
KS Hamiltonian when t → ∞, 2) the electrodes form a continuum of states
(thermodynamic limit), and 3) the local density of states is a smooth func-
tion in the central region. It is worth noting that the steady-state current
results from a pure dephasing mechanism in the fictitious KS system. Also,
the resulting steady current only depends on the KS potential at t = ∞ and
not on its history. However, the KS potential might depend on the history of
the external applied potential and the resulting steady-state current might be
history dependent. A practical scheme to calculate I(t) is presented in Section
4. The main idea is to propagate the KS orbitals in region C only, without
dealing with the infinite and non-periodic system.[10] We first show how to
obtain the KS eigenstates ψs of the undisturbed system in Section 4.1. Then,
in Section 4.2 we describe an algorithm for propagating ψs under the influ-
ence of a time-dependent disturbance. The numerical approach of Section 4
is completely general and can be applied to any system having the geometry
sketched in Fig. 1. In order to demonstrate the feasibility of the scheme we
implement it for one-dimensional model systems in Section 5. Here we study
the dynamical current response of several systems perturbed by DC and AC
biases. We verify that for noninteracting electrons the steady-state current
does not depend on the history of the applied bias. Also, we present prelim-
inary results on net currents in unbiased systems as obtained by pumping
mechanisms. We summarize our findings and draw our conclusions in Section
6.
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2 The Keldysh formalism

2.1 The Keldysh contour

In quantum mechanics we associate to any observable quantity O a hermitian
operator Ô. The expectation 〈Ψ|Ô|Ψ〉 gives the value of O when the system
is described by the state |Ψ〉. For an isolated system the Hamiltonian Ĥ0 does
not depend on time, and the expectation value of any observable quantity is
constant provided |Ψ〉 is an eigenstate of Ĥ0. In this Section we discuss how
to describe systems which are not isolated but perturbed by external fields.
Without loss of generality, we assume that the system is isolated for negative
times t and that Ĥ(t < 0) = Ĥ0. The evolution of the state |Ψ〉 is governed
by the Schrödinger equation i d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, and, correspondingly, the

value of O evolves in time as O(t) = 〈Ψ(t)|Ô|Ψ(t)〉. The time-evolved state
|Ψ(t)〉 = Ŝ(t; 0)|Ψ(0)〉, where the evolution operator Ŝ(t; t′) can be formally
written as

Ŝ(t; t′) =











T e−i
∫ t

t′
dt̄ Ĥ(t̄) t > t′

T e−i
∫ t

t′
dt̄ Ĥ(t̄) t < t′

. (1)

In Eq. (1), T is the time-ordering operator and rearranges the operators in
chronological order with later times to the left; T is the anti-chronological
time-ordering operator. The evolution operator is unitary and satisfies the
group property Ŝ(t; t1)Ŝ(t1; t

′) = Ŝ(t; t′) for any t1. It follows that O(t) is
the average on the initial state |Ψ(0)〉 of the operator Ô in the Heisenberg
representation, ÔH(t) = Ŝ(0; t)ÔŜ(t; 0), i.e.,

O(t)= 〈Ψ(0)|Ŝ(0; t)ÔŜ(t; 0)|Ψ(0)〉
= 〈Ψ(0)|Te−i

∫ 0

t
dt̄ Ĥ(t̄) Ô T e−i

∫ t

0
dt̄ Ĥ(t̄)|Ψ(0)〉. (2)

We can now design an oriented contour γ with a forward branch going from
t = 0 to t and a backward branch coming back from t and ending in t = 0, see
Fig. 2.a. Denoting with z̄ the variable running on γ, Eq. (2) can be formally
recast as follows

O(t) = 〈Ψ(0)|TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

Ô(t)
}

|Ψ(0)〉. (3)

The contour ordering operator TK moves the operators with “later” contour
variable to the left. A point z is later than a point z′ if z′ is closer to the starting
point, see Fig. 2.a. In Eq. (3), Ô(t) is not the operator in the Heisenberg
representation [the latter is denoted with ÔH(t)]. Actually, Ô(t) = Ô for any
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Fig. 2. a) The oriented contour γ described in the main text with a forward and
a backward branch between 0 and t. According with the orientation the point z is
later than the point z′. b) The extended oriented contour γ described in the main
text with a forward and a backward branch between 0 and ∞. For any physical
time t we have two points t± on γ at the same distance from the origin. c) The
generalization of the original Keldysh contour. A vertical track going from 0 to −iβ
has been added and, according with the orientation chosen, any point lying on it is
later than a point lying on the forward or backward branch.

t. The reason of the time argument stems from the need of specifying the
position of the operator Ô in the contour ordering.

Let us now extend the contour γ up to infinity, as shown in Fig. 2.b.
For any physical time t there are two points z = t+ and z = t− on
γ; t− lies on the forward branch while t+ lies on the backward branch
and it is later than t− according with the orientation chosen. We have

TK{e−i
∫

γ
dz̄ Ĥ(z̄)

Ô(t−)} = Ŝ(0;∞)Ŝ(∞; t)Ô(t)Ŝ(t; 0) = Ŝ(0; t)ÔŜ(t; 0),

and similarly TK{e−i
∫

γ
dz̄ Ĥ(z̄)

Ô(t+)} = Ŝ(0; t)Ô(t)Ŝ(t;∞)Ŝ(∞; 0) =
Ŝ(0; t)ÔŜ(t; 0). Thus, the expectation value O(t) in Eq. (3) is also given by
the formula

O(z) = 〈Ψ(0)|TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

Ô(z)
}

|Ψ(0)〉. (4)

where γ is the contour in Fig. 2.b; γ is called the Keldysh contour.[11,12] In
Eq. (4) the variable z can be either t− or t+ and O(t−) = O(t+) = O(t).

The Keldysh contour can be further extended to account for statistical av-
erages.[13] In statistical physics a system is described by the density matrix
ρ̂ =

∑

n wn|Ψn〉〈Ψn| with wn the probability of finding the system in the state
|Ψn〉 and

∑

n wn = 1. The states |Ψn〉 may not be orthogonal. We say that the
system is in a pure state if ρ̂ = |Ψ〉〈Ψ|. In a system described by a density
matrix ρ̂(0) at t = 0, the time-dependent value of the observable O is a gen-

eralization of Eq. (4), i.e., O(z) =
∑

n wn〈Ψn(0)|TK{e−i
∫

γ
dz̄ Ĥ(z̄)

Ô(z)}|Ψn(0)〉.
Among all possible density matrices there is one that is very common in physics
and describes a system in thermal equilibrium: ρ̂ = exp[−β(Ĥ0 − µN̂)]/Z,
with the inverse temperature β, the chemical potential µ, the operator N̂
corresponding to the total number of particles and the grand-partition func-
tion Z = Tr exp[−β(Ĥ0 − µN̂)]. Assuming that Ĥ0 and N̂ commute, the
statistical average O(z) with the thermal density matrix can be written as

O(z) = Tr [ eβµN̂e−βĤ0TK{e−i
∫

γ
dz̄ Ĥ(z̄)

Ô(z)} ]/Z. We can now extend further
the Keldysh contour as shown in Fig. 2.c and define Ĥ(z) = Ĥ0 for any z
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on the vertical track. With this definition Ĥ(z) is continuous along the entire
contour since Ĥ(0) = Ĥ0. According to the orientation displayed in the figure,
any point lying on the vertical track is later than a point lying on the forward
or backward branch. We use this observation to rewrite O(z) as

O(z) =
Tr

[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

Ô(z)
}]

Tr
[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

}] , (5)

where TK is now the ordering operator on the extended contour. It is worth
noting that the denominator in the above expression is simply Z. We have
already shown that choosing z on one of the two horizontal branches, Eq. (5)
yields the time-dependent statistical average of the observable O. On the other

hand, if z lies on the vertical track O(z) = Tr [ eβµN̂e−i
∫

−iβ

z
Ĥ0Ôe−i

∫ z

0
Ĥ0 ]/Z =

Tr [ e−β(Ĥ0−µN̂)Ô]/Z, where the cyclic property of the trace has been used.
The result is independent of z and coincides with the thermal average of the
observable O.

To summarize, in Eq. (5) the variable z lies on the contour of Fig. 2.c; the
r.h.s. gives the time-dependent statistical average of the observable quantity
O when z lies on the forward or backward branch, and the statistical average
before the system is disturbed when z lies on the vertical track.

2.2 The Keldysh-Green function

The idea presented in the previous Section can be used to define correlators of
many operators on the extended Keldysh contour. The Keldysh-Green func-
tion G is the correlator of two field operators ψ(r) and ψ†(r) which obey the
anticommutation relations {ψ(r), ψ†(r′)} = δ(r − r′). It is defined as

〈r|G(z; z′)|r′〉 =
1

i

Tr
[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

ψ(r, z)ψ†(r′, z′)
}]

Tr
[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

}] , (6)

where the contour variable in the field operators specifies the position in the
contour ordering (there is no true dependence on z in ψ and ψ†). Here and
in the following we use boldface to indicate matrices in one-electron labels,
e.g., G is a matrix and 〈r|G|r′〉 is the (r, r′) matrix element of G. Due to
the contour ordering operator TK, the Green function G has the following
structure

G(z; z′) = θ(z, z′)G>(z; z′) + θ(z′, z)G<(z; z′), (7)

where θ(z, z′) = 1 if z is later than z′ on the contour and zero otherwise. We say
that a two-point function on the contour having the above structure belongs
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to the Keldysh space. The Green function G(z; z′) obeys an important cyclic
relation on the extended Keldysh contour. As we shall see, the relations below
play a crucial role since they provide the boundary conditions for solving the
Dyson equation. Choosing z = 0− we find

〈r|G(0−; z′)|r′〉 = −1

i

Tr
[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

ψ†(r′, z′)
}

ψ(r)
]

Tr
[

eβµN̂TK

{

e
−i
∫

γ
dz̄ Ĥ(z̄)

}] , (8)

where we have taken into account that 0− is the earliest time and therefore
ψ(r, 0−) is always moved to the right when acted upon by TK. The extra minus
sign in the r.h.s. comes from the contour ordering. More generally, rearranging
the field operators ψ and ψ† (later arguments to the left), we also have to
multiply by (−1)P , where P is the parity of the permutation. Inside the trace
we can move ψ(r) to the left. Furthermore, we can exchange the position

of ψ(r) and eβµN̂ by noting that ψ(r)eβµN̂ = eβµ(N̂+1)ψ(r). Using the fact
that TK moves operators with later times to the left we have ψ(r)TK{. . .} =
TK{ψ(r,−iβ) . . .}. Therefore, we conclude that

G(0−; z′) = −eβµG(−iβ; z′), G(z; 0−) = −e−βµG(z;−iβ), (9)

where the second of these relations can be obtained in a similar way. Eq. (9)
are the so called Kubo-Martin-Schwinger (KMS) boundary conditions.[14,15]

2.3 The Keldysh book-keeping

In this Section we derive some of the identities that we will use for dealing
with time-dependent transport phenomena. A systematic and more exhaustive
discussion can be found in Ref. [16].

Let k(z; z′) belong to the Keldysh space: k(z; z′) = θ(z, z′)k>(z; z′) +
θ(z′, z)k<(z; z′). For any k(z; z′) in the Keldysh space we define the greater
and lesser functions on the physical time axis

k>(t; t′) ≡ k(t+; t′−), k<(t, t′) ≡ k(t−; t′+). (10)

We also define the left and right functions with one argument t on the physical
time axis and the other τ on the vertical track

ke(t; τ) ≡ k(t±; τ), kd(τ, t) ≡ k(τ ; t±). (11)

In the definition of ke and kd we can arbitrarily choose t+ or t− since τ is later
than both of them. The symbols “e” and “d” have been chosen in order to
help the visualization of the time arguments. For instance, “e” has a horizontal
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segment followed by a vertical one; correspondingly, ke has a first argument
which is real (and thus lies on the horizontal axis) and a second argument
which is imaginary (and thus lies on the vertical axis). We will also use the
convention of denoting with Latin letters the real time and with Greek letters
the imaginary time.

It is straightforward to show that if a(z; z′) and b(z; z′) belong to the Keldysh
space, then c(z; z′) =

∫

γ dz̄ a(z; z̄)b(z̄; z′) also belongs to the Keldysh space.
From the definitions (10-11) we find

c>(t; t′)=
∫ t′

−

0−
dz̄ a>(t+; z̄)b<(z̄; t′−) +

∫ t+

t′
−

dz̄ a>(t+; z̄)b>(z̄; t′−)

+
∫ −iβ

t+

dz̄ a<(t+; z̄)b>(z̄; t′−) =

=
∫ t′

0
dt̄ a>(t; t̄)b<(t̄; t′) +

∫ t

t′
dt̄ a>(t; t̄)b>(t̄; t′)

+
∫ 0

t
dt̄ a<(t; t̄)b>(t̄; t′) +

∫ −iβ

0
dτ̄ ae(t; τ̄)bd(τ̄ ; t′). (12)

The second integral on the r.h.s. is an ordinary integral on the real axis of
two well defined functions and may be rewritten as

∫ t
t′ dt̄ a

>(t; t̄)b>(t̄; t′) =
∫ 0
t′ dt̄ a>(t; t̄)b>(t̄; t′) +

∫ t
0 dt̄ a>(t; t̄)b>(t̄; t′). Using this relation, Eq. (12) be-

comes

c>(t; t′) =
∫ ∞

0
dt̄ [a>(t; t̄)bA(t̄; t′) + aR(t; t̄)b>(t̄; t′)] +

∫ −iβ

0
dτ̄ ae(t; τ̄)bd(τ̄ ; t′),

(13)
where we have introduced two other functions on the physical time axis

kR(t; t′) ≡ θ(t− t′)[k>(t; t′)− k<(t; t′)],

kA(t; t′) ≡ −θ(t′ − t)[k>(t; t′)− k<(t; t′)]. (14)

The retarded function kR(t; t′) vanishes for t < t′, while the advanced function
kA(t; t′) vanishes for t > t′. A relation similar to Eq. (13) can be obtained for
the lesser component c<. It is convenient to introduce a shorthand notation
for integrals along the physical time axis and for those between 0 and −iβ.
The symbol “·” will be used to write

∫∞
0 dt̄f(t̄)g(t̄) as f · g, while the symbol

“?” will be used to write
∫ −iβ
0 dτ̄ f(τ̄)g(τ̄) as f ? g. Then

c> = a> · bA + aR · b> + ae ? bd, c< = a< · bA + aR · b< + ae ? bd. (15)

Eq. (15) can be used to extract the retarded and advanced component of c.
By definition cR(t; t′) = θ(t− t′)[c>(t; t′)− c<(t; t′)] and therefore
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cR(t; t′)= θ(t− t′)
∫ ∞

0
dt̄ aR(t; t̄)[b>(t̄; t′)− b<(t̄; t′)]

+ θ(t− t′)
∫ ∞

0
dt̄ [a>(t; t̄)− a<(t; t̄)]bA(t̄; t′). (16)

Due to the θ-function, we have t > t′ for cR 6= 0. In the second term on the
r.h.s. bA(t̄; t′) contains a θ(t′− t̄) and hence it must be t > t̄; therefore we can
replace the difference in the square bracket with aR. Then we break the first
term on the r.h.s. in two pieces by inserting θ-functions: one for t̄ < t′ and the
other for t̄ > t′. In compact notation we end up with

cR = aR · bR, cA = aA · bA, (17)

where the second relation can be proven in a similar way. It is worth noting
that in the expressions for cR and cA no integration along the imaginary track
is required. For later purposes we also define the Matsubara function kM(τ ; τ ′)
with both the arguments in the interval (0,−iβ):

kM(τ ; τ ′) ≡ k(z = τ ; z′ = τ ′). (18)

It is straightforward to prove the following identities

ce = aR · be + ae ? bM, cd = ad · bA + aM ? bd, cM = aM ? bM. (19)

Finally, we consider the case of a Keldysh function k(z; z′) multiplied on
the left by a scalar function l(z). The function kl(z; z

′) = l(z)k(z; z′) =
θ(z, z′)l(z)k>(z; z′) + θ(z′; z)l(z)k<(z; z′) and hence belongs to the Keldysh
space. The Keldysh components can be extracted using the definitions
(10,11,14,18). Choosing for instance z = t+ and z′ = t′− we find k>

l (t; t′) =
l(t)k>(t; t′) and similarly for z = t− and z′ = t′+ we find k<

l (t; t′) = l(t)k<(t; t′).
More generally, the function l is simply a prefactor: kx

l = lkx, where x is
one of the Keldysh components (≶, R, A, e, d, M). The same is true for
kr(z; z

′) = k(z; z′)r(z′), where r(z′) is a scalar function: kx
r = kxr.

3 Quantum transport using TDDFT and NEGF

3.1 Merging the Keldysh and TDDFT formalisms

The one-particle scheme of TDDFT corresponds to a fictitious system of non-
interacting electrons described by the Kohn-Sham (KS) Hamiltonian Ĥs(z) =
∫

drdr′ψ†(r)〈r|Hs(z)|r′〉ψ(r′). The potential vs(r, t) experienced by the elec-
trons in the free-electron Hamiltonian Hs(t) is called the KS potential and it
is given by the sum of the external potential, the Coulomb potential of the
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nuclei, the Hartree potential and the exchange-correlation potential vxc. The
latter accounts for the complicated many-body effects and is obtained from an
exchange-correlation action functional, vxc(r, t) = δAxc[n]/δn(r, t) (as pointed
out in Ref. [17], the causality and symmetry properties require that the ac-
tion functional Axc[n] is defined on the Keldysh contour). Axc is a functional
of the density and of the initial density matrix. In our case, the initial den-
sity matrix is the thermal density matrix which, due to the extension of the
Hohenberg-Kohn theorem[18] to finite temperatures,[19] also is a functional
of the density. We should mention here that an alternative formulation based
on TDDFT has been recently proposed by Di Ventra and Todorov[20]. In
their approach the system is initially unbalanced and therefore the exchange-
correlation functional depends on the initial state and not only on the density.

The fictitious Keldysh-Green function G(z; z′) of the KS system satisfies a
one-particle equation of motion







i

−→
d

dz
1−Hs(z)







G(z; z′) = 1δ(z − z′),

G(z; z′)







−i
←−
d

dz′
1−Hs(z

′)







= 1δ(z − z′), (20)

with KMS boundary conditions (9). In Eqs. (20) the arrow specifies where
the derivative along the contour acts. The left and right equations of motion
are equations on the extended Keldysh contour of Fig. 2.c and δ(z − z′) =
d
dz
θ(z, z′) = − d

dz′
θ(z, z′). For any z 6= z′, the equations of motion are solved

by the evolution operator on the contour S(z; z′) = TK{e−i
∫ z

z′
dz̄Hs(z̄)}, since

i
−→
d
dz

S(z; z′) = Hs(z)S(z; z′) and S(z; z′)(−i
←−
d

dz′
) = S(z; z′)Hs(z

′). Therefore,
any Green function

G(z; z′) = θ(z, z′)S(z; 0−)f>S(0−; z
′) + θ(z′, z)S(z; 0−)f<S(0−; z′), (21)

with f≶ constrained by f>−f< = −i1, is solution of Eqs. (20). In order to fix
the matrix f> or f< we impose the KMS boundary conditions. The matrix
Hs(z) = Hs for any z on the vertical track, meaning that S(−iβ; 0−) =

e−βHs . Eq. (9) then implies f< = −e−β(H s−µ)f>, and taking into account
the constraint f> − f< = −i1 we conclude that f< = if(Hs), where f(ω) =
1/[eβ(ω−µ) + 1] is the Fermi distribution function. The matrix f> takes the
form f> = i[f(Hs)− 1].

The Green function G(z; z′) for a system of non-interacting electrons is now
completely fixed. Let us consider some Keldysh-Green functions. For z = t+
and z′ = t− we have the greater Green function while for z = t− and z′ = t+

10



we have the lesser Green function

G
>(t; t′) = iS(t; 0)[f(Hs)− 1]S(0; t′), G

<(t; t′) = iS(t; 0)f(Hs)S(0; t′).
(22)

Both G
> and G

< depend on the initial distribution function f(Hs). The di-
agonal matrix element of −iG< is nothing but the time-dependent value of
the local electron density n(r, t), while iG> gives the local density of holes.
Another way of writing −iG< is in terms of the eigenstates |ψs(0)〉 of Hs

with eigenvalues εs. From the time-evolved eigenstate |ψs(t)〉 = S(t; 0)|ψs(0)〉
we can calculate the time-dependent wavefunction ψs(r, t) = 〈r|ψs(t)〉. In-
serting

∑

s |ψs(0)〉〈ψs(0)| in the expression for G
< we find −i〈r|G<(t; t′)|r′〉 =

∑

s f(εs)ψs(r, t)ψ
∗
s(r
′, t′), which for t = t′ reduces to the time-dependent den-

sity matrix. Knowing the greater and lesser Green functions we can also cal-
culate G

R,A. Taking into account the definitions (14) we find

G
R(t; t′) = −iθ(t−t′)S(t; t′), G

A(t; t′) = iθ(t′−t)S(t; t′) = [GR(t′; t)]†. (23)

In the above expressions for G
R,A the Fermi distribution function has disap-

peared. The information carried by G
R,A is the same contained in the one-

particle evolution operator. There is no information on how the system is
prepared (how many particles, how they are distributed, etc). We use this
observation to rewrite G

≶ in terms of G
R,A

G
≶(t; t′) = G

R(t; 0)G≶(0; 0)GR(0; t′). (24)

Thus, G
≶ is completely known once we know how to propagate the one-

electron orbitals in time and how they are populated before the system is
perturbed.[4,21] For later purposes, we also observe that an analogous rela-
tion holds for G

e,d

G
e(t; τ) = iGR(t; 0)Ge(0; τ), G

d(τ ; t) = −iGd(τ ; 0)GA(0; t). (25)

3.2 Total current using TDDFT

The fictitious G of the KS system will in general not give correct one-particle
properties. However by definition G

< gives the correct density n(r, t) =
−i〈r|G<(t; t)|r〉. Also total currents are correctly given by TDDFT. If for
instance Iα is the total current from a particular region α we have

Iα(t) = −e
∫

α
dr

d

dt
n(r, t) = e

∫

α
dr i

d

dt
〈r|G<(t; t)|r〉. (26)

where the space integral extends over the region α (e is the electron charge).
We stress here that Iα is the electronic current (the direction of the current
coincides with the direction of the electrons).
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At this point, it is convenient to partition the system into three main regions:
a central region C consisting of the junction and a few atomic layers of the left
and right electrodes and two regions L, R which describe the left and right
bulk electrodes. According to this partitioning, the KS Hamiltonian Hs can
be written as a 3 × 3 block matrix, and the left equation of motion in (20)
reads



























i
d

dz
1−















HLL(z) HLC 0

HCL HCC(z) HCR

0 HRC HRR(z)









































G(z; z′) = δ(z − z′)1, (27)

with

G(z; z′) =















GLL(z; z′) GLC(z; z′) GLR(z; z′)

GCL(z; z′) GCC(z; z′) GCR(z; z′)

GRL(z; z′) GRC(z; z′) GRR(z; z′)















(28)

(a similar equation is easily obtained for the right equation of motion). Choos-
ing z on the forward branch of the Keldysh contour and z′ on the backward
branch of the same contour, we obtain a left and right equation for the lesser
Green function. These equations can be used to get rid of the time derivative
in Eq. (26). We find for α = L,R

Iα(t)= e
∫

dr 〈r|i d

dt
G

<
αα(t; t)|r〉

= e
∫

dr 〈r|HαCG
<
Cα(t; t)− G

<
αC(t; t)HCα|r〉 = 2e Re [TrC {Qα(t)}] ,

(29)

where

Qα(t)≡G
<
Cα(t; t)HαC =

[

G
R(t, 0)G<(0, 0)GA(0, t)

]

Cα
HαC

= G
R
CC(t; 0)G<

CC(0; 0)GA
Cα(0; t)HαC

+
∑

β=L,R

G
R
Cβ(t; 0)G<

βC(0; 0)GA
Cα(0; t)HαC

+
∑

γ=L,R

G
R
CC(t; 0)G<

Cγ(0; 0)GA
γα(0; t)HαC

+
∑

βγ=L,R

G
R
Cβ(t; 0)G<

βγ(0; 0)GA
γα(0; t)HαC (30)

is a one-particle operator in the central region C and TrC denotes the trace over
a complete set of one-particle states of C. Let us express the quantity Qα in
terms of the Green function GCC projected in the central region. We introduce
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the uncontacted Green function g which obeys Eqs. (20) with HαC = HCα =
0,



























i
d

dz
1−















HLL(z) 0 0

0 HCC(z) 0

0 0 HRR(z)









































g(z; z′) = δ(z − z′)1, (31)

where

g(z; z′) =















gLL(z; z′) 0 0

0 gCC(z; z′) 0

0 0 gRR(z; z′)















(32)

and the same KMS boundary conditions as G. The uncontacted g allows us to
convert Eqs. (20) into an integral equation which entails the KMS boundary
conditions for G

G(z; z′) =g(z; z′) +
∫

γ
dz̄ g(z; z̄)HoffG(z̄; z′)

=g(z; z′) +
∫

γ
dz̄ G(z; z̄)Hoffg(z̄; z′), (33)

γ being the extended Keldysh contour of Fig. 2.c and Hoff is the off-diagonal
part of Hs. Using the relations (17) of Section 2.3 we find

G
R,A
Cα = G

R,A
CC ·HCαgR,A

αα , G
A
βα = δβαgA

ββ + gA
ββHβC · GA

CC ·HCαgA
αα. (34)

In Eq. (30) all matrix elements of G
< are evaluated at times (0; 0). From Eq.

(15) we see that c<(0; 0) =
[

ae ? bd
]

(0; 0), due to the theta-functions in the
retarded and advanced components. Therefore

G
<
βC(0; 0) =

[

g
e
ββHβC ? G

d
CC

]

(0; 0), G
<
Cγ(0; 0) =

[

G
e
CC ?HCγg

d
γγ

]

(0; 0),

(35)
and exploiting the first two relations in Eq. (19) we also find that

G
<
βγ(0; 0) = δβγg

<
ββ(0; 0) +

[

g
e
ββHβC ? G

M
CC ?HCγg

d
γγ

]

(0; 0). (36)

Substituting Eqs. (34-35-36) into Eq. (30) and using the identities (24-25) for
the Green function g, we obtain the following expression for Qα(t)

13



Qα(t) =
∑

β=L,R

[

GR ·Σ<
β ·
(

δβα + GA ·ΣA
α

)]

(t; t)

+
∑

β=L,R

[

GR ·Σe ?GM ?Σ
d
β ·
(

δβα + GA ·ΣA
α

)]

(t; t)

+ i
∑

β=L,R

GR(t; 0)
[

Ge ?Σ
d
β ·
(

δβα + GA ·ΣA
α

)]

(0; t)

+
(

GR(t; 0)G<(0; 0)− i
[

GR ·Σe ?Gd
]

(t; 0)
) [

GA ·ΣA
α

]

(0; t), (37)

where we have used the short-hand notation G ≡ GCC and

Σ(z; z′) =
∑

α=L,R

Σα, Σα(z; z′) = HCα gαα(z; z′)HαC (38)

is the so-called embedding self-energy which accounts for hopping in and out
of region C.

Having the quantity Qα(t) we can calculate the exact total current Iα(t) of an
interacting system of electrons. Eq. (29) allows for studying transient effects
and more generally any kind of time-dependent current responses. In the long
time limit

lim
t→∞

Qα(t) =
[

GR ·Σ<
α + GR ·Σ< ·GA ·ΣA

α

]

(t; t) (39)

provided G and Σ tend to zero when the separation between their time argu-
ments increases (in this case, it is only the first term on the r.h.s. of Eq. (37)
that does not vanish). This condition is not stringent and is fulfilled provided
the electrode states form a continuum and the local density of states in the
central region C is a smooth function. In the next Section we investigate under
what circumstances a steady current Iα develops in the long-time limit. We
will also discuss the dependence of Iα on the history of the external potential.

3.3 Steady state and history dependence

In this Section we show that a steady state develops provided 1) the KS
Hamiltonian Hs(t) globally converges to an asymptotic KS Hamiltonian H∞

s

when t→∞ and 2) the electrodes form a continuum of states (thermodynamic
limit) and the local density of states is a smooth function in the central region.

Let us define the asymptotic KS Hamiltonian of electrode α as H∞
αα =

limt→∞Hαα(t). The retarded/advanced component of the uncontacted Green
function g behaves like

lim
t→∞

gR
αα(t, 0) = i e−iH

∞

ααt
S, lim

t→∞
gA

αα(0, t) = −iS†eiH
∞

ααt (40)

14



where S is a unitary operator and it is defined according to

S = lim
t→∞

T
{

e−i
∫ t

0
Hαα(t′)dt′

}

e−iH
∞

ααt
, (41)

T being the time-ordering operator. In terms of diagonalising one-body states
|ψ∞mα〉 of H∞

αα with eigenvalues ε∞mα, the lesser component of the embedding
self-energy, defined in Eq. (38), can be written as

lim
t,t′→∞

Σ<
α (t; t′) = lim

t,t′→∞
HCα gR

αα(t; 0)g<
αα(0; 0)gA

αα(0; t′)HαC

= i
∑

m,m′

e−i[ε∞mαt−ε∞
m′α

t′]

×HCα|ψ∞mα〉〈ψ∞mα|f(SHαα(0)S†)|ψ∞m′α〉〈ψ∞m′α|HαC , (42)

where we have taken into account that g<
αα(0; 0) = if(Hαα(0)). The left and

right contraction with a nonsingular hopping matrix HαC causes a perfect
destructive interference for states with |ε∞mα− ε∞m′α| & 1/(t+ t′) and hence the
restoration of translational invariance in time

lim
t,t′→∞

Σ<
α (t; t′) = i

∑

m

fmαΓmαe−iε∞mα(t−t′), (43)

where fmα = 〈ψ∞mα|f(SHαα(0)S†)|ψ∞mα〉 while Γmα = HCα|ψ∞mα〉〈ψ∞mα|HαC .
In principle, there may be degeneracies which require a diagonalisation to be
performed for states on the energy shell. The above dephasing mechanism is
the key ingredient for a steady state to develop. Substituting Eq. (43) into Eq.
(39) we obtain for the steady state current

I(S)
α =− 2e

∑

mβ

fmβTrC

{

GR(ε∞mβ)ΓmβGA(ε∞mβ)Im[ΣA
α (ε∞mβ)]

}

− 2e
∑

m

fmαTrC

{

ΓmαIm[GR(ε∞mα)]
}

(44)

with

GR,A(ε) =
1

ε1C −H∞
CC −ΣR,A(ε)

. (45)

The imaginary part of GR is simply given by GRIm[ΣR]GA. By definition we
have

ΣR,A
α (ε) = HCα

1

ε1α −H∞
αα ± iη

HαC (46)

and hence

Im
[

ΣR,A
α (ε)

]

= ∓π
∑

m

δ(ε− ε∞mα)Γmα. (47)
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Using the above identity, the steady-state current can be rewritten in a
Landauer-like [22] form

I
(S)
R = −e

∑

m

[fmLTmL − fmRTmR] = −I(S)
L . (48)

In the above formula TmR =
∑

n T nL
mR and TmL =

∑

n T nR
mL are the TDDFT

transmission coefficients expressed in terms of the quantities

T nβ
mα = 2πδ(ε∞mα − ε∞nβ)TrC

{

GR(ε∞mα)ΓmαGA(ε∞nβ)Γnβ

}

= T mα
nβ . (49)

Despite the formal analogy with the Landauer formula, Eq. (48) contains an
important conceptual difference since fmα is not simply given by the Fermi
distribution function. For example, if the induced change in effective potential
varies widely in space deep inside the electrodes, the band structure of the α-
electrode Hamiltonian SHαα(0)S† might differ from that of H∞

αα. However,
for metallic electrodes with a macroscopic cross section the switching on of an
electric field excites plasmon oscillations which dynamically screen the external
disturbance. Such a metallic screening prevents any rearrangements of the
initial equilibrium bulk-density, provided the time-dependent perturbation is
slowly varying during a typical plasmon time-scale (which is usually less than
a fs). Thus, the KS potential vs undergoes a uniform time-dependent shift
deep inside the left and right electrodes and the KS potential-drop is entirely
limited to the central region. Denoting with ∆vα(t) the difference in electrode
α between the KS potential at time t and the KS potential at negative times,
∆vα(t) = vs(r ∈ α, t)− vs(r ∈ α, 0), to leading order in 1/N we then have

Hαα(t) = Hαα(0) + 1α∆vα(t), (50)

meaning that H∞
αα = Hαα(0) + 1α∆v∞α . Hence, except for corrections which

are of lower order with respect to the system size, SHαα(0)S† = Hαα(0) and

fmα = f(ε∞mα −∆v∞α ). (51)

The formula for the current can be further manipulated when Eq. (51) holds.
Let us write the embedding self-energy as the sum of a real and imaginary part
ΣR,A

α (ε) = Λα(ε)∓ iΓα(ε)/2. Using Eq. (47) we can rewrite the transmission
coefficients as

TmR = TrC

{

GR(ε∞mR)ΓmRGA(ε∞mR)ΓL(ε∞mR)
}

, (52)

TmL = TrC

{

GR(ε∞mL)ΓmLGA(ε∞mL)ΓR(ε∞mL)
}

. (53)

Substituting these expressions in Eq. (48) and taking into account Eq. (51)
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we obtain

I
(S)
R = −e

∫

dε

2π
[f(ε−∆v∞L )− f(ε−∆v∞R )] TrC

{

GR(ε)ΓL(ε)GA(ε)ΓR(ε)
}

.

(54)

In the above equation the Green functions are calculated from Eq. (45). The
Hamiltonian H∞

CC is the KS Hamiltonian Hs(t→∞) projected on region C
and can be obtained by evolving the system for very long times. According to
the Runge-Gross theorem, H∞

CC depends on how the system was prepared at
t = 0 (in our case the system is contacted and in thermal equilibrium) and on
the full history of the time-dependent density. Therefore, the use of Eq. (54)
in the context of static DFT is generally not correct. Indeed, static DFT is an
equilibrium theory while here we are dealing with a non-equilibrium process.
One might argue that in the linear-response regime the static DFT approach
is free from the above criticism. Unfortunately, this is not the case. Denoting
with δv∞α the small change ∆v∞α of the effective potential in electrode α and

with δI
(S)
R the corresponding current response, to first order in δv∞α Eq. (54)

yields

δI
(S)
R = −e

∫

dε

2π

∂f(ε)

∂ε
TrC

{

GR
0 (ε)Γ0,L(ε)GA

0 (ε)Γ0,R(ε)
}

(δv∞R − δv∞L ) . (55)

The Green functions and the Γ’s in Eq. (55) refer to the system in equilibrium
and static DFT approaches can be used to evaluate the trace. However, DFT
is not enough to calculate the change δv∞α . Indeed

δv∞α = lim
t→∞

lim
x→±∞

[δvext(r, t) + δVH(r, t) + δvxc(r, t)] , (56)

where x is the longitudinal coordinate, the plus sign applies for α = R and
the minus sign for α = L. In the above equation vext is the external potential
and VH is the Hartree potential; their sum gives the electrostatic Coulomb
potential vC,

δvα,C = lim
t→∞

lim
x→±∞

[δvext(r, t) + δVH(r, t)] . (57)

The variation δvxc of the exchange-correlation potential can be expressed in
terms of the exchange-correlation kernel fxc(r, t; r

′, t′) = δvxc(r, t)/δn(r′, t′)

δvα,xc = lim
t→∞

lim
x→±∞

δvxc(r, t) = lim
t→∞

lim
x→±∞

∫

dr′
∫

dt′fxc(r, t; r
′, t′)δn(r′, t′).

(58)
The kernel fxc depends only on the difference t− t′. We denote by fα,xc(r

′, ω)
the Fourier transform of fxc evaluated at x = ±∞ for α = R,L. Then

δvα,xc = lim
t→∞

∫

dω

2π
e−iωt

∫

dr′fα,xc(r
′, ω)δn(r′, ω) (59)

with δn(r, ω) the Fourier transform of δn(r, t). Rewriting δv∞α as δvα,C+δvα,xc
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and taking into account Eq. (59), the current response δI
(S)
R in Eq. (55) can

also be written as

δI
(S)
R = −e

∫

dε

2π

∂f(ε)

∂ε
T (ε)

[

(δvR,C − δvL,C) + lim
t→∞

∫

dω

2π
e−iωt

×
∫

dr′ (fR,xc(r
′, ω)− fL,xc(r

′, ω)) δn(r′, ω)
]

(60)

with T (ε) = TrC

{

GR
0 (ε)Γ0,L(ε)GA

0 (ε)Γ0,R(ε)
}

. At zero temperature

∂f(ε)/∂ε = δ(ε− εF ), with εF the Fermi energy, and Eq. (60) becomes

δI
(S)
R = GKS(εF )

[

(δvR,C − δvL,C) + lim
t→∞

∫

dω

2π
e−iωt

×
∫

dr′ (fR,xc(r
′, ω)− fL,xc(r

′, ω)) δn(r′, ω)
]

(61)

where GKS(εF ) = −eT (εF )/2π is the conductance of the KS system. We con-
clude that also in the linear-response regime static DFT is not appropriate
for calculating the conductance since dynamical exchange-correlation effects
might contribute through the last term in Eq. (61). Eq. (61) can also be
obtained within the framework of time-dependent current density functional
theory as it has been shown in Ref. [23].

We emphasize that the steady-state current in Eq. (48) results from a pure
dephasing mechanism in the fictitious noninteracting problem. The damping
effects of scattering are described by Axc and vxc. Furthermore, the current
depends only on the asymptotic value of the KS potential, vs(r, t → ∞).
However, vs(r, t → ∞) might depend on the history of the external applied
potential and the resulting steady-state current might be history dependent.
In these cases the full time evolution can not be avoided. In the case of Time
Dependent Local Density Approximation (TDLDA), the exchange-correlation
potential vxc depends only locally on the instantaneous density and has no
memory at all. If the density tends to a constant, so does the KS potential
vs, which again implies that the density tends to a constant. Owing to the
non-linearity of the problem there might still be more than one steady-state
solution or none at all. We are currently investigating the possibility of having
more than one steady state solution.
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4 Quantum transport: A practical scheme based on TDDFT

The theory presented in the previous Sections allows us to calculate the time-
dependent current in terms of the Green function GCC = G projected in the
central region. In practise, it is computationally very expensive to propagate
G(z; z′) in time (because it depends on two time variables) and also calculate
Qα from Eq. (37). Here we describe a feasible numerical scheme based on the
propagation of KS orbitals. We remind the reader that our electrode-junction-
electrode system is infinite and non-periodic. Since one can in practice only
deal with finite systems we will propagate KS orbitals projected in the central
region C by applying the correct boundary conditions.[10]

We specialize the discussion to nonmagnetic systems at zero temperature and
we denote with ψs(r, 0) ≡ 〈r|ψs(0)〉 the eigenstates of Hs(t < 0). The time de-
pendent density can be computed in the usual way by n(r, t) =

∑

occ |ψs(r, t)|2,
where the sum is over the occupied Kohn-Sham orbitals and |ψs(t)〉 is the so-
lution of the KS equation of TDDFT i d

dt
|ψs(t)〉 = Hs(t)|ψs(t)〉. Using the

continuity equation, we can write the total current Iα(t) of Eq. (26) as

Iα(t)=−e
∑

occ

∫

α
dr∇ · Im [ψ∗s(r, t)∇ψs(r, t)]

=−e
∑

occ

∫

Sα

dσ n̂ · Im [ψ∗s(r, t)∇ψs(r, t)] (62)

where n̂ is the unit vector perpendicular to the surface element dσ and the
surface Sα is perpendicular to the longitudinal geometry of our system. From
Eq. (62) we conclude that in order to calculate Iα(t) we only need to know
the time-evolved KS orbitals in region C. This is possible provided we know
the dynamics of the remote parts of the system. As at the end of Section 3.3,
we restrict ourselves to metallic electrodes. Then, the external potential and
the disturbance introduced by the device region are screened deep inside the
electrodes. As the system size increases, the remote parts are less disturbed by
the junction and the density inside the electrodes approaches the equilibrium
bulk-density. Thus, the macroscopic size of the electrodes leads to an enormous
simplification since the initial-state self-consistency is not disturbed far away
from the constriction. Partitioning the KS Hamiltonian as in Eq. (27), the
time-dependent Schrödinger equation reads

i
d

dt















|ψL〉
|ψC〉
|ψR〉















=















HLL HLC 0

HCL HCC HCR

0 HRC HRR





























|ψL〉
|ψC〉
|ψR〉















, (63)

where |ψα〉 is the projected wave-function onto the region α = L,R,C. We can
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solve the differential equation for ψL and ψR in terms of the retarded Green
function gR

αα. Then, we have for α = L,R

|ψα(t)〉 = igR
αα(t, 0)|ψα(0)〉+

∫ t

0
dt′gR

αα(t, t′)HαC |ψC(t′)〉. (64)

Using Eq. (64), the equation for ψC can be written as

i
d

dt
|ψC(t)〉= HCC(t)|ψC(t)〉+

∫ t

0
dt′ΣR(t, t′)|ψC(t′)〉

+ i
∑

α=L,R

HCαgR
αα(t, 0)|ψα(0)〉, (65)

where ΣR =
∑

α=L,R HCαgR
ααHαC , in accordance with Eq. (38). Thus, for

any given KS orbital we can evolve its projection onto the central region
by solving Eq. (65) in region C. Eq. (65) has also been derived elsewhere
(for static Hamiltonians).[24] To summarize, all the complexity of the infinite
electrode-junction-electrode system has been reduced to the solution of an
open quantum-mechanical system (the central region C) with proper time-
dependent boundary conditions.

Equation (65) is the central equation of our numerical approach to time-
dependent transport. It is a reformulation of the original time-dependent
Schrödinger equation (63) of the full system in terms of an equation for the
central (device) region only. The coupling to the leads is taken into account by
the lead Green functions gR

αα, α = L,R. Eq. (65) has the structure of a time-
dependent Schrödinger equation with two extra terms. The first term describes
the injection of particles induced by a non-vanishing projection of the initial
wave-function onto the leads. The second term involves the self-energy ΣR

and the wavefunction in the central region at previous times during the prop-
agation. We will denote it as the memory integral. We should remark here
that these memory effects are of different origin than those which are usu-
ally discussed in the context of TDDFT[25,26]. The latter ones arise from the
dependence of the exchange-correlation functional on the full history of the
time-dependent density. Most density-based functionals used at present rely
on the adiabatic approximation therefore ignoring the functional dependence
on past time-dependent densities (Ref. [27]).

Equation (65) is first order in time, therefore we need to specify an initial state
which is to be propagated. We want to study the time evolution of systems
perturbed out of their equilibrium ground state. Of course, the ground state of
our noninteracting system is the Slater determinant of the occupied eigenstates
of the full, extended Hamiltonian in equilibrium, Hs(t < 0). The practical
question then arises how one can obtain these eigenstates and how one can
propagate them in time without having to deal explicitly with the extended
Hamiltonian. Below we show how we have coped with these problems.
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4.1 Computation of KS eigenstates

Let us consider our electrode-junction-electrode system in equilibrium (t < 0)
and let ψs(r) = ψEj(r) be the j-th degenerate eigenstate of energy E of
the KS Hamiltonian Hs. The Green functions G

R,A(t; t′) and G
<(t; t′) of the

undisturbed system depend only on the difference t−t′. In absence of magnetic
fields Hs is invariant under time-reversal and the imaginary part of the Fourier
transformed G

R is simply given by

−1

π
Im [〈r|G(E)|r′〉] =

∑

E′

δ(E − E ′)
dE′
∑

j=1

ψE′j(r)ψ∗E′j(r
′) . (66)

Multiplying Eq. (66) by ψ∗Em(r)ψEn(r′) and integrating over r and r′ in region
C we obtain

−1

π

∫

C
dr

∫

C
dr′ψ∗Em(r)Im [〈r|G(E)|r′〉]ψEn(r

′)

=
∑

E′

δ(E − E ′)
dE′
∑

j=1

Smj(E
′)Sjn(E

′), (67)

where

Smj(E) ≡
∫

C
dr ψ∗Em(r)ψEj(r) = S∗jm(E) (68)

is the overlap matrix in region C between degenerate states. This matrix is
Hermitian and can be diagonalized, i.e.,

dE
∑

j=1

Smj(E)a
(l)
j (E) = λl(E)a(l)

m (E). (69)

Next, we multiply Eq. (67) by a(l)∗

m (E)a(l′)
n (E) and sum over m and n.

The result can be written in terms of the new eigenfunctions aEl(r) =
∑dE

n=1 a
(l)
n (E)ψEn(r) as

−1

π

∫

C
dr

∫

C
dr′a∗El(r)Im [〈r|G(E)|r′〉] aEl′(r

′) = δll′λ
2
l (E)

∑

E′

δ(E −E ′),

(70)
where we have used Eq. (69) and the orthonormality of the S-matrix eigen-

vectors:
∑dE

j=1 a
(l)∗

j (E)a
(l′)
j (E) = δll′. Equation (70) shows explicitly that the

functions aEj(r) diagonalize Im [GCC(E)] in the central region and that the
eigenvalues are positive. Since any linear combination of degenerate eigen-
states is again an eigenstate, diagonalizing Im [GCC(E)] gives us one set of
linearly independent, degenerate eigenstates of energy E. In our practical im-
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plementation described in more detail in Section 5, we diagonalize

− 1

πDC(E)
Im [GCC(E)] (71)

where DC(E) = − 1
π
Tr {Im [GCC(E)]} is the total density of states in the

central region. If we use Ng grid points to describe the central region, the
diagonalization in principle gives Ng eigenvectors but only a few have the
physical meaning of extended eigenstates at this energy. It is, however, very
easy to identify the physical states by looking at the eigenvalues: at a given
energy E only dE eigenvalues are nonvanishing and they always add up to
unity. The corresponding states are the physical ones. All the other eigenvalues
are zero (or numerically close to zero) and the corresponding states have no
physical meaning.

The procedure described above gives the correct extended eigenstates only up
to a normalization factor. When diagonalizing Eq. (71) with typical library
routines one obtains eigenvectors which are normalized to the central region.
Physically this might be incorrect. It is possible to fix the normalization by
matching the wavefunction for the central region to the known form (and
normalization) of the wavefunction in the macroscopic leads.

It should be emphasized that the procedure described here for the extraction
of eigenstates of the extended system from GCC(E) only works in practice
if E is in the continuous part of the spectrum due to the sharp peak of the
delta function in the discrete part of the spectrum. Eigenstates in the discrete
part of the spectrum can be found by considering the original Schrödinger
equation for the full system: Hsψ = Eψ. Using again the block structure of
the Hamiltonian this can be transformed into an effective Schrödinger equation
for an energy-dependent Hamiltonian for the central region only:



HCC +
∑

α=L,R

HCα

1

E1α −Hαα

HαC



 |ψC〉 = E|ψC〉. (72)

This equation has solutions only for certain values of E which are the discrete
eigenenergies of the full Hamiltonian Hs. Since the left and right electrodes
form a continuum, the dimension of the kernel of (E −Hαα) is zero for those
energies E in the discrete part of the spectrum. We also notice that the sec-
ond term in parenthesis in Eq. (72) is nothing but the real part of the re-
tarded/advanced self-energy in equilibrium, see Eq. (47). Bound states as well
as fully reflected waves will contribute to the density but not to the current
and might play a role in the description of charge-accumulation in molecular
transport, as, e.g., in Coulomb blockade phenomena. In our TDDFT formula-
tion bound states and fully reflected waves also play an extra role, since they
are needed for calculating the effective potential vs (which is a functional of
the density) which is in turn used for extracting all extended states.
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4.2 Algorithm for the time evolution

In order to calculate the longitudinal current in an electrode-junction-electrode
system we need to propagate the Kohn-Sham orbitals. The main difficulty
stems from the macroscopic size of the electrodes whose remote parts, ul-
timately, are taken infinitely far away from the central, explicitly treated,
scattering region C.

The problem can be solved by imposing transparent boundary conditions[28]
at the electrode-junction interfaces. Efficient algorithms have been proposed
for wave-packets initially localized in the scattering region and for Hamilto-
nians constant in time. In this Section we describe an algorithm well suited
for delocalized initial states, as well as for localized ones, evolving with a
time-dependent Hamiltonian.

Let Hs(t) be the time-dependent KS Hamiltonian. We partition Hs(t) as in
Section 3.2. The explicitly treated region C includes the first few atomic layers
of the left and right electrodes. The boundaries of this region are chosen in such
a way that the density outside C is accurately described by an equilibrium
bulk density. It is convenient to write Hαα(t), with α = L,R, as the sum of
a term H0

αα = Hαα(0) which is constant in time and another term Uα(t)
which is explicitly time-dependent, Hαα(t) = H0

αα + Uα(t). In configuration
space Uα(t) is diagonal at any time t since the KS potential is local in space.
Furthermore, the diagonal elements Uα(r, t) are spatially constant for metallic
electrodes. Thus, Uα(t) = Uα(t)1α and UL(t) − UR(t) is the total potential
drop across the central region. We write Hs(t) = H̃(t) + U(t) with

H̃(t) =















H0
LL HLC 0

HCL HCC(t) HCR

0 HRC H0
RR















, and U(t) =















UL(t)1L 0 0

0 0 0

0 0 UR(t)1R















.

(73)
In this way, the only term in H̃(t) that depends on t is HCC(t). For any given
initial state |ψ(0)〉 = |ψ(0)〉 we calculate |ψ(tm = m∆t)〉 = |ψ(m)〉 by using a
generalized form of the Cayley method

(

1 + iδH̃
(m)
)

1 + i δ
2
U (m)

1− i δ
2
U (m)

|ψ(m+1)〉 =
(

1− iδH̃ (m)
)

1− i δ
2
U (m)

1 + i δ
2
U (m)

|ψ(m)〉, (74)

with H̃
(m)

= 1
2
[H̃(tm+1)+H̃(tm)], U (m) = 1

2
[U (tm+1)+U(tm)] and δ = ∆t/2.

It should be noted that our propagator is norm conserving (unitary) and
accurate to second-order in δ, as is the Cayley propagator.[29] Denoting by
|ψα〉 the projected wave function onto the region α = R,L, C, we find from

23



Eq. (74)

|ψ(m+1)
C 〉 =

1C − iδH(m)
eff

1C + iδH
(m)
eff

|ψ(m)
C 〉+ |S(m)〉 − |M (m)〉. (75)

Here, H
(m)
eff is the effective Hamiltonian of the central region:

H
(m)
eff = H

(m)
CC − iδHCL

1

1L + iδH0
LL

HLC − iδHCR

1

1R + iδH0
RR

HRC (76)

with H
(m)
CC = 1

2
[HCC(tm+1) + HCC(tm)]. The source term |S(m)〉 describes

the injection of density into the region C, while the memory term |M (m)〉
is responsible for the hopping in and out of the region C. In terms of the
propagator for the uncontacted and undisturbed α electrode

gα =
1α − iδH0

αα

1α + iδH0
αα

, (77)

the source term can be written as

|S(m)〉 = − 2iδ

1C + iδH
(m)
eff

∑

α=L,R

Λ(m,0)
α

u
(m)
α

HCα

[gα]m

1α + iδHs
αα

|ψ(0)
α 〉, (78)

with

u(m)
α =

1− i δ
2
U (m)

α

1 + i δ
2
U

(m)
α

and Λ(m,k)
α =

m
∏

j=k

[u(j)
α ]2. (79)

For a wave packet initially localized in C the projection onto the left and
right electrode |ψ(0)

α 〉 vanishes and |S(m)〉 = 0 for any m, as it should be. The
memory term is more complicated and reads

|M (m)〉 = − δ2

1C + iδH
(m)
eff

∑

α=L,R

m−1
∑

k=0

Λ(m,k)
α

u
(m)
α u

(k)
α

[Q(m−k)
α + Q(m−k−1)

α ]

×
(

|ψ(k+1)
C 〉+ |ψ(k)

C 〉
)

(80)

where

Q(m)
α = HCα

[gα]m

1α + iδHs
αα

HαC . (81)

The quantities Q(m)
α depend on the geometry of the system and are indepen-

dent of the initial state ψ(0).

Below we propose a recursive scheme to calculate the Q(m)
α ’s for those system

geometries having semiperiodic electrodes along the longitudinal direction, see
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hLhLhLhLhL
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R R R R R

R R R R R

....

Fig. 3. Schematic sketch of an electrode-junction-electrode system with semiperiodic
electrodes.

Fig. 3. In this case H0
αα has a tridiagonal block form

H0
αα =





















hα V α 0 . . .

V α hα V α . . .

0 V α hα . . .

. . . . . . . . . . . .





















, (82)

where hα describes a convenient cell and V α is the hopping Hamiltonian
between two nearest neighbor cells. Without loss of generality we assume that
both hα and V α are square matrices of dimension Nα × Nα. Taking into
account that the central region contains the first few cells of the left and right
electrodes, the matrix Q(m)

α has the following structure

Q
(m)
L =















q
(m)
L 0 0

0 0 0

0 0 0















, Q
(m)
R =















0 0 0

0 0 0

0 0 q
(m)
R















. (83)

The q(m)
α ’s are square matrices of dimension Nα ×Nα and are given by

q(m)
α = V α

[

[gα]m

1α + iδHαα

]

1,1

V α, (84)

where the subscript (1, 1) denotes the first diagonal block of the matrix in the
square brackets. We introduce the generating matrix function

qα(x, y) ≡ V α

[

1

x1α + iyδHαα

]

1,1

V α, (85)

which can also be expressed in terms of continued matrix fractions
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qα (x, y)

= V α
1

x+ iyδhα + y2δ2V α
1

x+ iyδhα + y2δ2V α
1
......

V α

V α

V α

= V α

1

x+ iyδhα + y2δ2qα(x, y)
V α. (86)

The q(m)
α ’s can be obtained from

q(m)
α =

1

m!

[

− ∂

∂x
+

∂

∂y

]m

qα(x, y)

∣

∣

∣

∣

∣

x=y=1

. (87)

From Eqs. (87) and (86) one can build up a recursive scheme. Let us define
p−1

α (x, y) = x+ iyδhα + y2δ2qα(x, y) and p(m)
α = 1

m!
[− ∂

∂x
+ ∂

∂y
]mpα(x, y)|x=y=1.

Then, by definition, q(m)
α = V αp(m)

α V α. Using the identity 1
m!

[− ∂
∂x

+
∂
∂y

]mpα(x, y)p−1
α (x, y) = 0, one finds

(1+ iδhα)p(m)
α = (1− iδhα)p(m−1)

α −δ2
m
∑

k=0

(q(k)
α +2q(k−1)

α +q(k−2)
α )p(m−k)

α (88)

with p(m)
α = q(m)

α = 0 for m < 0. Once q(0)
α has been obtained by solving

Eq. (86) with x = y = 1, we can calculate p(0)
α = [1 + iδhα + δ2q(0)

α ]−1.
Afterwards, we can use Eq. (88) with q(1)

α = V αp(1)
α V α to calculate p(1)

α and
hence q(1)

α and so on and so forth.

This concludes the description of our algorithm for the propagation of the
time-dependent Schrödinger equation for extended systems. It is worth men-
tioning an additional complication here which arises for the propagation of a
time-dependent Kohn-Sham equation. This complication stems from the fact
that in order to compute |ψ(m+1)

C 〉 at time step m+ 1 one needs to know the
time-dependent KS potential at the same time step which, via the Hartree and
exchange-correlation potentials, depends on the yet unknown orbitals |ψ(m+1)

C 〉.
Of course, the solution is to use a predictor-corrector approach: in the first
step one approximates H

(m)
CC by HCC(tm), computes new orbitals |ψ̃(m+1)

C 〉 and

from those obtains an improved approximation for H
(m)
CC .

5 Implementation details for 1d systems and numerical results

All the methodological discussion of Section 4 is general and can be applied
to all systems having a longitudinal geometry like the one in Fig. 3. In this
Section we show that the proposed scheme is feasible by testing it against
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one-dimensional model systems. The extension to real molecular-device con-
figurations is presently under development [30]. We consider systems described
by the Hamiltonian

〈x|H|x′〉 = δ(x− x′)
[

−1

2

d

dx2
+ V (x)

]

. (89)

We have used a simple three-point discretization for the second derivative

d2

dx2
ψ(x)|x=xi

≈ 1

(∆x)2
[ψ(xi+1)− 2ψ(xi) + ψ(xi−1)] (90)

with equidistant grid points xi, i = 1, . . . , Ng and spacing ∆x. Within this
approximation matrices of the form HCαMHαC which are Ng × Ng matri-
ces and appear, e.g., in Eq. (38) or (81), have only one nonvanishing matrix
element. For α = L this is the (1, 1) element, for α = R it is the (Ng, Ng)
element.

In order to proceed we have to specify the nature of the leads and therefore the
lead Green function. Here we choose the simplest case of semi-infinite, uniform
leads at constant potential Uα0. In this case, the retarded Green function gR

αα

in the energy domain can be given in closed form:

[gR
αα(E)]kl =−

i∆x
√

2Ẽα

exp
{

i
√

2Ẽα|xk − xl|
}

+
i∆x
√

2Ẽα

exp
{

i
√

2Ẽα(|xk − xα0|+ |xl − xα0|)
}

(91)

with Ẽα = E − Uα0. The abscissa xα0 is the position of the interface between
the lead and the device region; in our implementation xL0 is the first grid point
of region C while xR0 is the Ng-th grid point of region C. According to the
notation in Eq. (63) the one-particle state of region C describing an electron
localized in xL0 is denoted by |xC1〉 while the one-particle state of region C
describing an electron localized in xR0 is denoted by |xCNg

〉. The coordinate
xk = xα0 ± k∆x, k > 0, where the plus sign applies for α = R and the minus
sign for α = L.

The results of the procedure for calculating extended eigenstates as described
in Section 4.1 is illustrated in Fig. 4 for a square potential barrier with zero
potential in both leads. In the left panel we have the square modulus of eigen-
states at an energy below the barrier height while in the right panel eigenstates
with energy higher than the barrier are shown. The states result from diagonal-
ization of Eq. (71). In order to obtain the normalization constant we compute
the logarithmic derivative at the boundary of the central region numerically
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Fig. 4. Continuum states of square potential barrier at different energies with leads
at zero potential. Left panel: eigenstates for ε = 0.45 a.u., just below the barrier
height of 0.5 a.u.. Right panel: eigenstates at ε = 0.6 a.u..

and match it to the analytic form in the lead to obtain the phase shift δα:

1

2

d2

dx2
ln(|ψ(x)|2)

∣

∣

∣

∣

∣

x=xα0

= q cot(δα) (92)

where q =
√

2Ẽα. Knowing the phase shift we can rescale the wavefunction
such that it matches with the analytic form sin(q(x−xα0)+δα) at the interface.
Of course, this form of the extended states only applies for Ẽα > 0 but as long
as E is in the continuous part of the spectrum, it is correct at least for one
of the leads. This is sufficient to determine the normalization. The states
obtained numerically with this procedure coincide with the known analytical
results.

We then implemented the propagation scheme presented in the previous Sec-
tion. Within our three-point approximation, hα, V α and qα are 1×1 matrices.
The equation for q(0)

α [see Eqs. (86) and (87)] becomes a simple quadratic equa-
tion which can be solved explicitly

q(0)
α =

−(1 + iδhα) +
√

(1 + iδhα)2 + 4(δVα)2

2δ2
. (93)

Although the quadratic equation has two solutions, the above choice for q(0)
α

is dictated by the fact that the Taylor expansions for small δ of Eqs. (93) and
(86) have to coincide. Using this result we then solved the iterative scheme to
obtain the q(m)

α for m ≥ 1.

As a first check on the propagation method we propagated a Gaussian
wavepacket which, at initial time t = 0, is completely localized in the cen-
tral device region. (The source terms |S(m)〉 then vanish identically). As can
be seen in Fig. 5, the wavepacket correctly propagates through the boundaries
without any spurious reflections.
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Fig. 5. Time evolution of a Gaussian wavepacket with initial width 1.0 a.u. and
initial momentum 0.5 a.u. for various propagation times. The transparent boundary
conditions allow the wavepacket to pass the propagation region without spurious
reflections at the boundaries.

For the propagation of the extended initial states (the eigenstates of the un-
perturbed system) we also need to implement the source terms |S(m)〉. In
the following we assume that the left and right leads are at the same po-
tential initially so that the analytic form of the initial states is in both
leads given by sin(q(x − xα0) + δα) = [exp(iδα − iqxα0) exp(iqx)− c.c.] /2i.
Let us specialize the discussion to the case α = R and define the state
|qR〉 according to 〈xRk|qR〉 = exp(iqk∆x), where |xRk〉 is the one-particle
state of electrode R describing an electron localized in xk = xR0 + k∆x,
k > 0. Then, the projection of the initial state onto lead R reads
|ψ(0)

R 〉 = 1
2i

[exp(iδα)|qR〉 − exp(−iδα)| − qR〉]. From Eq. (78) the contribu-
tion to the source term for α = R is completely known once we know how
HCR[gR]m/(1R + iδHRR) acts on the state |qR〉. We have

HCR

[gR]m

(1R + iδHRR)
|qR〉 = VR|xCNg

〉〈xR1|
[gR]m

(1R + iδHRR)
|qR〉 (94)

where xCNg
corresponds the Ng-th discretization point of region C (the last

point on the right before electrode R starts). We rewrite the unknown quantity
as follows

〈xR1|
[gR]m

1R + iδHRR

|qR〉 =
[D(x, y)]m

m!
ρ(x, y)

∣

∣

∣

∣

∣

x=y=1

, (95)

29



with

D(x, y) =

(

− ∂

∂x
+

∂

∂y

)

, ρ(x, y) = 〈xR1|
1

x1R + iyδHRR

|qR〉. (96)

Next, we use the Dyson equation to find an explicit expression for ρ(x, y). We
have

1

x1R + iyδHRR

|qR〉 =
1

x
|qR〉 −

1

x

iyδ

x1R + iyδHRR

HRR|qR〉. (97)

It is straightforward to realize that the action of HRR on |qR〉 yields

HRR|qR〉 = (2VR cos(q∆x) + hR)|qR〉 − VRe−iq∆x|xR1〉, (98)

so that Eq. (97) can be rewritten as

[

1 +
2iyδVR cos(q∆x) + iyδhR

x

]

1

x1R + iyδHRR

|qR〉 =

1

x
|qR〉+

1

x

iyδVRe−iq∆x

x1R + iyδHRR

|xR1〉. (99)

Projecting Eq. (99) on 〈xR0| we find

[

1 +
2iyδVR cos(q∆x) + iyδhR

x

]

ρ(x, y) =
1

x
+
iyδe−iq∆x

xVR

qR(x, y), (100)

where qR(x, y) is the generating function defined in Eq. (85). Solving Eq. (100)
for ρ(x, y) we conclude that

VRρ(x, y) =
VR + iyδe−iq∆xqR(x, y)

x+ 2iyδVR cos(q∆x) + iyδhR

. (101)

Using the relation in Eq. (87) for the coefficients q(m)
α we find

[D(x, y)]m

m!
ρ(x, y)

∣

∣

∣

∣

∣

x=y=1

=
(1− (2iδVR cos(q∆x) + iδhR))m

(1 + (2iδVR cos(q∆x) + iδhR))m+1 +
iδ

VR

e−iq∆x

×
m
∑

j=0

(1− (2iδVR cos(q∆x) + iδhR))m−j

(1 + (2iδVR cos(q∆x) + iδhR))m+1−j

(

q
(j)
R + q

(j−1)
R

)

.

(102)

One may proceed along the same lines for extracting the left component of
the source term.

To test our implementation we have propagated eigenstates of the extended
system. As expected, these states just pick up an exponential phase factor
exp(−iEt) during the propagation.
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We are now in a position to apply our algorithm to the calculation of time-
dependent currents in one-dimensional model systems. The systems are ini-
tially in thermodynamic equilibrium. At time t = 0, a time-dependent per-
turbation is switched on. In all the examples below the current is calculated
according to Eq. (62)

I(x, t) = 2
∫ kF

−kF

dk

2π
Im

(

ψ∗k(x, t)
d

dx
ψk(x, t)

)

=2
∫ kF

0

dk

2π
Im

(

ψ∗k
d

dx
ψk + ψ∗−k

d

dx
ψ−k

)

(103)

where the prefactor 2 comes from spin and kF =
√

2εF is the Fermi wavevector
of a system with Fermi energy εF .

5.1 DC bias

As a first example we considered a system where the electrostatic potential
vanishes identically both in the left and right leads as well as in the central
region which is explicitly propagated. Initially, all single particle levels are
occupied up to the Fermi energy εF . At t = 0 a constant bias is switched on
in the leads and the time-evolution of the system is calculated. We chose the
bias in the right lead as the negative of the bias in the left lead, UR = −UL.

The numerical parameters are as follows: the Fermi energy is εF = 0.3 a.u., the
bias is UL = −UR = 0.05, 0.15, 0.25 a.u., the central region extends from x =
−6 to x = +6 a.u. with equidistant grid points with spacing ∆x = 0.03 a.u..
The k-integral in Eq. (103) is discretized with 100 k-points which amounts to
a propagation of 200 states. The time step for the propagation was ∆t = 10−2

a.u.

In Fig. 6 we have plotted the current densities at x = 0 as a function of time
for different values of the applied bias. As a first feature we notice that a
steady state is achieved, in agreement with the discussion of Section 3.3. The
corresponding steady-state current I(S) can be calculated from the Landauer
formula. For the present geometry this leads to the steady current

I(S) = 8e
∫

max(UL,UR)

dω

2π
[f(ω − UL)− f(ω − UR)] (104)

×
√
ω − UL

√
ω − UR

[√
ω − UL +

√
ω − UR

]2
+ ULUR

[

sin(l
√

2ω)√
ω

]2 ,
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Fig. 6. Time evolution of the current for a system where initially the potential is zero
in the leads and the propagation region. At t = 0, a constant bias with opposite sign
in the left and right leads is switched on, U = UL = −UR (values in atomic units).
The propagation region extends from x = −6 to x = +6 a.u.. The Fermi energy of
the initial state is εF = 0.3 a.u.. The current in the center of the propagation region
is shown.

where l is the width of the central region. From Eq. (104) with l = 12 a.u.
and UL = −UR, the numerical values for the steady-state currents are 0.0316
a.u. (UL = 0.05 a.u.), 0.0883 a.u. (UL = 0.15 a.u.) and 0.0828 a.u. (UL = 0.25
a.u.). We see that our algorithm yields the same answers. Second, we notice
that the onset of the current is delayed in relation to the switching time t = 0.
This is easily explained by the fact that the perturbation at t = 0 happens in
the leads only, e.g., for |x| > 6 a.u., while we plot the current at x = 0. In
other words, we see the delay time needed for the perturbation to propagate
from the leads to the center of our device region. We also note that the higher
the bias the more the current overshoots its steady-state value for small times
after switching on the bias. Finally it is worth mentioning that increasing the
bias not necessarily leads to a larger steady-state current.

In the second example we studied a double square potential barrier with elec-
trostatic potential V (x) = 0.5 a.u. for 5 a.u. ≤ |x| ≤ 6 a.u. and zero otherwise.
This time we switch on a constant bias in the left lead only, i.e., UR = 0. The
Fermi energy for the initial state is εF = 0.3 a.u.. The central region extends
from x = −6 to x = +6 a.u. with a lattice spacing of ∆x = 0.03 a.u.. Again, we
use 100 different k-values to compute the current and a time step of ∆t = 10−2

a.u..

In Fig. 7 (Left panel) we plot the current at x = 0 as a function of time for
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Fig. 7. Left panel: Time evolution of the current through a double square potential
barrier in response to an applied constant bias (given in atomic units) in the left
lead. The potential is given by V (x) = 0.5 a.u. for 5 ≤ |x| ≤ 6 a.u. and zero
otherwise, the propagation region extends from x = −6 to x = +6 a.u.. The Fermi
energy of the initial state is εF = 0.3 a.u.. The current in the center of the structure
is shown. Right panel: Time evolution of the total number of electrons in the region
|x| ≤ 6 for the same double square potential barrier.

several values of the applied bias U = UL. Again, a steady state is achieved
for all values of U . As discussed in Fig. 6 the transient current can exceed
the steady current; the higher the applied voltage the larger is this excess
current and the shorter is the time when it reaches its maximum. Furthermore,
the oscillatory evolution towards the steady current solution depends on the
bias. For high bias the frequency of the transient oscillations increases. For
small bias the electrons at the bottom of the band are not disturbed and the
transient process is exponentially short. On the other hand, for a bias close to
the Fermi energy the transient process decays as a power law, due to the band
edge singularity. As pointed out in Section 3.3, for non-interacting electrons
the steady-state current develops by means of a pure dephasing mechanism. In
our examples the transient process occurs in a femtosecond time-scale, which
is much shorter than the relaxation time due to electron-phonon interactions.

In Fig. 7 (Right panel) we plot the time evolution of the total number of
electrons in the device region for the same values of UL. We see that as a
result of the bias a quite substantial amount of charge is added to the device
region. This result has important implications when simulating the transport
through an interacting system as the effective (dynamical) electronic screening
is modified due not only to the external field but also to the accumulation of
charge state in the molecular device. This illustrates that linear response might
not be an appropriate tool to tackle the dynamical response and that we will
need to resort to a full time-propagation approach as the one presented in
this review. Here we emphasize that all our calculations are done without
taking into account the electron-electron interaction. If we had done a similar
calculation with the interaction incorporated in a time-dependent Hartree or
time-dependent DFT framework we would expect the amount of excess charge
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to be reduced significantly as compared to Fig. 7.

5.2 Time-dependent biases

In the previous Section we have shown how a steady current develops after the
switching on of a constant bias and discussed the transient regime. Here we
exploit the versatility of our proposed algorithm for studying different kinds
of time-dependent biases.

As a first example we consider how the current responds to a sudden switching
off of the bias. For comparison we have considered the same double square
potential barrier of Fig. 7 subject to the same suddenly switched on bias, but
we have turned off the bias at t = 75 a.u. The results (obtained with the same
parameters of Fig. 7) are displayed in Fig. 8. We observe that the current shows
a rather well pronounced peak shortly after switching off the perturbation.
The amplitude of the peak is proportional to the originally applied bias. This
peak always overshoots the value of the current at the steady state. Another
interesting feature is the fact that after turning off the bias the transient
currents show only two oscillations around the zero current limit and the
transient time for switching off is much shorter than for switching on a high
bias.
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Fig. 8. Same system of Fig. 7 exposed to a suddenly switched on bias at t = 0. The
bias is then turned off at t = 75 a.u. The current is measured in the middle of the
central region.

We have also addressed the simulation of AC-transport. We computed the
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current for a single square potential barrier with V (x) = 0.6 for |x| < 6 and
zero otherwise. Here we applied a time-dependent bias of the form UL(t) =
U0 sin(ωt) to the left lead. The right lead remains on zero bias. The numerical
parameters are: Fermi energy εF = 0.5 a.u., device region from x = −6 to
x = +6 a.u. with lattice spacing ∆x = 0.03 a.u.. The number of k-points is
100 and the time step is ∆t = 10−2 a.u.. In Fig. 9 we plot the current at x = 0
as a function of time for different values of the parameter U0 = 0.1, 0.2, 0.3
a.u. The frequency was chosen as ω = 1.0 a.u. in both cases. Again, as for the
DC-calculation discussed above, we get a transient that overshoots the average
current flowing through the constriction; again, this excess current is larger
the higher the applied voltage. Also, after the transient we obtain a current
through the system with the same period as the applied bias. Note, however,
that (especially for the large bias), the current is not a simple harmonic as the
applied AC bias.
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Fig. 9. Time evolution of the current for a square potential barrier in response to
a time-dependent, harmonic bias in the left lead, UL(t) = U0 sin(ωt) for different
amplitudes U0 (values in a.u.) and frequency ω = 1.0 a.u.. The potential is given
by V (x) = 0.6 a.u. for |x| ≤ 6.0 a.u. and zero otherwise. The propagation region
extends from x = −6 to x = +6 a.u.. The Fermi energy of the initial state is
εF = 0.5 a.u.. The current at x = 0 is shown.

Exposing the system to an AC bias also allows us to acquire information
about the excitation energies of the molecular device. In Fig. 10 (Left panel)
we plot the time dependent current for a symmetric double square potential
barrier in response to a harmonic bias in the left lead, UL(t) = U0 sin(ωt),
with U0 = 0.15 a.u. and ω = 0.03 a.u.. The Fermi energy of the initial state is
εF = 0.3 a.u. and the current at x = 0 is shown. The central region extends
from x = −6 to x = 6 a.u. with lattice spacing ∆x = 0.03 a.u. and the
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potential V (x) in region C is given by V (x) = 0 for |x|/a.u. < (6 − d) and
V (x) = 0.5 a.u. for (6− d) < |x|/a.u. < 6. The number of k-points is 100 and
the time step is ∆t = 10−2 a.u.. We have studied barriers of different thickness
d = 1 a.u. and d = 2 a.u.. For d = 2 a.u. we observe small oscillations
superimposed to the oscillations of frequency ω = 0.03 a.u. driven by the
external AC field. Such small oscillations have frequency ' 0.23 and can be
understood by looking at the transmission function T (E) in the Right panel
of Fig. 10. For d = 2 a.u. both the second and third peaks of T (E) are in the
energy window (εF − U0, εF + U0) = (0.15, 0.45) a.u.. The energy difference
between these two peaks corresponds to a good extent to the frequency of the
superimposed oscillations. On the contrary, for d = 1 a.u. only one peak of the
transmission function T (E) is contained in the aforementioned energy window
and no superimposed oscillations are clearly visible. This example shows the
AC quantum transport can be used also for probing molecular devices.
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Fig. 10. Left panel: Time evolution of the current for a symmetric double square
potential barrier in response to a time-dependent, harmonic bias in the left lead,
UL(t) = U0 sin(ωt) with U0 = 0.15 a.u. and ω = 0.03 a.u. for different thickness
d = 1 and d = 2 a.u. of the barriers. Right Panel: Transmission function of the same
double square potential barrier for d = 1 and d = 2 a.u.

5.3 History dependence

In Fig. 11 we show time-dependent currents for the same double barrier as in
Fig. 7 for two different ways of applying the bias in the left lead: in one case the
constant bias U0 is switched on suddenly at t = 0 (as in Fig. 7), in the other
case the constant U0 is achieved with a smooth switching U(t) = U0 sin2(ωt)
for 0 < t < π/(2ω). As expected and in agreement with the results of Section
3.3, the same steady state is achieved after the initial transient time. However,
the transient current clearly depends on how the bias is switched on.

According to the result in Eq. (39), for noninteracting electrons the inde-
pendence of the history is not limited to steady-state regimes. The long-time
behaviour of currents I(t) and I ′(t) induced by biases Uα(t) and U ′α(t) does
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Fig. 11. Time evolution of the current for a double square potential barrier when
the bias is switched on in two different manners: in one case, the bias U0 is suddenly
switched on at t = 0 while in the other case the same bias is achieved with a smooth
switching U(t) = U0 sin2(ωt) for 0 < t < π/(2ω). The parameters for the double
barrier and the other numerical parameters are the same as the ones used in Fig. 7.
U0 and ω given in atomic units.

not change provided Uα − U ′α → 0 for t → ∞. For instance, the current re-
sponse to an AC bias has the same periodic modulation and the same phase
independently of how the AC bias is switched on. In Fig. 12 we plot the time-
dependent current for the same system (and using the same parameters) of
Fig. 9. The bias remains on zero in the right lead. In the left lead we applied
a time-dependent bias of the form UL(t) = U0f(t) sin(ωt), with U0 = 0.2 a.u.,
ω = 1.0 a.u., and we considered two different “switching on” functions f(t).
The first is f(t) = 1 (as in Fig. 9) while the second is a ramp-like switching-on
f(t) = θ(T −t)t/T +θ(t−T ) with T = 30 a.u.. As expected, and in agreement
with Eq. (39), the current has the same behaviour in the long-time limit.

5.4 Pumping current: preliminary results

Our algorithm is also well-suited to study pumping of electrons. An electron
pump is a device which generates a DC current between two electrodes kept
at the same bias. The pumping is achieved by applying a periodic gate voltage
depending on two or more parameters. Electron pumps have been realized ex-
perimentally, e.g., for an open semiconductor quantum dot [31] where pumping
was achieved by applying two harmonic gate voltages with a phase shift.
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Fig. 12. Time evolution of the current for a square potential barrier in response
to a time-dependent, harmonic bias in the left lead, UL(t) = U0f(t) sin(ωt) with
U0 = 0.2 a.u. and frequency ω = 1.0 a.u.. The system and the parameters used are
the same as in Fig. 9. The current at x = 0 is shown for two different “switching
on” functions f(t).

In the literature, different techniques have been used to discuss electron pump-
ing theoretically. Brouwer [32] suggested a scattering approach to describe
pumping of non-interacting electrons which has been used, e.g., to study
pumping through a double barrier [33]. Nonequilibrium Green’s function tech-
niques have been used to study pumping in tight-binding models of coupled
quantum dots [34]. Alternatively, Floquet theory which describes evolution of
a quantum system under the influence of time-periodic fields is also well-suited
to describe pumping [35].

As a first example of electron pumping we have calculated the time evolution
of the density for a single square barrier exposed to a travelling potential
wave U(t) = U0 sin(qx− ωt). The wave is spatially restricted to the explicitly
treated device region which in our case also coincides with the static potential
barrier. Some snapshots of the density and the potential wave are shown in
Fig. 13. The density in the device region clearly exhibits local maxima in
the potential minima and is transported in pockets by the wave. This is also
evident in Fig. 14 where we show the time-dependent density as function of
both position and time throughout the propagation. The density contour lines
show transport of electrons from the left lead at x = −8 to the right lead at
x = +8 a.u.. The pumping mechanism in this example resembles pumping of
water with the Archimedean screw.

38



-8 -4 0 4 8
x/a.u.

-0.05

-0.025

0

0.025

0.05

n(
x,

t)
/a

.u
.

-0.5

-0.25

0

0.25

0.5

U
(x

,t)
/a

.u
.

Fig. 13. Snapshots of the density for and the travelling potential wave at various
times for pumping through a single square barrier by a travelling wave. The barrier
with height 0.5 a.u. extends throughout the propagation window from x = −8 to
x = +8. The leads are on zero potential and the Fermi level is at 0.3 a.u.. The
travelling potential wave is restricted to the propagation window |x| < 8 and has
the form U(t) = U0 sin(qx−ωt) with amplitude U0 = 0.35 a.u., wave number q = 1.6
a.u. and frequency ω = 0.2 a.u.. The initial density is given by the red line.

As a second example we have calculated pumping through a double square
barrier by applying two harmonic gate voltages with a phase difference to the
barrier potentials, i.e., U(x, t) = U0 sin(ωt) for the left barrier and U(x, t) =
U0 sin(ωt + φ) for the right barrier. Fig. 15 shows the DC component of the
pump current as a function of the phase φ which has a sinusoidal dependence
for our parameter values. This is in agreement with similar results of Ref. [33]
for small amplitudes of the AC bias which were obtained using Brouwer’s
approach. In addition, this example may be interpreted as a very simple model
to describe the experiment of Ref. [31].

6 Conclusions and perspectives

In this review we have given a self-contained introduction to our recent ap-
proach to quantum transport. In essence our approach combines two well-
established theories for the description of non-equilibrium phenomena of in-
teracting many-electron systems.

On the one hand there is the formalism of non-equilibrium Keldysh-Green
functions. Although this approach in principle can be used to study interaction
effects, here we only used it in the context of non-interacting electrons. The
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Fig. 14. Contour plot of the time-dependent density for pumping through a single
square barrier by a travelling potential wave. The parameters are the same as for
Fig. 13.

reason for this is that the self-energy of interacting electrons (which is not to
be confused with the embedding self-energy) is long-range and nonlocal. In
our scheme which partitions space in left and right leads as well as the central
device region, this non-locality is extremely difficult to deal with in a rigorous
manner.

On the other hand, the NEGF formalism for (effectively) non-interacting elec-
trons can easily be combined with the second approach for time-dependent
many-particle systems, namely time-dependent density functional theory. Just
as the NEGF formalism, TDDFT in principle gives the correct time-dependent
density of the interacting system (if the exact exchange-correlation potential
is used). Moreover, the time-dependent effective single-particle potential of
TDDFT is a local and multiplicative potential which is crucial for practical
use within the partitioning scheme for transport.

In combining the NEGF and TDDFT approaches we have presented a for-
mally rigorous approach towards the description of charge transport using
an open-boundary scheme within TDDFT. We have implemented a specific
time-propagation scheme that incorporates transparent boundaries at the de-
vice/lead interface in a natural way. In order to have a clear definition of a
device region in Fig. 1 we assumed that an applied bias can be described by
adding a spatially constant potential shift in the macroscopic part of the leads.
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Fig. 15. Parametric pumping through a double square barrier. The device region
extends from x = −6 to x = +6 a.u., the static potential has the value 0.525 a.u.
for 5 < |x| < 6 a.u. and zero elsewhere in the device. Pumping is achieved by
harmonic variation of the barriers, i.e., U(x, t) = U0 sin(ωt) for the left barrier (−6
a.u.< x < −5 a.u.) and U(x, t) = U0 sin(ωt + φ) for the right barrier (5 a.u.< x < 6
a.u.). The DC component of the pump current is displayed as a function of the
phase φ. The parameters are: U0 = 0.25 a.u., ω = 0.25 a.u. and the Fermi energy is
εF = 0.5 a.u..

This implies an effective “metallic screening” of the constriction. The screening
limits the spatial extent of the induced density created by the bias potential
or the external field to the central region. Our time-dependent scheme allows
to extract both AC and DC I/V device characteristics and it is ideally suited
to describe external field (photon) assisted processes.

In order to illustrate the performance and potential of the method we have
implemented it for one-dimensional model systems and applied it to a variety
of transport situations: we have shown that a steady-state current is always
reached upon application of a DC bias. For a harmonic AC bias, the resulting
AC current need not be harmonic. In the case of systems at DC bias without
any source of dissipation it is known that the steady-current is independent
of the history of the process[8]. We have explicitly demonstrated this history
independence for two different switching processes of the external bias. The
history independence for non-interacting electrons not only applies for DC but
also for AC bias which we have also demonstrated in a numerical example.
Since we can compute current densities locally, we are not restricted to currents
deep inside the leads. In one example we have analyzed the time evolution of
the density for localized states which are only weakly coupled to the reservoirs.
Finally, we have shown a few simple applications of our algorithm to electron
pumping.
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The list of the example calculations presented here already demonstrates the
versatility and flexibility of our algorithm. It includes the Landauer formalism
as the long-time limit for systems under DC bias and allows to study tran-
sients. Moreover, it can deal with periodic time-dependent fields (which are
usually treated with the Floquet formalism) but is applicable to nonperiodic
conditions as well [36].

Most theoretical approaches to transport adopt open boundary conditions and
assume that transport is ballistic,i.e., under steady state conditions inelastic
collisions are absent and dissipation occurs only in the idealized macroscopic
reservoirs. This might be an unrealistic assumption for transport through sin-
gle molecules, in particular when the device is not operated in the regime of
small bias and linear response. When inelastic scattering dominates this pic-
ture is not applicable. In particular, experiments [37–39] indicate that inelastic
scattering with lattice vibrations is present at sufficiently large bias, causing
local heating of contacts and molecular devices. In addition, current-induced
forces might lead to bond-breaking and electromigrations.

In a joint collaboration with Verdozzi and Almbladh, one of us has included
the nuclear degrees of freedom at a classical level[40]. The initial ground state
(consisting of bound, resonant and scattering states) has been calculated self-
consistently. Also, the time-propagation algorithm of Section 4.2 has been
generalized to evolve the system electrons+nuclei in the Ehrenfest approxi-
mation. Several aspects of the electron-ion interaction in quantum transport
have been investigated.

Electron correlations are also important in molecular conductors, for exam-
ple, Coulomb blockade effects dominate the transport in quantum dots. Short-
range electron correlations seems to be relevant in order to get quantitative
description of I/V characteristics in molecular constrictions[41–43]. In partic-
ular it is commonly assumed that the energy scales for electron-electron and
electron-phonon interactions are different and could be treated separately.
However, the metallic screening of the electrodes considerably reduces the
Coulomb-charging energy (from eV to meV scale). In this regime the energy
scale for the two interactions merge and they need to be treated on the same
footing. We would like to emphasize that our scheme allows for a consistent
treatment of electronic and ionic degrees of freedom.

It is clear that the quality of the TDDFT functionals is of crucial importance.
In particular, exchange and correlation functionals for the non-equilibrium
situation are required. Time-dependent linear response theory for DC-steady
state has been implemented in Ref. [44] within TDLDA assuming jellium-
like electrodes (mimicked by complex absorbing/emitting potentials). It has
been shown that the DC-conductance changes considerably from the stan-
dard Landauer value. Therefore, a systematic study of the TDDFT function-
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als themselves is needed. A step beyond standard adiabatic approximations
and exchange-only potentials is to resort to many-body schemes based on
perturbative expansions[45,46], iterative schemes[47], or variational-functional
formulations[48]. Another path is to explore exchange-correlation functionals
that depend implicitly [25,49] or explicitly [50,51] on the current density.
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