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1. Introduction

The basic idea of density functional theory (DFT) is to describe an interacting
many-particle system exclusively and completely in terms of its density. The
formalism rests on two basic theorems:

I. Every observable quantity can be calculated, at least in principle, from the
density alone, i. e. each quantum mechanical observable can be written as a
functional of the density.

IT. The density of the interacting system of interest can be obtained as density
of an auxiliary system of non-interacting particles moving in an effective local
single-particle potential (the so-called Kohn-Sham potential).

In the original work of Hohenberg, Kohn and Sham [1, 2] these theorems were
proven for the ground-state density of static many-body systems. On the basis of
these theorems, DFT has provided an extremely successful description of ground-
state properties of atoms, molecules and solids [3, 4]. The accuracy of approxima-
tions for the Kohn-Sham potential has steadily improved over the years and the
currently best functionals yield ground-state properties in very close agreement
with configuration interaction results [5].

DFT of time-dependent systems (TDDFT) is a more recent development [6]—-
[8]. The important theorems I and II stated above have been shown to hold true for
the time-dependent density as well [6]. So far, TDDFT has been applied almost
exclusively in the regime of linear response (for recent reviews see, e. g., Refs.
[71-19D)-

In this paper, TDDFT is used to study the interaction of atoms with very strong
laser pulses having intensities that require a non-perturbative treatment of the
laser field. Many authors have attacked this problem with a variety of techniques
[10, 11]. Often the electronic motion has been treated classically or semiclassically.
Most of the quantum mechanical work was either done on the hydrogen atom or



on rare gas atoms within a single-active-electron model. The principal advantage
of TDDFT is that it provides a fully quantum mechanical approach that incor-
porates correlation effects due to the electron-electron interaction in a systematic
fashion. The interacting many-body problem is mapped on an auxiliary system of
non-interacting particles moving in an effective time-dependent potential. Since
this potential is local in configuration space the resulting numerical scheme is less
involved than the time-dependent Hartree-Fock (TDHF) method. In section 2,
we give an overview of TDDFT. In sections 3 and 4 numerical results on multi-
photon ionization and harmonic generation of helium and neon will be presented.

2. Time-dependent density functional formalism

We study the time evolution of a system of N electrons governed by the time-
dependent Schrédinger equation
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(atomic [Hartree] units are used throughout). The total Hamiltonian, written in
second quantized notation, is given by

Hty=T+W+V(t) , 2)
where 7' is the kinetic energy of the electrons,
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and W is the mutual Coulomb interaction,
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The electrons move in an explicitly time-dependent external potential
V@:/fmmmm® , (5)
where 7i(r) is the density operator
ar) = Y i) (r) (6)
o=1l

Generally the external potential vexs(rt) consists of a static contribution (e. g., the
nuclear Coulomb potential) and a time-dependent part (e. g., the laser field).
Time-dependent density functional theory is based on the existence of an ex-
act one-to-one mapping between time-dependent densities and external potentials.
We investigate the densities n(rt) of electronic systems evolving from a fized initial
(many-particle) state ®(tg) = ®¢ under the influence of different external poten-



tials vexs(rt). Each external potential leads, via solution of the time-dependent
Schrédinger equation (1), to a time-dependent many-body wave function ®(t). For
a fixed initial state ®q, this defines a map

A Vexy (rt) — B(1) (7

between the external potentials and the corresponding time-dependent many-
particle wave functions. By virtue of the density operator (6), a second map

B: ®(t) — n(rt) = ((t)|n(r)|®(t)) (8)

is established between the many-particle wave functions and the time-dependent
densities. The heart of TDDFT is the proof of invertibility of the combined map
G=Bo A:

G : Vexs(rt) — n(rt) . 9)

The invertibility of this map was first proven by Runge and Gross [6]. These
authors demonstrated that two densities n(rt) and n'/(rt) evolving from a common
initial state ®¢ under the influence of two potentials vext(rt) and vl (rt) always
become different infinitesimally later than ¢y, provided that the potentials differ by
more than a purely time-dependent function ¢(¢). The set of potentials for which
invertibility can be shown comprises all potentials expandable in a Taylor series
with respect to the time coordinate around the initial time ¢¢. Having established
the existence of the inverse map

G i n(rt) — Vexi(rt) +c(t) (10)

subsequent application of the map A tells us that the full many-particle wave
function is a functional of the time-dependent density, unique up to within a
purely time-dependent phase a(t):

®(t) = e OW[n)(t) . (11)

As a consequence, the expectation value of any quantum mechanical operator Q(t)
is a unique functional of the density:

QIl() = (T[NP [](®) (12)

The ambiguity in the phase cancels out (provided that Q(t) contains no time
derivatives). This proves theorem I stated in the introduction. Some quantities
(such as harmonic spectra) are easily calculated from the time-dependent density,
while other quantities (such as ATI spectra) are difficult to extract from the den-
sity. But, as a matter of principle, all physical observables are determined by the
time-dependent density alone, once the initial many-body state &, is specified’.
The 1-1 correspondence between time-dependent densities and time-dependent
potentials can be established for any given interaction W, in particular also for
W = 0, i. e. for non-interacting particles. Therefore, if n(rt) is a given density,

L1f the initial state ®g is a non-degenerate ground state then the traditional Hohenberg-Kohn
theorem [1] ensures that ®g is a functional of the initial density no. Hence, in this case, ®¢ need
not be given explicitly, i. e., knowledge of ng is sufficient.



the potential v(rt) of non-interacting particles that reproduces the given density
n(rt) is uniquely determined, v(rt) = v[n|(rt), i. e. the given density n(rt) can be
calculated from

N
n(rt) = Z g (rt)[? (13)
j=1
with the single-particle orbitals ¢;(rt) satisfying
e V2
za@ (rt) = (—7 + v[n](rt)) ¢j(rt) . (14)

Whether or not v(rt) actually exists for an arbitrary given density n(rt) is an
open question in the time-dependent case?. But if it exists it is unique. If one
chooses for n(rt) the density of the interacting system of interest (i. e. the density
of Coulomb-interacting particles moving in the external potential vex(rt)) then
the potential v[n] is termed the time-dependent Kohn-Sham (TDKS) potential.
The latter is usually decomposed into the external potential, a time-dependent
Hartree part and the so-called exchange-correlation (xc) potential:

v[n](rt) = vexs (rt) + / dr' n(r't)

v —r|
The xc potential is a wuniversal functional of the density, i. e. it has the same
functional dependence on n for all Coulomb systems, independent of the particular
external potential veyxy of the system at hand. As in the static case, the great
advantage of the TDKS scheme lies in its computational simplicity compared to
other methods such as TDHF or time-dependent configuration interaction. The
crucial feature of vy is that it is a local potential in configuration space in contrast,
e. g., to the non-local TDHF potential.
The basic formalism is easily extended to spin-polarized systems [12]. In that
case the xc potential depends on the spin densities

+ Uxe[n](xt) . (15)

N,
na(rt)=Z|¢j,,(rt)|2 , o=1l (16)

with N = 3" N, and the spin orbitals ¢;, (rt) satisfy the single-particle equations

i%(ﬁja(rt) = (—% + vg[n¢,n¢](rt)> @i (rt) (17)
with

t) + ny(r't)

!
vl m)(00) = v (00) + [ & ”T‘r|r_r,| + ol m(xt) . (18)

In practice, the xc potential vxco[n4,m,](rt) has to be approximated. The simplest

2This question is termed the v-representability problem. In the static case, the question could
be answered in a satisfactory way. For a review of the static v-representability problem see, e. g.,
chapter 4.2 of Ref. [3].



possible form is the so-called adiabatic local density approximation (ALDA):

dehom (nT7 ni)
dng

ALDA

Uxco [nT7 ni«] (I‘t) =

; (19)

Ne=ng (rt)

where €22™(n4, n) is the xc energy per volume of the homogeneous spin-polarized
electron gas. This approximation can be expected to be good only if the time
dependence of the n4 and n| is sufficiently slow. In practice, however, it gives quite
good results even for cases of rather rapid time dependence. In the exchange-only
case (to which we shall restrict ourselves in the following), one explicitly obtains

VALDA (1) = — (6n, (rt) /7). (20)

The ALDA is local both in space and time, i. e. vy (rt) only depends on the density
values at the very same time ¢t and the very same location r. Recently, a different
time-dependent xc potential has been proposed which is tailored for the description
of memory effects [13]. In this approximation vy (rt) depends on the density values
n(r't') at other locations r’ and earlier times ¢’ < t. Both approximations have
in common that they are based on results derived from the homogeneous electron
gas.

We have recently developed a new method of constructing approximations of
Uxco |8, 14, 15] which also in principle takes memory effects into account but
does not make use of the theory of the homogeneous electron gas. The approach
can be viewed as a time-dependent extension of the so-called optimized potential
method (OPM). As before, the description of the time evolution of an N-electron
system with a given initial state is made in terms of a set of time-dependent
spin orbitals {¢;,(rt)} obeying a single-particle Schrédinger equation analogous
to Eq. (17). The difference compared to conventional density-functional schemes
is that the time-dependent xc potential appearing in Eq. (18) is now given as a
functional of the orbitals {¢;, (rt)} rather than the spin densities. It is constructed
by requiring the spin orbitals in Eq. (17) to make a given total quantum mechanical
action functional A[{¢;, }] stationary. This condition leads to the following integral
equation for the optimized xc potentials [14]:

t1 A .
ZZ/ at' /d3 ! [USCIZM r't") ¢, (c't') — % b0 (rt) K, (rt,1't")
+ cc.=0 (21)

with the kernel K,(rt,x't") = Y77, ¢ (rt)dpo (r't') 6(t — t'). The functional
Axc[{¢js}] in Eq. (21) is the xc part of the total action functional and has to be
approximated in practice. If all time-dependent correlation effects are neglected
(x-only case) then Ay is given by the usual TDHF expression
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The numerical implementation of the full time-dependent OPM scheme is an ex-
tremely demanding task: at each time step one has to solve the integral equation
(21) for vOFPM. For this reason, we have developed a simplified scheme similar to

the one proposed by Krieger, Li and Iafrate (KLI) [16] for the static case which

yields approximations to vOPM as explicit functionals of the orbitals. These ap-

proximate xc potentials are given by [8, 14, 15]

U)I((CI;I (I't) = UJx(‘o- I‘t ]k /d3,r nko’ wXCO' (I' t) (23)
with
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and njq(rt) = |¢j,,(rt)| . The N, x N, matrix II,(t) in Eq. (23) is defined as

Majo(t) = by = [ Meelt0elE (25)

The essential ingredient of the quantity wxc, is the functional derivative § Axc/0¢;,
which can be calculated analytically once the approximation of A, is specified.
For example, in the x-only case wyc, becomes

wxo’(rt) = - ! Z [¢ja (I‘t)(ﬁza (I‘t) /d3 ! M

fr—r]

_ n]o’ I‘t /d3 /d3 ' ¢]¢7 I‘t ¢ko’(rt)¢k0'(r t) (rlt) ) (26)
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The full x-only OPM potential constitutes the exact x-only limit of TDDFT. It is
distinguished from TDHF by the fact that the OPM exchange potential is local and
therefore numerically favourable. We emphasize that the x-only TDOPM should
not be considered as a local approximation to TDHF. Apart from its numerical
simplicity the x-only OPM is also physically superior to HF. This is most easily
appreciated in the static limit: The static OPM orbitals (both occupied and unoc-
cupied ones) are self-interaction free. By contrast, in HF only the occupied orbitals
are self-interaction free while the unoccupied ones have a serious self-interaction
error which causes them to be much too weakly bound. Since time-dependent
external fields will cause transitions to the virtual orbitals (which are poorly rep-
resented in HF) we expect the x-only OPM to be more accurate than TDHF (even



if the full OPM exchange potential is approximated by the KLI potential (23)).
The KLI potential (23) is significantly more accurate but also numerically more
involved than the ALDA potential (20). In section 4, TDKLI results will be com-
pared with ALDA results for neon in strong laser pulses. For these calculations, the
difference in CPU time between TDKLI and ALDA is about a factor of 3. Before
that, in section 3, we illustrate our numerical procedure by considering various as-
pects of harmonic generation in helium within a time-dependent Hartree approach.

3. Harmonic generation and two-colour mixing in helium

The initial KS ground state of He is the doubly occupied 1s orbital. In this case,
there are no exchange contributions and, for the time being, the correlation part
of vy will be neglected. The TDKLI equation (17) then reduces to the time-
dependent Hartree equation

i g oty = (= + [ D L By )2 singent) - 2) o)

— 1|
(27)
The index “ls” indicates that the time-dependent orbital ¢;¢(rt) initially was in
the 1s state.

The laser field, assumed to be linearly polarized along the z direction, has
been written in dipole approximation in the usual length form, with peak field
strength Ey and frequency wg. The envelope function, f(t), is such that the laser
is linearly ramped to its maximum amplitude over the first 10 cycles which is then
held constant for another 10 cycles.

We solve this equation in cylindrical coordinates with a finite-difference scheme
very similar to Kulander [17, 18], using a finite non-uniform grid as introduced by
Pindzola et al. [19]. The spatial extent of the grid is about 20 a.u. x 60 a.u., and
the initial helium ground state has an energy eigenvalue of €;3 = —0.955 Hartrees
which is 3.9% off the exact Hartree-Fock value of —0.918 Hartrees. This error is
due to the relatively coarse grid spacings in the vicinity of the nucleus, which is
inevitable to keep the numerical effort tractable.

We simulate ionization by an absorbing grid boundary [17, 18] so that the norm
of the wave function

Nis(t) = / ErldnEt) (28)

finite
volume

taken over the finite volume of the grid, decreases with time. The time-dependent

norm Ni4(t) refers to a singly occupied spin orbital. The probabilities for neutral,
singly and doubly charged helium atoms can therefore be expressed as

P(t) = Nis(t) (29)

PHHt) = 2Ni(t)(1 — Nis(t)) (30)

PY2(1) = (1-Nis(t)? . (31)
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Figure 1: Harmonic spectrum for He at A = 616nm and I = 3.5x10'* W /cm?. The
squares represent experimental data taken from Ref. [20] normalized to the value
of the 33rd harmonic of the calculated spectrum. The experiment was performed
with a peak intensity of 1.4 x 10" W /cm?.

Since Nig(t) = [d®r n(rt)/2, the probabilities PO, P*' and P*? as given by
Egs. (29)—(31) are explicit functionals of the density.

In order to investigate harmonic generation for the helium atom, we take the
laser wave length 616 nm, which has been used for an experimental study by
Miyazaki and Sakai [20]. They employed a dye laser with a pulse duration of 800
femtoseconds and a peak intensity of 1.4 x 101 W/cm?. The highest detected
harmonic was the 41st, corresponding to a wavelength of 15 nm.

To obtain the harmonic spectrum, we calculate the induced dipole moment
d(t) = [d®r zn(rt) which is then Fourier transformed over the last 5 cycles of the
constant-intensity interval. The square of the resulting Fourier transform, |d(w)|?,
has been shown [21] to be proportional to the experimentally observed harmonic
distribution to within a very good approximation.

We performed calculations with different peak intensities and achieved the best
agreement with experiment for I = 3.5 x 1014 W /cm?, see Fig. 1. The discrepancy
between this intensity and the experimental intensity of 1.4 x 10'* W/cm? might
be due to the uncertainty of the experimentally determined peak intensity which
can be as high as a factor of two.

To explain experimental harmonic generation data, Lambropoulos and cowork-
ers [22] have performed numerical simulations for helium based on a single-active-
electron model. Their aim was to clarify the role of Het! in the harmonic gener-
ation process at different laser wavelengths. For this purpose, they calculated the
harmonic spectra separately for neutral helium and for Het! at the respective sat-
uration intensities (i. e. those intensities for which about 5% of the populations of
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Figure 2: Maximum return energy of a classical electron released from the nucleus
in a two-colour laser field with a relative phase difference .

the He atom or the ion are ionized during the laser pulses). The spectra were then
compared with experiment in order to find out which part of the detected harmonic
spectrum was caused by neutral He and which part by singly charged He. This
method explains quite well an experiment performed at the wavelength 248 nm
[23], but does not give a clear picture for the experimental data of Miyazaki and
Sakai [20] at 616nm: for the latter case, the intensities (5 x 101 W /cm? for neutral
He and 5x 10 W /cm? for He*!) leading to good agreement with experiment were
out of the range of the experimental peak intensity of 1.4 x 10'* W /cm?.

If we calculate the probabilities for the charge states of He at 616 nm and 3.5 x
10 W /cm? after 20 cycles by using Eqgs. (29)—(31), we obtain 99.93% probability
for neutral He and only 0.07% for Het!. We thus conclude that the spectrum
shown in Fig. 1 is exclusively due to the neutral atom.

We also studied the harmonic generation for a helium atom in a strong two-
colour laser field. The two lasers with frequencies wy and 2wq, respectively, are
operated with the same peak intensity and a constant relative phase difference .
This results in a time-varying laser potential of the form

Vlaser (Tt) = Eo f (t)z[sin(wot) + sin(2wot + ¢)] (32)

where both fields are linearly polarized along the z-axis. One expects to obtain
harmonic distributions with a plateau region extending up to a cutoff which de-
pends on the phase difference ¢. In the one-colour case, this cutoff is approximately
determined by the well-known I, + 3.2U, rule [24], where I, denotes the atomic
ionization potential and U, the ponderomotive shift.

To obtain an analogous rule for the two-colour case, we have calculated the
maximum return energies F, ., for a classical electron released at the nucleus in a
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Figure 3: Harmonic distribution for He in a two-colour laser field. The two wave-
lengths are 616 nm and 308 nm, and the intensity is 3.5 x 101* W /cm? for both of
them. Crosses are the results for ¢ = 0 and diamonds denote the values obtained
with phase shift ¢ = —0.6m. For comparison, the squares indicate the harmonic
distribution for He in a one-colour field with A\ = 616 nm and I = 7 x 10" W /cm?.

two-colour laser field. The cutoff is then given by I, + Emax. In Fig. 2, Enax/Up
is plotted as a function of the phase shift, where U, is now given by the sum of
the ponderomotive potentials of the two individual laser fields. We have made
several calculations for laser intensities in the range of 10!3 to 10® W/cm? and
wavelengths between 200 and 1200nm. The curve plotted in Fig. 2 turned out to be
insensitive to these variations of the laser parameters. The two-colour cutoff rule
can thus be written as I, + ¢(¢)Up, where c(¢) = Emax /U, has its maximum value
of about 4.9 for ¢ = 0, whereas it has a minimum of about 2.9 for ¢ = —0.64~.

Calculated harmonic distributions induced by a two-colour field with different
relative phases are shown in Fig. 3. The fundamental wave length is 616 nm and
the intensity is 3.5 x 104 W /cm? for both frequency components. We also show the
one-colour spectrum for A = 616nm calculated with the same total intensity as the
two-colour field, i. e. I = 7 x 10* W/cm?2. In the two-colour spectrum, harmonics
at all higher multiples (including even multiples) of the fundamental frequency wq
occur due to nonlinear mixing processes of the two fields [25]. We chose the phase
differences ¢ = 0 and ¢ = —0.67 which according to our semiclassical model (see
Fig. 2) lead to the highest and lowest cutoff energies, namely the 50th harmonic
and the 36th harmonic, respectively. These classical estimates are found to agree
quite well with the full quantum mechanical calculations: for ¢ = 0 we observe
harmonics as high as the 49th, whereas for ¢ = —0.67 we find the plateau to
extend up to the 30th harmonic.
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In Fig. 3, most of the harmonics produced by the two-colour field in the plateau
region are one to two orders of magnitude more intense than those obtained in the
one-colour calculation. Similar results have recently been found for hydrogen in a
two-colour field [26]. One possible reason for this remarkable enhancement is that
in a two-colour field one specific high-order harmonic can be generated by a large
number of different mixing processes [25]. Several of the two-colour harmonics, on
the other hand, are found to be strongly suppressed: the 7th and 15th harmonics
for the case ¢ = 0, e. g., are even below their counterparts calculated in the one-
colour field. For ¢ = —0.6m, however, this suppression of the 15th harmonic does
not occur. Other harmonics like the 12th are enhanced for ¢ = 0 and suppressed
for ¢ = —0.67.

4. Neon: beyond the single-active-electron approximation

For atoms heavier than He, exchange terms are present in the TDKS equations.
In this section we present a full TDDFT calculation for the neon atom. We have
solved the TDKS equations with the TDKLI and ALDA potentials for the Ne
valence electrons in a laser pulse with A = 248 nm for two different intensities,
I =3 x 10" W/cm? and 5 x 10> W/cm?. The 1s electrons have been frozen,
i. e. we propagate only the 2s and 2p electrons by solving the TDKS equations,
whereas the time evolution of the 1s electrons is given by

¢ls (I't) = ¢ls (I‘t()) eiiels(tito) . (33)

We emphasize that the only approximation made in this frozen-core prescription
is to write the frozen orbitals in the form (33). The exchange between the frozen
orbitals and the other orbitals is fully included in the TDKLI or ALDA potentials.
In this respect, our scheme differs from other frozen-core prescriptions such as,
e. g., in Ref. [24]. In view of the high binding energy of the 1s electrons compared

HF(exact) KLI(exact) LDA(exact) KLI(grid) LDA(grid)

—€1s 32.77 30.80 30.24 35.13 34.47
—€2 1.930 1.707 1.266 1.951 1.522
—€2po 0.8504 0.8494 0.4431 0.8098 0.4159
—€2p, 0.8504 0.8494 0.4431 0.8065 0.4126

Table 1: Ne orbital energies (in Hartrees).

to the other electrons (see Table 1), freezing only the 1s electrons is expected to be
a very good approximation for the neon atom. Later we shall discuss the effect of
additionally freezing electrons of the valence shell and only propagating the most
loosely bound, i. e. the 2pg orbital.
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Figure 4: Time evolution of the norm of the Ne 2s orbital (A), the Ne 2pg or-
bital (B) and the Ne 2p; orbital (C), calculated in the x-only TDKLI and ALDA
schemes. Laser parameters: A\ = 248 nm, I = 3 x 10! W/cm?, linear ramp over
the first 10 cycles. One optical cycle corresponds to 0.82 femtoseconds.
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In order to assess the accuracy of the numerical procedure we first compare the
energy eigenvalues resulting from the diagonalization of the stationary KS equation
on our two-dimensional grid with the exact values from the literature [16, 27, 28],
see Table 1. We find that there is a slight difference (about 3 mHartrees) between
the eigenvalues of the 2pg and 2p; orbitals due to the different orientations of these
orbitals in our cylindrical grid: the 2py orbital is oriented along the z-axis, the
2p; orbitals perpendicular to it. In the limit of infinitesimally small grid spacings,
this difference goes to zero. The deviation of the average of the 2p orbital energies
from the exact value is 4.9% (41 mHartrees) for KLI and 6.5% (29 mHartrees)
for LDA. The KLI results for the orbital binding energies (on the exact level as
well as calculated on the rectangular grid) are found to be much closer to the HF
results than the LDA energy eigenvalues. The first ionization potential of Ne in
LDA is too small by almost 50%, whereas the exact KLI result reproduces the HF
ionization potential within 1 mHartree (0.1%). We mention that the experimental
ionization potential is 0.792 Hartrees.

Fig. 4 shows the norm of the Ne 2s, 2py and 2p; orbitals for the laser intensity
I =3 x 10" W/cm? (a very similar behaviour is found for I =5 x 101®* W/cm?).
Once again the indices “2s”, “2py” and “2p;” denote the initial state of the other-
wise fully propagated orbitals. The pulse has been linearly ramped over the first
ten cycles and is then kept constant for another 15 cycles. As expected, the 2s
orbital is the least ionized of the three orbitals (only 0.3% ionization for TDKLI
and 1.9% for ALDA at the end of our calculation). A little surprising at first sight,
the 2pg and 2p, orbitals differ by about an order of magnitude in their degree of
ionization (60% for the 2py orbital compared to only 4.75% for the 2p; orbital
within TDKLI, and 56% for the 2pg compared to 7.7% for the 2p; orbital within
the ALDA). This difference has been observed before by Kulander [29, 30] for the
case of xenon (in a single-active-electron calculation). It is due to the fact that
the 2pg orbital is oriented along the polarization direction of the laser field, which
makes it easier for the electrons to escape the nuclear attraction than for the case
of the 2p; orbital, which is oriented perpendicularly to the field polarization.

To explain the difference between the results obtained within the TDKLI and
ALDA schemes shown in Fig. 4, we observe from Table 1 that it takes 5 photons to
ionize the 2p orbitals in TDKLI compared to only 3 photons in ALDA. Similarly,
it takes 11 photons to ionize the 2s orbital in TDKLI and only 9 in ALDA. The
difference between the curves in Fig. 4A and C is thus hardly surprising. On the
other hand, it seems quite unexpected that the ALDA and TDKLI curves cross
in Fig. 4B so that the ALDA curve comes to lie above the TDKLI curve. This
behaviour can be attributed to the fact that the other orbitals are ionized much
more strongly in ALDA than in TDKLI, so that their electron density near the
nucleus (and therefore their screening of the nuclear charge) is decreased. This
makes it more difficult for the 2pg electrons to escape within the ALDA scheme.

We have calculated the harmonic spectra for both sets of laser parameters. The
distributions are displayed in Figs. 5A and B. We see that for the lower intensity,
I = 3 x 10'®* W/cm?, the plateau extends up to the 23rd harmonic, whereas for
I =5 x 10" W/cm? it goes up to the 33rd harmonic. We also observe that the
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Figure 5: Harmonic distributions for Ne (A = 248 nm), calculated within the

TDKLI and ALDA schemes at I = 3 x 10" W/cm? (A) and I =5 x 10'® W /cm?
(B). The experimental data were taken at I = 4 x 107" W /cm? [23].
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difference between the TDKLI and ALDA spectra is not very pronounced. We thus
conclude that the strongly differing ionization energies of the individual orbitals
(a factor of two for the 2p electrons) play only a minor role for the shape of the
harmonic spectrum.

We compare our calculated harmonic distributions with experimental data by
Sarukura et al. [23]. The experiment was performed with a KrF laser (A =
248 nm) at a pulse duration of 280 femtoseconds and a peak intensity of 4 x
10" W/cm?. The experimental peak intensity is two orders of magnitude higher
than the intensities used in our calculations. It is to be expected, however, that the
atoms have become completely ionized by the time the pulse reaches its maximum.
The detected harmonic radiation must therefore have been induced during the rise
time of the pulse, probably in an intensity range close to the intensities used in
our calculations.

The experimental data points shown in Figs. 5A and B have both been nor-
malized to the value of the 17th harmonic (within TDKLI) in Fig. 5A. At 3 x
10 W /cm?, we see that the calculated spectra can explain the measured harmon-
ics 15 to 21, whereas the harmonics 17 to 25 (with the exception of the strongly
suppressed 25th harmonic for ALDA and the a little less strongly suppressed 21st
harmonic for both schemes) are explained by the spectrum at 5 x 10'® W /cm?.
Hence, our calculations show that the generation of the harmonics 15 to 25 is dom-
inated by the intensity range covered in our calculations. We can match this part
of the experimental harmonic distribution pretty well by a superposition of the two
spectra with equal weights. This corresponds to the experimental situation where
the harmonic photons generated on different positions in the laser focus (and,
therefore, coming from regimes with different laser intensities) are superimposed
in the detector.

In order to explain the same experimental data, Kondo et al. [31] have per-
formed numerical simulations based on a simple atomic model (a single electron
in a short-range model potential). They calculated the harmonic spectrum for
neutral Ne at 4.5 x 10 W/cm?, for Net! at 1.8 x 10'® W/cm? and for Net?
at 4.8 x 10! W/cm?. By a suitable superposition of these single-electron spectra,
they reproduced the qualitative features of the experimental harmonic distribution.
The authors attributed the harmonics above the 11th to Net! and the harmonics
above the 21st to doubly charged Ne.

We come to a similar conclusion by calculating the populations of the differently
charged states as we did for the helium atom, see Eqgs. (29)—(31). For the intensity
3x105W /cm?, we find a slightly higher probability for Net! than for Net2. Thus,
the harmonics up to the 21st are most probably caused by Net!. At the higher
intensity, we find that the doubly charged Ne ions are prevailing. We can therefore
attribute the harmonics above the 21st to Ne*?, in accordance with Ref. [31].

We also found that the dipole moment of the 2pg orbital alone leads to spectra
looking very similar to the full harmonic spectra displayed in Figs. 5A and B. This
brings us to the following question: To what extent is the harmonic motion of the
2po electrons influenced by the motion of the other electrons? In order to study
this question, we have performed an additional TDKLI calculation with the same
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Figure 6: Time-dependent norm of the 2pgy orbital, calculated with TDKLI in two
different schemes (propagation of all valence electrons and of the 2pg orbital only,
respectively). The laser parameters are A = 248 nm and I = 3 x 10'® W /cm?.

laser parameters as in Fig. 5A, this time with all but the 2pg electrons frozen in
their initial states. Fig. 6 shows a comparison of the time-dependent norm of the
2po orbital calculated in the original scheme (i. e. all electrons are propagated
under the influence of the laser except the 1s electrons) and in the new frozen-core
scheme (i. e. propagation of the 2pg orbital only). The difference between the two
curves is very slight, implying that the ionization of the 2pg orbital can reliably
be calculated with the new frozen-core prescription.

However, if we calculate the harmonic spectrum in the new frozen-core scheme,
we find a strong deviation from the spectrum calculated in the original scheme.
From the comparison of the two spectra in Fig. 7, we come to the conclusion that
the effect of freezing the 2s and 2p; electrons is twofold: First of all, the whole
spectrum is slightly shifted towards lower values of |d(w)|?>. The second, more
drastic effect is the appearance of a pronounced Lorentz-profile resonance peak
just below the 7th harmonic. This resonance dominates the background of the
spectrum, as becomes clearly visible in the region beyond the plateau, i. e. beyond
the 21st harmonic, which can be fitted very well with a Lorentz curve. A very
similar resonance phenomenon has been observed by Kulander and Shore [30] for
the case of Xenon, where a single 5pg electron was propagated only.

In the former computational scheme, where all valence electrons of the neon
atom were fully propagated, the resonance had been suppressed due to the in-
fluence of the 2s and 2p; electrons on the motion of the 2pgy electrons. In other
words, the resonance is an artefact of the more restricted frozen-core approxima-
tion, where only the 2pg orbital was propagated. This leads us to the conclusion
that a reliable calculation of harmonic spectra requires simultaneously treating
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Figure 7: Harmonic spectrum of Ne calculated by propagating the 2pgy orbital only.
Squares: harmonic distribution calculated by propagating all valence electrons
(both calculations were done in TDKLI). Laser parameters as in Fig. 6.

the time evolution of all electrons belonging to the outermost atomic shell. Ne-
glecting the mutual influence of the electrons on their harmonic motion, as done
in the single-active-electron approximation, can lead to spurious resonance effects.
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