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Abstract

The basic idea of density functional theory is to map an interacting many-particle system
on an effective non-interacting system in such a way that the ground-state densities of
the two systems are identical. The non-interacting particles move in an effective local
potential which is a functional of the density. The central task of density functional theory
is to find good approximations for the density-dependence of this local single-particle
potential. An overview of recent advances in the construction of this potential (beyond the
local-density approximation) will be given along with successful applications in quantum
chemistry and solid state theory. We then turn to the extension of density functional theory
to superconductors and first discuss the Hohenberg-Kohn-Sham-type existence theorems.
In the superconducting analogue of the the normal-state Kohn-Sham formalism, a local
single-particle potential is needed which now depends on two deunsities, the ordinary density
n(r) and the anomalous density A(r,r'). As a first step towards the construction of such
a potential, a gradient expansion technique for superconductors is presented and applied
to calculate an approximation of the non-interacting kinetic energy functional Ts[n, A].

We also obtain a Thomas-Fermi-type variational equation for superconductors.
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1 Introduction

The basic idea of normal-state density functional theory is to describe a many-electron

system exclusively and completely in terms of its ground-state density. This means that

1. every observable quantity of a stationary quantum mechanical system can be calcu-
lated, in principle exactly, from the ground-state density alone, i. e., every observable

quantity can be written as a functional of the ground-state density.

2. The ground-state density can be calculated, in principle exactly, from a variational

principle involving only the density.

In the following section we shall indicate a proof of these two important statements first
given by Hohenberg and Kohn (1964). We then demonstrate that the variational princi-
ple, i. e., the second of the above statements, can be cast into the form of a one-particle
Schrodinger equation with a local, density-dependent single-particle potential. The result-
ing self-consistent scheme, known as the Kohn-Sham scheme (Kohn and Sham 1965), is the
heart of modern density functional theory. In section 3 we illustrate a number of prominent
methods of constructing approximations to the Kohn-Sham exchange-correlation poten-
tial along with a few applications. For a comprehensive up-to-date survey of applications
of the density functional formalism the reader is referred to the proceedings of a recent
NATO Advanced Study Institute (Gross and Dreizler 1994).

The original Hohenberg-Kohn-Sham formalism is a ground-state theory. Extensions
have been developed for systems at finite temperature (Mermin 1965) as well as for time-
dependent phenomena (Runge and Gross 1984; Gross and Kohn 1985; Wacker et al. 1994,
Ullrich et al. 1995). Finite-temperature ensembles and time-dependent systems will not
be pursued at length in this article. Some finite-temperature calculations are described
in the review article by Kohn and Vashishta (1983). A survey of applications of time-
dependent density functional theory can be found in the review article by Gross and Kohn
(1990) and in the book by Mahan and Subbaswamy (1990).

The traditional density functional formalism is tailored for the description of inhomo-
geneous systems. For homogeneous media, although formally exact, density functional
theory is pointless from a practical point of view in the sense that it does not help us to
obtain information about the homogeneous system: The total energy per volume e(n) is
trivially a function of the (constant) density n, but density functional theory gives no clue
about the specific form of this function. However, the construction of many approximate
exchange-correlation (xc) functionals (to be applied to inhomogeneous systems) is based

on information about the xc energy and the response functions of the homogeneous gas.



Owing to a relatively large coherence length (102 — 10*A) conventional superconduc-
tivity of pure metals is well described as a phenomenon of homogeneous media. As a
consequence, the development of a density functional theory for superconductors (Oliveira
et al. 1988; Kohn et al. 1989; Gross and Kurth 1991) was only triggered by the advent of
high-temperature superconductors. In these materials, experimental coherence lengths of
the order of 10A suggest that inhomogeneities on the scale of the lattice constant have to
be taken into account.

In section 4 of this article we review the Hohenberg-Kohn-Sham theorems for supercon-
ductors. In addition to the ordinary density, this formalism requires a second quantity, the
anomalous density A(r,r’), whose diagonal terms A(r) = A(r,r) reduce to the Ginzburg-
Landau (Ginzburg and Landau 1950) order parameter in the appropriate limits (Gorkov
1959). The density functional formalism for superconductors leads to a set of Kohn-Sham
equations whose algebraic structure is similar to the Bogoliubov-deGennes equations (de
Gennes 1966). The Kohn-Sham potentials in these Bogoliubov-type equations contain,
besides the usual mean-field terms, xc functionals which formally incorporate all super-
conducting correlations exactly. In practice, these functionals have to be approximated.
For superconductors, the development of suitable approximations is still in an infant stage.
A local-density approximation based on the lowest-order exchange diagram has recently
been suggested (Gross and Kurth 1993; Gross et al. 1994). In sections 5 and 6 of this ar-
ticle, first steps towards a gradient expansion for superconductors are presented. Explicit
results are obtained for the kinetic-energy functional. Finally, in section 7, we discuss
the resulting variational equation which can be viewed as a Thomas-Fermi equation for
superconductors.

For homogeneous systems, A(r,r’) is a function of (r — r’) only, whose Fourier trans-
form, A(p), is the central quantity in the traditional BCS description (Bardeen et al.
1957) of superconductors. A prominent feature of the density functional theory for su-
perconductors is the appearance of a nonlocal order parameter A(r,r’). Switching into a
mixed representation in space and momentum, A(R,p) [to be precise, the Wigner trans-
form of A(r,r’)], the Gorkov limit of a purely space dependent order parameter A(R)
as well as the BCS limit of a purely momentum dependent gap function A(p) are both
accomodated in a natural way. The small coherence length of the high-T; superconductors
suggests that a description in terms of a momentum and space dependent order parameter
A(R,p) becomes important, where the R-dependence takes inhomogeneities on the scale
of the lattice constant into consideration. One can hope that the systematic treatment
of spatial variations by means of the gradient expansion, as presented in this paper, will

contribute to a better understanding of these materials.
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2 Hohenberg-Kohn-Sham formalism for normal systems

We begin with a short summary of the original Hohenberg-Kohn (HK) theorem (Hohenberg
and Kohn 1964).

Consider a system of N electrons characterized by the time-independent Hamiltonian

~

Hy=T+V+U (1)
which, in second quantized notation, is given by

T= 3 [t () @)

=14 2m

V=% [dr o die)be( 3)

o=}

62

U= %Z / d3r / dr' Pl ()L () e () o (v) - (4)

v — |

For simplicity we consider only potentials v(r) leading to a non-degenerate ground state ¥
[extension of the HK theorem to degenerate ground states is straightforward (Kohn 1985;
Dreizler and Gross 1990)]:

HyU = B, U . (5)

The restriction to non-degenerate ground states allows us to define a formal map
A:v(r) — T (6)

that maps each potential v(r) onto the ground-state solution ¥ of (5). For each ¥ we then

calculate the ground-state density
n(r) = (U[a()[¥) = (] PLE)de(r)|¥) (7)
which establishes a second map
B:U —n(r) . (8)
Combining A and B we can map each potential v(r) onto a density n(r)
G:v(r) —n(r) . (9)

The central statement of the HK theorem is that the map G is invertible up to within
a trivial additive constant in the potential. In order to prove this statement we have to

show that the maps .A and B are invertible.



For the map A, the invertibility proof is trivial: Solving the Schrédinger equation (5)
for V defines the inverse map A1 explicitly:

(T +U)¥(r;...ry)
U(ry...ry)

In the case of map B one has to show that two different ground states ¥ # ¥’ (arising

v(r1) + v(re) + ...+ v(rn) + const = =A1T . (10)

from two different potentials v # v’ + const) always lead to different ground-state densities

n(r) # n/(r). The argument is based on the Rayleigh-Ritz principle:

Eygs = (U|Hy|V)

< (U'|Hy|¥') = (V'|Hy + V = V!|T') :E;S+/d3r n'(r) (v(r) —o'(r)) . (11)

Owing to the restriction to non-degenerate ground states, (11) is a strict inequality. An

analogous argument starting with E;s leads to
B < Egs + /d3r n(r) (v'(r) —ov(r)) . (12)

The proof is by reductio ad absurdum: assuming n(r) = n'(r), the addition of (11) and

(12) leads to the contradiction
Egs+ B\ < Egy + B\, (13)

and one concludes that B is invertible. This means that, given a non-degenerate ground-
state density n(r), there exists one and only one ground-state wave function ¥[n] that
reproduces that density:

B7l:n(r) — Tn] . (14)

In view of the fact that there exist infinitely many N-particle functions x(r; ...ry) which
reproduce a given density n(r) (Harriman 1981; Zumbach and Maschke 1983), the 1-1
correspondence between ground-state wave functions and ground-state densities is a rather
surprising fact.

Moreover, due to the invertibility of the two maps A and B, single-particle potentials

v(r) and ground-state densities n(r) are in 1-1 correspondence,
G tin(r) — vn](r) |, (15)

i. e., given a non-degenerate ground-state density n(r) there exists one and only one
single-particle potential v[n] that leads to this density.
Since every wave function ® (not only the ground-state wave function !) is trivially a

functional of the external potential v(r)

d = [v] (16)



and since v (by the above argument) is a functional of n
v=on] | (17)

every quantum mechanical observable, i. e., every expectation value (®|O|®) is a functional

of the ground-state density
Oln] = (@[al|O|@[v[n]]) (18)

This proves the first statement made in the introduction.

Consider now a specific system whose ground-state density ng(r) and ground-state
energy Fy are to be calculated. The specific system is characterized by a given external
potential vy(r). For example, for an Hy molecule, vy is the Coulomb potential of the
two protons; for a graphite crystal, vy is the Coulomb potential of the periodic lattice of
carbon nuclei. As an important second statement, the HK theorem then establishes the

variational character of the energy functional
Ey[n] = (U[n]|T + T + Vo|T[n]) . (19)

Given a density n(r), the ground-state wave function ¥[n| and thus the value of the
functional E,,[n] are formally generated via the map B~!. By virtue of the Rayleigh-Ritz
principle, E,,[n] has the property

Eyln] > Ey for n(r) # no(r)

Eyn] = Ep for n(r) =mng(r) . (20)

As a consequence, the Euler equation

%(r) [Evo[n] - u/d?’r' n(r')] =0 (21)
can be used to calculate the exact ground-state density ng(r). This proves the second
statement made in the introduction.
Writing
Eupln) = Fln) + [dr n(x)uo(x) (22)

one observes that the dependence of F, [n] on the potential vy(r) of the particular sys-
tem considered is rather simple. The non-trivial part of the functional E, [n], i. e., the
functional

Fln] = (¥[n]|T + U|¥[n]) = T[n] + Uln] (23)

is independent of vg. In other words, the functional F[n| is universal in the sense that

F'[n] is the same functional for all Coulombic systems.



The three statements
(i) 1-1 correspondence between potentials and ground-state densities
(ii) the variational principle (21) and
(iii) the universality of the functional F[n]
comprise the HK theorem in its original form.

One problem in the original formulation of HK is the fact that the functional E,[n] is
defined (by construction) only for those functions n(r) that are ground-state densities of
some potential (such functions n(r) are called v-representable). An extension of the func-
tional E,,[n] to arbitrary functions n(r) is provided by the constrained-search formulation
of Levy and Lieb (Levy 1979; Lieb 1982, 1983, 1985).

The variational principle of HK allows us to determine the ground-state density of a
given many-electron system. Kohn and Sham (1965) established a scheme which yields
the exact ground-state density via an intermediary orbital picture. In order to derive
this scheme, let us first consider a system of non-interacting electrons with density ns(r),
characterized by the Hamiltonian

A ~ 2 2 ~
=3 /d?’r b (r) (-h v +U8(r)> Dolr) (24)

o] 2m

The HK theorem (applied to the case U = 0) guarantees the 1-1 correspondence between
the densities n,(r) and the potentials vs(r). While the functional F[n], Eq. (23), is univer-
sal with respect to the external potential vy, it evidently depends on the particle-particle
interaction U. For the particular case U = 0, F'[n] reduces to the kinetic-energy functional

Ts[n] of non-interacting particles, and the total-energy functional can be written as
B ] = Tl + [’ n@)o.) (25)

The HK variational principle (21) then reads

_ d non—int _ 37,1 n I_I
0 = g |FE = [ nie)
0Ts[n]
577,(1‘) + Vs (I‘) — K . (26)

Eq. (26) provides an exact way of calculating the ground-state density ny. Alternatively, we

can of course calculate the exact ground-state density by solving the Schrodinger equation

2%72
(—ZZ +%@0¢ﬂﬂ=?ﬁﬂﬂ (21)

ns(r) = Y leimP (28)

lowest NV

The two ways of calculating ng, either from (26) or from (27), (28), are completely equiv-

alent.



Now we return to the problem of N interacting electrons moving in the potential v(r).

The HK energy functional then reads
Ey[n] = Tln] + Uln] + / $r(r)o(r) . (29)
By addition and subtraction we can write

Ev[n] = TS ]

+ /d?’rn /d3 /d“TL‘) ve[n] (30)

where the xc-energy functional is defined as

Byen] = Tln] = Ty[n] + Uln] — /d3 /d3’ r_( r) (31)

r|
As before, Ts[n] is the kinetic-energy functional of non-interacting particles. Application

of the HK variational principle (21) now yields

0Ts[n] 9 [ .3, n() 0Eg[n]\
on(r) T (”“He /d i —1] * on() >_“ : (32)

Eq. (32) is formally identical with the Euler equation (26) of non-interacting particles

moving in the effective single-particle potential

on(e) = o)+ [ 2L ofult) (33
with
_ 0Egc[n]
Vze[n](r) = () (34)

As emphasized above, Eq. (26) and Egs. (27), (28) are completely equivalent methods of
calculating the density. Therefore, instead of using Eq. (32), we can calculate the exact

ground-state density via the single-particle Schrodinger equation

272
(< 0 510 = 5050 (39

n(r)= > lemf . (36)

lowest N

These are the Kohn-Sham (KS) equations. The proof shows that the KS theorem is merely
a tricky way of rewriting the HK variational principle.
Having found a self-consistent solution of the KS equations, the kinetic energy T[n]

can be calculated from
2¢72
T = ;/df”w;(r)( ZZ)M)
= 3 [ e (e - vlnlr) o5@)
J

e /d?’rn(r)vs[n](r) . (37)
J



Insertion in Eq. (30) leads to the following exact representation of the ground-state energy:

N 2 !
Ey = ZEj - % /d?’r/d?’r' 7n|(:)n(r)
j=1

— 1|
= [ ne)oaddnlw) + Bcln] (38)

By virtue of Eq. (37) the non-interacting kinetic energy functional Ts[n] is treated ezactly

within the KS scheme; only the xc part F,.[n] of the total functional
2 /
Fln) = Ty[n] + Bueln] + 5 / &r / &' 7"|(r)"(f|) (39)
r—r

needs to be approximated. Direct use of the HK variational principle (21), on the other
hand, requires approximations of Ts[n]| as well. The Thomas-Fermi model and its exten-
sions fall in this category [for a review see chapter 5 of Dreizler and Gross (1990)]. The
approximations of T,[n| employed in these models seriously reduce the accuracy of the re-
sults. It is therefore preferable to use the KS scheme for practical calculations although, on
the exact level, the HK variational principle and the KS scheme are rigorously equivalent.

One has to emphasize that the ground-state Slater determinant constructed from the
KS orbitals ¢; must not be interpreted as an approximation of the true many-particle
ground state. Only the densities calculated via the KS scheme and the total energies
obtained from (38) are identical with the exact ground-state densities and energies.

We finally mention that the traditional HK and KS theorems are easily extended to
a wide variety of cases of physical interest including spin-polarized systems (von Barth
and Hedin 1972; Rajagopal and Callaway 1973), orbital currents (Vignale and Rasolt
1987, 1988), multi-component systems (Sander et al. 1973; Kalia and Vashishta 1978),
thermal ensembles (Mermin 1965) and relativistic systems (Rajagopal and Callaway 1973;
Rajagopal 1978; MacDonald and Vosko 1979; Ramana and Rajagopal 1983).

Until now we have proved some rigorous but rather formal existence theorems. It might
appear that density functional theory is a rather esoteric theory with few applications.
This is by no means the case; in solid-state physics, at least 95 % of all band structure
calculations are done with the KS scheme described above. In order to actually apply the
KS formalism to real systems one has to find adequate approximations of the xc-energy

functional.
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3 Approximate exchange-correlation functionals in normal-
state density functional theory

3.1 The local density approximation

The most widely used and for many purposes surprisingly accurate approximation of the

xc energy functional is the local density approximation (LDA)
BEPA ) = [dr el (nfx)) (40)

which leads to

5ELDA d hom
UchA TL] (I‘) — xc [n] — Cxc (n) (41)
on(r) dn nn(r)
ehom(n) is the xc energy per unit volume of the homogeneous electron gas which is well

known from Quantum Monte Carlo calculations and from many-body perturbation the-
ory. The analogous approximation for spin-polarized systems is the local spin density

approximation (LSD)

BEPlnmy] = [ dr b (na (1), my () (42)

where

ne(r)= Y lew(®) . o=t . (43)

occupied
In practical calculations one uses parametrizations for e’;gm. Currently the best parame-
trizations available are the ones by Vosko, Wilk and Nusair (1980) and by Perdew and
Zunger (1981).

By its very construction, one might expect the LDA to give good results only for
weakly inhomogeneous systems, i. e., for systems whose density varies very slowly in space.
However, contrary to this expectation, the LDA performs quite well even for strongly
inhomogeneous systems such as atoms, molecules and solids. Total atomic and molecular
ground-state energies typically lie within 1.5 % of the experimental value. Molecular
equilibrium distances are usually reproduced within 3 % of the experimental data. The
Fermi surface of metals is reproduced within a few percent, even for strongly correlated
systems such as the heavy-fermion metals. Lattice constants are typically within 3 % of
experimental data.

Other quantities such as the band gaps of insulators and semiconductors are not well
reproduced. LDA band gaps are often 40 % off the experimental value. The reason for
this failure is a complicated one: While, on one hand, the band gap is an excitation energy

(and therefore beyond the realm of ordinary ground-state density functional theory), it

11



may on the other hand be expressed as the difference between the ionization potential I

and the electron affinity A:
Egjpp=1—-A=Eu(N+1) —2Ey(N) + Ege(N —1) . (44)

Here, E4,(N) is the ground-state energy of the insulating N-particle system, and Ey,(N =+
1) is the ground-state energy of the same system [i. e., the same vy(r)] with one electron
more or less, respectively. Thus the band gap can be represented in terms of ground-state
energies corresponding to systems with different particle numbers. A careful analysis shows
(Perdew et al. 1982; Perdew and Levy 1983; Sham and Schliiter 1983; Perdew 1985; Sham
1985; Sham and Schliter 1985; Hanke et al. 1985; Kohn 1986; Perdew 1986a) that the

exact

cractp](r) has discontinuities as a function of the particle number N.

exact xc potential v
In the calculation of the band gap from (44), these discontinuities need to be taken into

account. One obtains the exact formula [see, e. g., Dreizler and Gross (1990), chapter 6.3]

N_5> (45)

where ey is the highest KS orbital energy of the valence band while e¢ is the lowest KS

Egap =éec—¢evt 61im ('Uacc

-0
—0t N+46 re

energy of the conduction band. Since vEZP4 is a continuous function of N, the last term
of (45) vanishes within the LDA and the gap is poorly reproduced.

Besides that, strongly correlated systems such as LasCuQO4 and the transition metal
oxides are predicted to be metals in LDA while, in reality, these materials are antifer-
romagnetic insulators or semiconductors. One might be tempted to conclude that, by
its very nature, the KS scheme, being a mean-field-type approximation, cannot describe
strongly correlated systems. At this point one has to emphasize that the KS scheme is
not a mean-field approximation. As a matter of principle, the KS scheme is exact. The
fact that strongly correlated systems are not properly accounted for is entirely due to the
crudeness of the LDA. An adequate description of strongly correlated systems calls for
better functionals.

The LDA is deficient mainly in two respects: (i) Nonlocalities are completely neglected
in the LDA, i. e., the xc potential at point r is entirely determined by the density at the
very same point r. The systematic incorporation of nonlocal effects is possible via the
so-called density-gradient expansion which will be discussed in section 3.2. (ii) The LDA
total-energy functional contains a self-interaction error arising from the fact that the self-

Coulomb energy contained in

e? n(r)n(r’
Eyln] = 5 / d*r / d*r! 7|(r )_ §,|) (46)

. As a consequence, vLP4

xrc

is not cancelled exactly by ELPA (r) falls off exponentially for

xre

large r while v€%9¢t falls off as —% for neutral atoms and molecules. Self-interaction

12



corrected (SIC) functionals will be discussed in sections 3.3 and 3.4. It will turn out that

even strongly correlated systems can be described quite well with SIC functionals.

3.2 Density-gradient expansion and generalized gradient approximation

A way of systematically including inhomogeneity corrections to the LDA is the density-
gradient expansion. The latter can be constructed for the functionals Ts[n|, E;[n] and
E.[n].

The common starting point for the gradient expansions of Ts[n] and E,[n] is the one-

particle density matrix
Y eimei(r) (47)
Jiej<ep

calculated from the solutions of the single-particle Schrodinger equation

272
(—ZZ +Us(r)> pj(r) = €jpi(r) . (48)

For simplicity we consider only the case of even particle number and vanishing spin polar-
ization, so that each orbital below the Fermi level in (47) appears twice, once for spin-up
and once for spin-down. With the help of the so-defined density matrix which, according
to the HK theorem, is a unique functional of the ground state density n(r), the kinetic

and exchange energy functionals are readily expressed:

h2
Ti[n] = 2m /d37ﬂ [Vr - Vprys(r, rl)]r:r’ (49)
3 3,1 |75 r,r')
E, [TL /d /d |I‘ _ I"| ’ (50)

Thus, any approximation of the density matrix ~;[n] leads directly to approximate func-
tionals for Ts[n] and Ey[n].

The construction of the gradient expansion then basically consists of three steps:

1. Starting point is a semiclassical expansion (i. e., an expansion in powers of %) of the
density matrix (47). This leads to an expression for the density matrix in terms of

the local chemical potential
u(r) = - v, (x) (51)
and its derivatives:

Vs = Vs (u,f?m,ajaku, : ) : (52)

For normal-state systems, Eq. (52) only contains even powers of /i (Grammaticos and
Voros 1979). Such a semiclassical expansion has first been systematically performed
by Kirzhnits (1957, 1967); his technique, however, cannot readily be applied to the

superconducting case. In section 5 we shall therefore choose a slightly different

13



approach to the problem that goes back to the work of Baraff and Borowitz (1961)
and start with a semiclassical expansion of the one-particle Green’s function for a

non-interacting system; from there we calculate the density matrix.

2. In the next step, one determines n(r) from the diagonal of the density matrix (52).
The functional n[u] is then inverted consistently up to the same maximum order in

h. This yields an approximation of the functional y[n](r):
= u(n, oin, 0j0kn, .. ) . (53)

3. Finally, this expression is inserted in Eq. (52). In this fashion, one obtains approx-
imations of the density functional vs[n] and hence, by (49) and (50), also for the
functionals Ts[n] and Ey[n].

One ends up with the following results:

Tyln] = TOM) + TP[n] + ...
2(q2\2 2 2
= M/d?’rn% + h /d37" (Vn) + ... (54)
10m 2m n

Ey[n] EOn] + EP[n] + ...

L 2 2
_ 3 (i)gez/d?’rn% S Ca /d3r Vn)” _ . (55)
4 \7 432 (372)3 ns

Ts(o) and Eg(co) are identical with the functionals first introduced by Thomas (1927) and

Fermi (1928) and by Dirac (1930), and T has the same functional form as the traditional
von Weizsécker functional (von Weizsdcker 1935). The calculation of EY [n] involves the
introduction of convergence factors (Sham 1971; Gross and Dreizler 1981) which is some-
what problematic. Recent recalculations of the second-order exchange energy functional
by Kleinman and collaborators (Kleinman 1984; Antoniewicz and Kleinman 1985; Klein-
man and Lee 1988), Chevary and Vosko (1988) and Engel and Vosko (1990) have shown
that B [n] should be corrected by a factor of 2.

The calculation of the first gradient term of the correlation energy functional has
turned out to be an extremely difficult task. Many authors contributed to its calculation
(Ma and Brueckner 1968; Rasolt and Geldart 1975, 1986; Geldart and Rasolt 1976, 1987;
Langreth and Perdew 1975, 1977, 1979, 1980, 1982; Langreth and Mehl 1981, 1983; Hu and
Langreth 1985, 1986) employing methods which are usually different from the semiclassical

expansion described above. The analytic structure of this term is as follows:

BP0 = [ f (nte)) SO (50

14



The function f(n) is fairly well known for densities in the range 0 < ry < 6, where r; is the
Wigner-Seitz radius. For a comparison of different results for f(n), the reader is referred
to Dreizler and Gross (1990), chapter 7.6.

The currently best functionals involving density gradients are the so-called generalized
gradient approximations (GGA) (Langreth and Mehl 1981, 1983; Hu and Langreth 1985,
1986; Becke 1986, 1988; Perdew and Wang 1986, 1992; Perdew 1986b, 1991; DePristo and
Kress 1987; Vosko and MacDonald 1987; Lee et al. 1988; Wilson and Levy 1990; Engel et
al. 1992; Engel and Vosko 1993a, 1993b) which can be viewed as heuristic resummations
of the gradient expansion.

As examples we give here the exchange energy functional of Becke (1988)

ey = —Agn? |1 - b v (57)
e ¢ 2134, 1+ 68 zsinh™!(z)
1/3
where x = 21/3|Vn|/n*/3, A, = %(%) / and 8 = 0.0042, and the correlation energy
functional of Lee, Yang, and Parr (1988)

_ a -2/3 5/3 1 v? ~1/3

where

2
tw = % (M - Vzn) : (59)

n
and Cp = 3/10(372)%/3, a = 0.049, b = 0.132, ¢ = 0.2533, and d = 0.349.

Table 1 shows total atomic ground-state energies of the first-row atoms. The results of
self-consistent KS calculations with the Becke-Lee-Yang-Parr (BLYP) functional resulting
from adding Egs. (57) and (58), and the GGA by Perdew and Wang (PW91) (Perdew
1991; Perdew and Wang 1992) are given together with LDA results (Perdew and Zunger
1981; Norman and Koelling 1984). Comparison with the exact values of Davidson et al.
(1991) given in the last column of Table 1 shows that the GGAs lead to a considerable
improvement over the LDA. For the LDA the mean absolute deviation A is 384 mH while
for the two GGAs one finds 10.8mH and 11.4mH, respectively.

In a recent study of all 32 neutral molecules that can be formed from H and the first-row
atoms, Pople and coworkers (Gill et al. 1992; Pople et al. 1992; Johnson et al. 1992, 1993)
found that the KS scheme combined with GGAs for the xc energy functional outperformed
some of the traditional methods of quantum chemistry: For the above molecules, the mean
absolute deviation of the atomization energies from experimental values was 5.6 kcal/mol
for the BLYP functional as compared to 85.9 kcal/mol for Hartree-Fock and 22.4 kcal/mol

for second-order Mgller-Plesset theory.
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In all systems investigated so far, the GGAs performed at least as well as the LSD
(Engel et al. 1992; Zhu et al. 1992; Miehlich et al. 1989; Juan and Kaxiras 1993) and in
most systems much better than the LDA.

We finally mention that the GGA potential of Engel and Vosko (1993b) was found to
correctly predict FeO and CoO as antiferromagnetic insulators (Dufek et al. 1994).

3.3 SIC functionals

In spite of their impressive accuracy for ground-state energies, the GGAs are still deficient
regarding the self-interaction error. As in LDA, the correct —eT—Q tail of ve2%¢ is not
reproduced by the GGAs. As a consequence, negative ions are usually not bound so that
electron affinities cannot be calculated. Various approaches to self-interaction corrected
(SIC) functionals have been proposed (Perdew 1979; Perdew and Zunger 1981; Dobson and
Rose 1982; Dobson 1991, 1992, 1993). So far, most calculations have been performed with
the SIC functional of Perdew and Zunger (1981) which is constructed as follows: Given an
approximate (not self-interaction corrected) xc energy functional ESPPTO% a self-interaction

corrected functional is defined by

E3Cng,ny) = EWP%[ng n]

— Y (Bnlnig] + EZP%[ng4,0))

i

= > (Balny] + EZ2P7[0,n4,]) (60)

i

with Eg[n] given by Eq. (46) and
nig (r) = pio(r)? (61)

This functional predicts electron affinities rather successfully (Cole and Perdew 1982)
if Eaprror — ELSD A difficulty of E5!C arising for solids is that the self-interaction
correction vanishes if Bloch states are used in Eq. (61). This problem can be circumvented
if the self-interaction correction to the total energy is expressed in terms of Wannier
functions. Periodic SIC potentials for the Bloch states are then derived variationally from
the energy functional (Harrison et al. 1983; Heaton et al. 1983).

Another drawback of the above SIC functional is the fact that the single-particle po-
tential appearing in the SIC-KS equations is a different one for each orbital. Projection
techniques have been proposed (Heaton et al. 1983; Szotek et al. 1994) to remove this
formal ugliness.

SIC functionals have proven to be very successful, even in the description of strongly
correlated systems: MnO, FeO, CoO, NiO, and CuO are correctly predicted to be antifer-

romagnetic insulators while VO is properly predicted to be a nonmagnetic metal (Szotek
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et al. 1993; Svane and Gunnarson 1990), The calculated band gaps and magnetic mo-
ments are in good agreement with experiment. Apart from the transition metal oxides,
LagCuOy is correctly predicted to have an antiferromagnetic semiconducting state. The
band gap of 2.1 eV and spin magnetic moment of 0.66 yp compare favourably with ex-
periment (Temmerman et al. 1993). Most recently, the SIC functionals were also found
to give a successful description of the v — « transition in Ce (Szotek et al. 1994; Svane

1994).

3.4 Optimized potential method

The conventional density functional approach to the calculation of many-electron ground
state properties involves approximations of the xc energy Fy.[n] as explicit functionals of
the density n. The xc potential is then defined as functional derivative of F,., see Eq. (34).
However, there exists an alternative approach within the framework of density functional
theory, the so-called optimized potential method (OPM) first suggested by Sharp and
Horton (1953) and later refined by Talman and Shadwick (1976). In contrast to Eq. (30),
the total energy

2
E°™[p1...pN] = /d37“ @5 (r ( h v2> pj(r +/d37“n v(r)
- / ar [ % + Egelor - on] (62)

is now written as a functional of N single-particle orbitals {¢;(r)} resulting from a Schro-

dinger equation with a local effective potential:

2¢72
(—ZZ +vs<r>> 03(r) = ejei(r) (63)

The optimized effective potential, v°*™(r), is determined by requiring the orbitals to be

the ones that minimize the energy functional (62). The stationarity condition

5EOPM
305 (r)

leads to the following integral equation for an optimized xc potential:

! OPM / Py 5Exc[(p1...
Z/dg l )@j(r)—w

=0 (64)

vs=pOPM

Z‘pk f’zi r) + cc.=0 (65)

where

vOPM(r) = 0O (r) — (r) — e /ﬁ’”() . (66)

& —r'|
We emphasize that from a fundamental point of view the total-energy functional (62) is

identical with the energy functional (30) of conventional density functional theory: By
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virtue of the HK theorem the orbitals {¢;} are functionals of the density n so that

Eyn] = B [{gjnl}] - (67)

In other words, the orbital functional (62) is an implicit density functional. If the (un-
known) exact xc functional were used in Eq. (62) then the optimized effective potential
determined by Eqs. (65) and (66) would be the exact KS potential. Any approximation
of E,. used in Eq. (62), on the other hand, leads to an approximate KS potential.

There are three non-trivial density functionals contributing to the total-energy func-
tional (30): the non-interacting kinetic-energy functional Ts[n|, the exchange part F.[n]
and the correlation part E.[n] of E,.[n]. If Ti[n] is approximated by the gradient expan-
sion (54) one obtains the Thomas-Fermi model and its extensions. The transition from
Thomas-Fermi to modern KS theory is equivalent to replacing the approzimate functional

(54) by the ezxact orbital representation

2v72
Te:cact /d3,r- (Pj <_ h2'rvn, > ©j [n] (I‘) . (68)

The transition from standard KS theory to the OPM can be viewed in much the same

way: While in ordinary KS theory the exchange-energy functional is approzimated by LDA
or GGA-type functionals [see Eq. (55) and Eq. (57)], the OPM employs the ezact orbital
representation

Ega:act _ _% i U,Jj /d3T/d37‘I ©; [n](r')(Pj[n](r’)‘Pi[n](I‘)(P; [n](r) . (69)

v —r'|

M is manifestly self-interaction free. Of course, the correlation part

As a consequence, vQ"
E.[n] still has to be approximated, but even for E.[n] the representation in terms of orbitals
allows more flexibility in the construction of approximate functionals. In particular, v9;™
is currently the only approximate xc potential featuring the required discontinuities as a
function of the particle number N (Krieger et al. 1992).

The full OPM, however, has a serious drawback: The solution of the integral equation
(65) is numerically very involved. Recently, Krieger, Li, and Iafrate (KLI) (1992) proposed
an approximate analytical solution of the integral equation (65), in which v2;™(r) is es-
sentially obtained from the solution of a linear (N x N) equation. They also showed that
in the x-only case the results of the KLI approximation are nearly identical with those
of the exact OPM (Talman and Shadwick 1976; Norman and Koelling 1984; Engel et al.
1992; Engel and Vosko 1993a, 1993b). In addition, the KLI approximation preserves all
of the important advantages of the exact OPM, such as the correct asymptotic —i—2 decay

of UOPM( )

and the discontinuities of vor M(r) as a function of the particle number.
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The OPM in the KLI approximation has recently been applied (Grabo and Gross 1995;
Gross et al. 1996) using a correlation energy functional developed by Colle and Salvetti
(1975, 1979). The resulting atomic ground state energies are given in Table 1. The mean
absolute deviation of A = 4.7mH is much better than for the GGAs; in fact, the accuracy
is comparable with recent CT results (A = 4.5mH).

To summarize our overview up to this point, the existence theorems of HK and KS
are fairly easy to prove. The harder part of density functional theory is the construc-
tion of appropriate approximations of the xc functional. Even for the simplest possible
approximation, the LDA, a lot of theoretical work on the homogeneous electron gas was
involved: One needs the high-density limit first treated by Gell-Mann and Brueckner
(1957), one needs the low-density limit known as the Wigner crystal (Wigner 1934, 1938)
and, for the intermediate density regime, quantum Monte Carlo computations (Ceper-
ley and Alder 1980) and/or many-body perturbation theory beyond RPA (Bishop and
Lithrmann 1978, 1982) is required. Finally, all these data have to be put together in a
reliable parametrization (Vosko et al. 1980; Perdew and Zunger 1981). The construction
of functionals containing gradients of the density is even harder as can be seen from the
long list of papers quoted above. However, once a reliable approximation of F;.[n] has
been found, the numerical implementation of the KS scheme is rather simple, at least
in comparison with other methods such as CI or diagrammatic many-body techniques.
The crucial advantage of density functional theory is its numerical simplicity, allowing the
treatment of large inhomogeneous systems for which the traditional methods of quantum

chemistry are prohibitively time-consuming.

4 Hohenberg-Kohn-Sham formalism for superconducting
systems

Let us now consider the grand canonical Hamiltonian for a superconducting system cou-
pled to an electron reservoir with fixed chemical potential ;4 and subject to the external
potentials veyt(r) and Deg(r,r’). The Coulomb potential ve,¢(r) is caused by the ions
of a crystal lattice, and the complex pairing potential Dy (r,r’) can be viewed as being
induced by the proximity of an adjacent superconductor. In second quantization, the

Hamiltonian reads as follows:

H o= T+0+W+ X [dr (earle) = w)d} )6 ()
o=t}

= [ [ @ (Drpy(e "1 (0)94") + Dearle, )6 . (70)
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where T' and U are given by Eqs. (2) and (4), respectively, and

W= = [dr [d [drs [ a3l el thrn )by e)dy) (71)
denotes a phonon-induced electron-electron interaction (written in its general, completely
nonlocal form). As a special case we mention the well-known BCS interaction which

depends only on the relative coordinates and a typical phonon frequency wp:

d3 d3 1 —r iq(rs—r
wpcs(ry — T2, T3 —T4) = / (2753/ (271_1)73 eldr—r2)gialrs—ra)y, (72)
with L 1o s
w. =4 A f Sl — | < hwp and  |FE- — p| < hwp (73)
» 0 otherwise.

The HK theorem for superconductors is now formulated (Oliveira et al. 1988) analogously
to the theorem for normal-state many-electron systems discussed in section 2. In addition

to the normal ground state density
n(r) = Y (BL(r)ds(r)) (74)
we need the anomalous density

A(r,x') = (hr(r)y () (75)

whose diagonal A(r,r) is identical with the order parameter of the Ginzburg-Landau the-
ory (Ginzburg and Landau 1950) (in the appropriate limits). The HK theorem states that
there exists a one-to-one mapping between the pair of ground state densities [n(r), A(r,r’)]
and the pair of potentials [veyt(r) — ity Degt(r,1')]. Therefore, the ground state expectation
value of each physical variable can be written as a functional of the two densities. As
in the normal-state case, a variational principle can be established which states that the

exact ground state densities are obtained from the Euler-Lagrange equations

0E[n,A]
dn(r) =0 (76)
and
0E[n,A]
A (rr) (77)

with suitable boundary conditions, where
2 /
Bln, Al = Tn &) + [@r (o) — ) + 5 [dor [ %
— /d3r/d3r' (D}, (v, )A(r,r') + Dege(r,v')A*(r, 1))

- /d?’rl/d?’ri/d?’?“z/d?’ré A*(ry, ) w(ry, vh, v, v5) A(ra, v5) + Epe[n, Al . (78)
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Here, T5[n,A] is the functional of the kinetic energy of a non-interacting system with
densities n and A, and the xc energy functional E,.[n,A] is formally given by
Fyeln, A] = Fln, A] /d3 /d3 '%
r—r

+ /d3r1/d3r1/d3r2/d3r2 A*(ry, ) w(ry, ), v, 1) A(ra, h) — Ts[n,A] . (79)

The universal functional F[n, A] is defined in analogy to Eq. (23).

Following the normal-state KS formalism (section 2) in making the assumption of
non-interacting v-representability, the calculation of the densities can be performed via
construction of a non-interacting system with effective potentials vs(r) and Ds(r,r’) which
yields the same densities n(r) and A(r,r’) as the fully interacting system described by the
Hamiltonian (70). One can then establish a set of single-particle equations for the non-

interacting system:

<_ 527: + US(I') - M) uk(r) + /d?’T'I Ds(r,r')vk(r') = Ekuk(r) (80)
2v72
B <_ héZ + Us(r) - :U'> Uk(r) + /d37"l D:(r,r')uk(r') = EkUk(I‘) . (81)

In terms of the particle and hole amplitudes, ug(r) and vg(r), the densities are given by

= 22 |uk (r)|20(—Ey) + ok (r) [20(Ex)] (82)

Z[Uk O(Er) — vi(r)ur(r)0(—Ep)] (83)

where 0(E) denotes the usual step function (0 for £ < 0 and 1 for E > 0). The effective

potentials appearing in Eqgs. (80) and (81) are functionals of the two densities:

vs[n, A)(r) = vegzt(r) + € /d3 ! n( ) + vge[n, Al(r) (84)

Di[n, Al(r, ') = Dogi(r,1') + / dr / &l w(r, t', Ta, th)A(ra, rh) + Dyeln, Al(r,r') (85)

where
vaeln, Al(r) = % (36)
Dieln, Al(r, 1) = —% (87)

Since v; and Dy depend on the densities, the whole set of equations (80)—(87) has to be
solved self-consistently. Egs. (80) and (81) bear structural resemblance to the Bogoliubov-
de Gennes equations (de Gennes 1966), but — in contrast to the latter — include xc effects

in principle exactly.
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In superconductors most quantities of physical interest depend critically on temper-
ature. A finite-temperature version of the above ground-state formalism is easily es-
tablished (Oliveira et al. 1988) in analogy to the finite-temperature extension (Mermin
1965) of ordinary density functional theory. The structure of the self-consistent equa-
tions (80)—(87) remains the same at finite temperature; only the xc potentials (86) and
(87) depend on the temperature both explicitly through the functional and implicitly
through the densities which have to be calculated by substituting the Fermi distribution
f(E) =[1+exp(E/kpT)] ! for the step function §(E) in Eqgs. (82) and (83).

As in ordinary density functional theory, the construction of approximations of the
functionals involved is the crucial step on the way towards explicit applications. In the
following sections we shall investigate the gradient expansion for superconductors. We
restrict ourselves to the simplest possible case: the kinetic-energy functional T[n, A] at
zero temperature. In section 5, the semiclassical expansion required for the gradient
expansion is performed for the general case of complex-valued pairing fields. Real-valued
pairing fields have previously been treated by Taruishi and Schuck (1992). In section 6
the density-gradient expansion of Tg[n, A] is constructed from the semiclassical expansion.
The procedure is easily generalized to finite temperature. Explicit results for the gradient
expansion of the exchange-energy functionals of superconductors at finite temperature will

be presented elsewhere.

5 Semiclassical expansion for superconductors

5.1 Green’s functions for the non-interacting system

We consider a non-interacting system described by the single-particle Hamiltonian

Bo= X [erite (< o) i) dot

2m
o=1l
= [ [ ity )y + Do)l @E) - 69)

The system described by this Hamiltonian is superconducting due to the pairing potential
Dg(r,r’). The single-particle potentials vs(r) and Dy(r,r’) may but need not be the KS
potentials of a particular interacting system.

In the following we shall determine the normal and anomalous one-particle Green’s
functions corresponding to this Hamiltonian. For this purpose we need two commutator

relations:

4 vy(x) — u) Do (%) — a / &r Dy(r,x)i! (r) (89)

(%) — u) ta / & D, x)p_o(r)  (90)
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where

~{0 = )
Next we switch to the Heisenberg picture and use (89) and (90) to set up the Heisenberg
equations of motion for the field operators:

R*v?2
2m

it xt ) = (‘ +u,(x) - u) bolxthn — a [ dr Dy(r, il @ (92)

2v72

bty = bt (=

2m

+ vg(x) — ,u) + a/d3r DI (r,X)¢_o(rt)y . (93)

The normal one-particle Green’s function is defined as

oot (xct, X) = < (T (et )l (<) (99

where T denotes the usual time-ordered product

T[A(t)B(t’)]z{ e A (95)

It is easy to see that G,o (xt,x't") = 0,5 G(xt,x't') where
Gt %'t) = (T (et (<) = - (T ehud{ 0Dy - (96)
We then define the anomalous Green’s functions as:
Floxt, K¥) = (Tl (), () (o7)

Fi(xt, x't') = %(T[zﬁj(xt)l{@(x't')}l]) . (98)

In order to obtain equations of motion for the Green’s functions given above we have to
compute their derivatives with respect to time. Expressing the time-ordered products in

terms of the step function (¢ — ¢'), we find

2 Gt %) = 18(t — #)6(x — ) + 1 (T (et )] (99)
SO, xt) = (¢~ )60k ) — LTS Fb ) (100
o Flxt,xt) = LTI (x0)y (H)) (101)
o P et X)) = (T Get) (1)) (102

where we have used the anticommutator relations for fermionic field operators. Here and
in the following, the index “H” denoting the Heisenberg picture is dropped for notational

simplicity.
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We now insert the equations of motion (92) and (93) into (99)-(102) and are thus led

to a set of four coupled equations for the Green’s functions:

22
(ih% — (— ZZ + vs(x) — u)) G(xt,x't") —/d?’rDS(r, x)Fl(rt,x't") = ho(t—t")6(x —x')
(103)
22
— (zh% + (— ZZ + vs(x) — M)) g(x't’,xt)—/d?’rD:(r,x)f(rt,x't') = hé(t—t")6(x—x")
(104)
22
(z’h% - (— hZTZ + vs(x) — ,u)) F(xt,x't") + /d3r Dy(r,x)Goo (X't rt) =0 (105)

ot 2m

In the next step we make use of the fact that the Hamiltonian (88) is manifestly indepen-

22
(iﬁg + (—h v + vy(x) — ,u)) Fl(xt,x't') - /dgr Di(r,x)Goo (rt,x't') =0 . (106)

dent of time. Hence the Green’s functions G and F can be shown to depend only on the

difference (¢ —t'), and we can go over to the Fourier representation

G(x,x,w) = / d(t — 1) ex =g (xt, x't') (107)
with the inverse
G(xt,x't') = / d—we_%w(t_tl)g(x x w) . (108)
) 27'('7], ) )

It should be noted that here and in the following, w always denotes an energy (rather than

a frequency). Fourier transformation of the relations (103)—(106) leads to

2v72
<w - <_ h2’rvn + Us(x) - M)) g(x,x',w) - /d3’1“ Ds(r, x)?T(raxlaw) = h(S(X - X,) (109)

272
- (w + (— ZZ + vs(x) — M)) G(x',x,—w) — /d37‘ Di(r,x)F(r,x',w) = hé(x — x')
(110)
2\72
(w o <_h > + Us(x) o M)) f(X,XI;w) + /d3,r. Ds(r,x)g(x’,r, _w) =0 (111)

2m

h*V?
<w + <— 2 + vs(x) — u)) Fl(x,x',w) — /d3r Di(r,x)G(r,x',w) =0 . (112)

m
In the following it will turn out to be favourable to write Egs. (109)—(112) in a compact
matrix form. For this purpose we define the two-dimensional Green’s function (Nambu

1960) as
G(x,x',w) F(x,x',w)
G(x,x,w) = , (113)
Fhx,x', w) —G(x',x, —w)
and with the substitution
h2v?

hx) = =%+ uy(x) — g (114)

and the two-dimensional unit matrix I we finally obtain
d(r — x)(w — h(r)) —Dy(r,x)
/d3r G(r,x,w) = FIs(x —x') . (115)
—D¥(r,x) O(r —x)(w + h(r))
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5.2 The Wigner transformation

As mentioned in the introduction, it is favourable to choose the mixed representation
A(R, p) for the superconducting order parameter, i. e., the Wigner transform of A(r,r').
This will eventually allow us to calculate the density-gradient expansion of Tg[n,A] in

systematic manner. With the coordinate transformation

/
R:r;r s=r—r (116)
and its inverse
R+ > r=R-> (117)
TERTY - T

it follows that each quantity depending on r and r’ can alternatively be written as a

function of R and s:

f(r’r,) = f(I‘(R, S),I‘I(R, S)) = f(R7 S) . (118)

For simplicity we use the same symbol, f, for the function f(r,r’) and the function f(R,s).

The Wigner transform (Wigner 1932) of f(R,s) is defined as the function

fu(R,p) = /d3se%PSf(R, s) . (119)

The inverse transformation is

3 .
fRs) = [Gbs e ity ®op) (120)

In this context, two relations can be shown to hold:

/d3 /d3r'frr /d3R/d3szs (121)

/d3 /d3r' f(r,r)g(r,r) /d3R/ (R, +p)gw (R, Fp) - (122)
In the following we shall express the total-energy functional (78) in terms of the Wigner-

transformed densities. For this purpose we make use of some properties of the pairing

interaction and the order parameter: The hermiticity of (71) requires that
w(ry, ], T, 15) = w*(rh, ra, vy, 1) (123)
and spin isotropy implies
w(ry, ], ra,15) = w(ry,ry,rh re) . (124)
Gross and Kurth (1991) have shown that
A(r,r') = A(r',r) (125)
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Demt(r, rl) = Deaf:t(rla I') . (126)

The corresponding relations of the Wigner transforms are

AW(:R'a p) = AW(:R'a _p) (127)
Demtw(Ra p) = -Dea:tw (Ra _p) (128)
we(R,p,R',p') = we(R, —p,R’, —p) (129)
wy (R,p,R’,p') = we (R, 0, R, D) (130)

where wy (R, p,R’, p’) stands for a double Wigner transform:
wy(R,p, R, p') = /d33/d33' ¢ APSciP’ SIU)(R,S,RI,SI) . (131)

The formulas given above enable us to express the energy functional (78) by transformed
quantities. From now on we shall suppress the index “w”; the Wigner transform is implied

by the arguments (R,p). We thus obtain
Eln, A] = Ty[n, Al +/de (R) = w)n /d3R/d3R'“ R)
o« 2 R — R’ |

-/ 33/ dp * (R, D)AR, p) + Dear(R, p)A*(R, )

- Jerfg

The Hohenberg-Kohn variational principle is also valid for variations with respect to the

d3 !
/ 3R’/ (%2)3 A*(R,p)w(R,p, R, p') AR/, p') + Epc[n, A] . (132)

densities n(R) and A*(R,p); inserting (132) in (76) and (77) we find the following two

variational equations:

75@&?] — jt — Vegt(R) — €2 / &R ‘I: (i)t’l - M?;&“ﬁﬁ] (133)

0Ts[n, A d3p’
(2wh)3m = Deal®p)+ [PR [ wR.p R p)AR.P)

30E;c[n, Al

— (27h) 5A*(R.p)

(134)

The two equations above represent a central result of the density functional theory for
superconductors in the Hohenberg-Kohn version. They are a pair of coupled integral
equations whose solution would yield the ground state densities in principle exactly if the

precise form of the functionals Ts[n, A] and E.[n, A] were known.
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5.3 Method of the semiclassical expansion

If the Wigner transformation is applied to a product of two operators in coordinate rep-
resentation, say

/d?’x' A(x,x")B(x',x") = C(x,x") , (135)

one ends up with

A[AR,p), B(R',p')] =C(R,p) , (136)

where the operator A is defined as

A[A(R,p), B(R',p')] =
ih
= lim exp —%(VR-VPI—VP-VR/) AR,p)B(R',p) . (137)

R/—R
p'—p

The above formula is an original result of Theis (1955), a detailed derivation can be found
in the work of Baraff and Borowitz (1961). We shall now apply this formula to our problem:

Defining

MR.p) = L0 (R)— i (138)

we obtain the Wigner transform of Eq. (115) in compact matrix form:

A[(wI - H(R,p)), G(R',p',w)] =1l (139)
with
G(R,p,w) F(R,p,w)
G(R,p,w) = (140)
fT(Ra b, w) _g(R7 -b, _w)
and

hR,p)  Ds(R,p)
H(R,p) = . (141)
D:(Ra p) _h’(Rvp)

We note from (137) that the operator A can be written as a series in powers of /i, where
the orders of % correspond to the degree of the derivatives of the quantities acted on by
A. In other words, the Wigner transform of an integrated product consists of the product
of the individual Wigner transforms (i. e., the lowest order term of A in #) plus products
of derivatives of the Wigner transforms (i. e., higher order terms of A). Symbolically we

can write the operator A in the form

. SNy Y ih J
A= ZOhJAj = Z% il Jim, [—5(VR -V — V- Vi) (142)
J= J= p'—p

and introduce a formal expansion of G in powers of A:

G(R,p,w) =h i G,(R,p,w)h" . (143)

n=0
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We now insert (142) and (143) into (139); separating the orders in 7, we find the following

series of equations:

Ao[(wI-H(R,p)),Go(R,p",w)] = 1 (144)

k
> Aj[(wI-H(R,p)),Gy_;(R',p',w)] = 0 fork>1 . (145)
i=0

In principle we are now able to determine the solution for G in any order of h, starting with
the zeroth order from Eq. (144) and successively calculating the higher orders with (145).
Two remarks should be added, however: first, the computational effort involved is very
large, even for low orders. On the other hand, we have to keep in mind that our final goal
is to develop a gradient expansion for the kinetic energy out of the series representation for
the Green’s functions. Although there are no rigorous mathematical statements available
on the structure of gradient expansions, it is nevertheless known (Dreizler and Gross 1990)
that they exhibit the behavior of asymptotic series and therefore cannot be expected to
converge; truncation after a few terms, however, normally leads to remarkably good results.

In this paper we take the expansion up to second order in 7, i. e., we calculate Gy,
G1 and Gga. From (144) and (145) the explicit relations used to determine the Green’s
functions can be written as

(I —H)Go =1 (146)

(L~ H)Gy — L { Va(wl — H) -V, Go — Gyl ~ H) - VpGo} =0 (147

(Wl — H)Gy — %{VR(wI —H) - V,G1 — Vp(wl — H) - V;G1 }

1 3
8 < {812%Rk(w1 - H)agikaO + a;gipk(“’I - H)a?ziRkGO
ik—1
— 20, (wI — H)QﬁmkGo} —0 . (148)

5.4 Calculation of the densities from the Green’s functions

Before we start to explicitly compute the semiclassical expansion of the Green’s functions,
we have to think about how to obtain from them the quantities we are interested in: the
densities n(R) and A(R,p) and the kinetic energy density ¢;(R). Essential for n and t; is

the Wigner transform (R, p) of the density matrix, as can be seen from the expressions

3
n(R) =2 [l o(Rup) (149
and 2 2 3 2
L(R) = 5 n®) +2 [ L) (150)
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where (150) follows in a straightforward way from the definition of the non-interacting

kinetic energy density
h2

ta(x) = 25 Ve r Vary(x, X)) (151)

x=x'

with the factor of two resulting from the summation over spins. The kinetic energy T is
then given by
T, = / eRty(R) . (152)

To determine (R, p), we start with the definition of the density matrix for spin-up elec-

trons in coordinate representation:

~

V(o x') = (Bl )Pr(r)) (153)
Comparison with the definition of the Green’s function (96) leads to

y(r,r') = —i },13 G(r0,r'(t' — 1)) (154)
/>t

because G only depends on the time difference. Furthermore we have

dw i

Vo) = —ilim [ o re 0G( W) (155)
t'>t
and for the Wigner transform of (155) we find
1R, p) = —5— lim [dwe™G(R,p,w) . (156)
In a similar way we obtain
AR,p) = % E1_i>1(1)1_ dw e F(R,p,w) . (157)

Hence the expansion (143) of G in powers of & is automatically transferred to v and A:

AR.p) = 3 (R, p)" (158)
n=0
AR.p) =3 A(R.p)H" . (159)
n=0

and thus to n and Ts.
We are now confronted with the crucial question of how to carry out the integration
over w in both (156) and (157). To find the answer, we first investigate the zero-order

Green’s functions and, in particular, their dependence on w.
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5.5 Poles of the zero-order Green’s functions

The zero-order Green’s functions follow from Eq. (146); we have
Go=(wI-H)* . (160)

Calculation of the inverse matrix (wI — H)~! yields

1 w+h(R,p)  Ds(R,p)
Go = w? — h(R,P)2 - |Ds(R, p)|2 D:(R,p) w — h(R,p) ‘ (161)

Abbreviating h(R,p) and Ds(R,p) by h and D, respectively, we have:

w+h
Go(R,p,w) = - h2— D] (162)
D
fo(R,p,(ﬂ) = w2—h2—‘D|2 (163)
(162) and (163) can be decomposed into
h h
R 1+
h2 + |D|2

1 Vh? +|DJ? (164)
2 w—+/h?+|DJ?

gO (Ra P, CU) =

1
2 w+/RZ+ D]

and
D D

1 2 2 1 2 2
FoRpw) =—2 VPP 1 v EIDE (165)
2 w+h?+|DP? 2 w—+/h?+|DJ?

Obviously, both Gy and Fy have a simple pole at w = +1/h? + |D|?>. The usual method

in complex analysis is to infinitesimally shift the poles along the imaginary direction and
carry out the integrals (156) and (157) over a closed path in the complex w plane by means
of the residue calculus. It can be shown that there exists a unique prescription for shifting
the poles, namely to supplement the denominators in (164) and (165) with +in in the

following manner:

h h
P R

1 2 2 2 2
Go(R,p,w) = lim v + D vh® + D] (166)

1
00+ R+ DPE—in 2 w— R+ |DP+in

N |

D D
1 /2 2 1 /12 2
Fo(R,p,w) = lim | —= h” + D — 4+ = h° + D| - . (167)
=0+t | 2 w+ R+ D2 —in 2 w—+/h2+|D]?>+in

These are the desired expressions for the zero-order Green’s functions. If we now bring

the Green’s functions on the main denominator again, we end up with

GO (R7 P, w) =



w+h— in# D — 1'77L
; 1 h% + |D|? h% +|D|?
im
n—0+ w2 — (\/h2 + |D|2 — in)2 D* h
DY —ip—mee— w—h+in——
Va1 T DP
(168)
From Eq. (160) it then follows that the matrix (wI —H) has to be written as
h D
Wohtig——  Diipg——
T/ DP /R DP
(wI—H) = lim . (169)
n—0t * h
Dt i wth— i ————
VT VT

We can now proceed and determine Gy and Gy from (147) and (148), using expressions

(168) and (169) for G and (wI — H). The abbreviation

N = w? — (1/h2 +|D|? — in)? (170)

will be employed for the denominator of G¢ in (168), and the limit n — 0T, to be taken

at the end of the calculation, is implied everywhere.

5.6 Results up to second order in £

The method described in the preceding sections allows us to determine G(R,p,w) and
F(R,p,w) up to second order in i (and, in principle, to any higher order). The required
calculations are quite lengthy but without fundamental difficulties, and in the following

we shall only summarize the results. We introduce the following notations:

[XY] = ViX -V,Y — V,X - VY (171)
(ﬁ) = 23: (81?%1%)( a;ika + 851'ka 812f¢RkY o 2612%'ka 85iRkY) (172)
ik=1
3
(xYZ) = (02X OpY 0 Z + 03, X OnY 04,2
1,k=1
— O}y X OpY O 2 — O3, X 00Y 0pZ) (173)

where X, Y or Z can stand for h, D or D*, respectively. In zero order we then have:

Go(R,p,w) = w; h (174)
D
FoR,p,w) = — (175)
First order:
G1(R.p.w) = 575{ (w-+ WD) + D*(DH) — DD} (176)
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W =
fl(Rﬂpaw) = F[Dh’] (177)
Second order:

1 —
G:R.p.w) = sri{IDP(w+WIDDT

~ (w+ h)[D*2[Dh)? + D}[D*h)?]
+ [(w+ h)? — |D]?] [D*[DD*][Dh] + DID*DI[D*H]|
2[|DP (w - h) + 2wh(w + h)][ﬁ][ﬁ?h]}
- 8%{ [(w+ B)® = (@ + 30) [ DP] (B0
+ (& +4wh + 30 - D) [D*(RD) + D(AD)]
+ (w+h)(@? 1> +|DP)(DD)
+ (w+h) [D(DD) + D*(D°DY)] }
ﬁ{ [+ 1)* — (2 + dwh + 64 — | D) | D] (i)

+4h[(w+h)? — |DP|[D(hD?) + D* (WhD)|

+ [(@? = h?)(3w? + dwh + h? — 4| D) + | D|*] (,DD")
+ [+ h)? ~ |DP| [D*(hD* D”) + D*(hDD)]
—— ——

+ 2(w+h)(w?+h?—|D?) [D*(DhR) + D(D*hh)]
— [@? = h?)? = 2(w + h)*[DP? +|D|*] [(DhD?) + (D*hD)]
+ 4h(w + h)[D*(D*hD") + D**(DhD)]

—— ——
+2(w + h)(w? — h?)[D*(DDD?) + D(D*DD)]

——— —N—
+|D|*(w + h)[D(DD* D) + D*(D*DD)]

+ (w+ 1) [D*(D*D*D*) + D**(DDD)| } (178)
FoR.pw) = ;W{D(uﬂ _ 12)[DDP

— D*(2w? — 2h% — |D|?)[Dh]? — D*[D*h)?

+ 2h(w? — h?)[DD*|[Dh] + 2hD?[D*D][D*1]
—2D(w? + h2)[Dh) [D/\*h]}

_ ;W{D(“’Q + 302 — |DI2)(Bh)

+4hD2(RD") + 2h(w? — b2 + | D) (D)

—~
+2D(w? — h?)(DD¥)
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+ D' (w2 — h2)(DD) + D3(D*D*)}

S {4h,D( 2 1 p2 _|DPR)(hhh)
ANA “

—~ —~
+8h2D%(hhD7) — 2[(w? — h?)? — 2|D[*(w? + h?) + |D|*] (A D)

2 _ 3224\ >
+ 4hD(w* — h*)(hDD¥)
+ 2hD*(hD*D*) + 2hD*|D|?*(hDD)

—~
+ [(@? = h?)(3w? + h?) + [DP(ID]? — 4w® + 45?)| (Dhh)
—

+ 2D*(w? + h% — | D|?)(D*hh)

2 _ 12y( > 2/ )
+ 4hD(w” — h*)(DhD*) + 4hD|D|*(D*hD)

¢ » 2 _22\(DhD
+4hD*(D*hD*) + 4hD*(w?® — h?)(DhD)

— —
+2(w? — h?)?(DDD*) + 2D?*(w? — h?)(D*DD*)
20,2 _ p2\( > 2322y, 2 _ 12 2\(" )
+ D*(w® — h*)(DD*D*) — (w* — h*)(w” — h* —2|D|*)(D*DD)
——— —N—
+ D*(D*D*D*) + D**(w® — h2)(DDD)} (179)
The results for G and F can now be inserted into (156) and (157), separately for each
order. Because € > 0 we have to close the path of the integration in (156) in the upper

half of the complex w plane; in (157), on the other hand, we have € < 0 and consequently

take the lower half of the complex w plane to complete the semicircle. We write

a(R, ) = —% nlggl 95 dw ¢¥°G, (R, p, w) (180)
e—01
An(rt,p)—%lgg)a+ dw ¢ F, (R, pw) . (181)

e—0"

If we now take into account the additional minus sign in (181) coming from the math-
ematically negative orientation of the path of integration, we can express the results in

terms of residues:

1 c i — — B2 24,
(R, p) = n1_1>151+ Res[Gn (R, p,w) ; w = —/h* + [D|* + in] (182)
Ay (R,p) = 7]1_1>I(r)1 Res[Fr(R,p,w) ; w =/h? + |D|? —in] . (183)

The calculation of the residues can be performed in a straightforward way with the usual

methods of complex analysis; again, we shall give only the results. Zero order:

YR, p) = % (1 - ﬁ) (184)
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D

1
2 \/hZ+ |DJ?

Ao(R,p) = (185)
First order: .
MR p) = (ot (D7D + DD - DIDH (156)

A1(R,p) =0 (187)

Second order:

1 —
2®p) = ———— {snDPDD
64(h? + |D|?)2
— 5h[D*[Dh)? + D[ D*h)?]

~—
*

+2(2h? - 3|D[?)| D*[DD*|[Dh] + D[D* D][D*h]]

T+ 2h(2h? + 7|D|2)[1’)7~L][5%]}

1 2 =~
- §{12h|D| (7R
128(h2 + |D|2)3

A= =
— 4(2h% — |DP) [D*(hD) + D(hD*)]

—~
+ 2h(2h* — |D|?)(DD%)
- 3h,[D*2(’5B) + D*(D*D")] }

1
_ . {8\D|2(|D|2 _ 4h2)(hhh)
128(h2 + |D|?)2

}

+ 8h(2h? — 3|D%) [ D(hhD*) + D* (hhD)|
—
+ 4|D|*(8h* + 3| D|?)(hDD*)
+2(2n? - 3|D])[D*(hD*D*) + D**(hDD)]
—~ N —
+ 4h(2h? — 3|D[%) | D*(Dhh) + D(D*hh))|
— —
— 4(2h* - v2|D|? + 2|D[*)[(DhD?) + (D*hD)]
+20n2[D*(D*hD*) + D*3(DhD)]
— ——
— 2n(6h? + |D*) [D*(DDD?) + D(D*DDY)|
—— —
+ 5h|D? [D(DD*D*) + D*(D*DD)]

+5h[D*(D" D' DY) + D*%’D‘iﬁ)]} (188)
BoRp) = —————{D(61 +|DP) DD
64(h2 + |DJ2)3
— D*(12h* + TD?)[Dh)? + 5D?[D*h]
+ 2h(6h% + | D|?)[DD*|[Dh] — 10hD?[D*D][D*}]
+2D(? ~ | DP)DR(D}
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1 9 9 =~
= Tosg s DT D@ DR (RA)

~ A=
+12hD*(hD*) — 4h(2h? — |D]?)(hD)

—~
— 2D(4h* + |D|*)(DD%)
—
— D*(4h® + |D|2)(’5B) + 3D3(D*D*)}
1 2 2 A~
—4 8hD(2h* — 3| D|?)(hhh)
128(h2 + |D|?)2

2 1277 4 12172 HTD
+ 40n? D*(hhD*) — 8(2h* — h?|D|? + 2|D|*)(hhD)
—
— 4hD(6h* + |D*)(hDD*)
+ 10hD3(hD*D*) + 10hD*|D|?*(hDD)
A~ —
+ 4|D|*(8h% + 3|D|?)(Dhh) + 4D?*(2n* — 3|D|*)(D*hh)
— —
— 4hD(6h? + |D|?)(DhD*) + 20hD|D*(D*hD)
— —
+ 20hD*(D*hD*) — 4hD*(6h* + |D|*)(DhD)
4 2|12 i g 2/p12 2y Pr
+2(8h* 4+ 4h*| D> + |D|*)(DDD*) — 2D%*(6h* + |D|*)(D*DD")
—— ——
— D?(6n% + |D|?)(DD*D*) — (8h* + 16h%|D|? + 3|D|*) D*DD)
—— —
+ 5D D*D*D*) — D*?(6h? + \D|2)(DDD)} (189)

5.7 Discussion of the results

Let us first consider the result for the zero-order normal density,

3
no(R) = /(erir}:)?» <1 - ﬁ) : (190)
which originates from insertion of (184) into (149), and the anomalous density (185).
Both densities can also be derived from the results for the homogeneous non-interacting
“bogoliubon” gas (Dreizler and Gross 1990) if x and D,(p) are replaced by u(R) and
D4(R, p). This procedure constitutes the superconducting analogue of the LDA discussed
in section 3.1.

Furthermore, from Eqs. (186) and (187) we see that both the normal and anomalous
first-order densities, n1(R) and A1 (R, p), vanish identically. The reason for ni(R) = 0
is that v (R, p) is an odd function of p. This, on the other hand, follows from the fact
that both h and D [see Egs. (138) and (128)] are even functions of p, and therefore their
gradient with respect to p is odd.

The second-order density matrix 72(R,p) is again an even function of p so that, in
general, all of the terms in Eq. (188) will also appear in the second-order density na(R).

Next we want to investigate if the results section 5.6 reduce to the well-known normal-

state electron gas results in the limit D — 0. It is clear that in this limit the anomalous
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Green’s function as well as the anomalous density must vanish.

We start by assuming Dg(r,r’) = 0 in the Hamiltonian (88); the semiclassical expansion
then becomes much easier to perform, as there are no more contributions containing odd
powers of i (Grammaticos and Voros 1979). We find, designating the normal state by
“NS”:

1
S = .
QO (R7 b, (“)) w—h+in sign(h) ( ’ )
e 81% 2 h02 h
GYS(R,p,w) = —7 3. nsig
4 ik=1 { (w = h + insign(h))?
+ 9, rilt Opi Opih + Opinir Onr O } (192)
(w — h + in sign(h))*

The integration (180) over w directly leads to the normal-state density matrix (52), where

we have to use the following formula for the second-order terms:

dw ei“’0+ 1 d n—2
I ek __ d )
o0t 1> 270 (w — h+insign(h))"  (n—1)! (dh> a(h) (193)

for n > 2. The explicit result (Grammaticos and Voros 1979) is given up to second order

by

7V R,p) = Z 02 002, 8 ()
i,k=1
h2 3
+ 5 (0%, Opih Opyh + 0.1 O Og ) 6 (h) . (194)
i,k=1

The normal-state particle and kinetic energy densities are then obtained by inserting the

density matrix (194) into Egs. (149) and (150), respectively:

_@m)d s s VI VI(R) o, Vo (Vu(R))
nlpl(R) = o orsu(R) +hz247r2h3 = h2967r2h3 R (195)
2 2
HM)zg%www
UL R ST TR e 2m_ (Va(R))
R RV R s s ey (99

We now demonstrate that the above results can also be found by letting D — 0 in
the expressions (174)—(179) and (184)—(189) for the superconducting case. This is easily

verified for the Green’s functions. The denominator (170) becomes
N 2= 6P — (] —in)* (197)

and only those numerators survive which do not explicitly contain D or its derivatives.

This directly leads from (174) to (191) and from (178) to (192).
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Things are more complicated for the density matrix. For the zero-order term, it is

straightforward to see that

(R,p) = % (1 - ﬁ) 2200(—h) =S (R,p) | (198)

but in second order it seems at first sight that all terms vanish if one sets D = 0 in
(188). Indeed this will always happen except for h = 0. Because v(R,p) appears under
an integral over p in (149) and (150), it is necessary to understand the limit D — 0 in a
distributional sense. Starting from (198) and differentiating repeatedly with respect to h

on both sides, we can generate the following series of relations:

%(kﬁ) D20 g(—h) (199)
_%ﬁ D30 sh) (200)
g% D20 _5(n) (201)

%Il?(lhille';lz) D) Do s (202)

It is easily verified that the left-hand sides of (200)—(202) are indeed representations of the
Dirac é-function and its derivatives: if one calculates the integral over h together with a
test function f(h) that can be expanded in a Taylor series around h = 0, one finds, e. g.,
for (200):

1. |DP?
_511)1510/% Wﬂ )=—£(0) . (203)

The other two relations are verified analogously. If we now closely examine Eq. (188), we

find that we can use (201) and (202) to recover v4'° (R, p) as given in expression (194):

1
_—_ 12h|D 82 h82 h
64(h% + |D|2)? kz RCTE T

1

" T80+ DR Z 8|DI*(|DJ* — 4h?) (05 5,1 Oph O + Oy Onh O )
i,k=1
D—0 1 3 2 ! 1 > 2 "
= Z 07 ph Oy 8 ( + 5 0% ph Oph Opih + 02, h Or b Oph) 6" (h)
2,k z,k::l
= 7 °R,p) . (204)

Thus, our expression for the superconducting density matrix gives the correct non-

superconducting limit.
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6 Density-gradient expansion for superconductors

6.1 Preliminaries

In section 3.2 we presented the principles of gradient expansion for normal-state systems.
Now our aim is to apply this technique to superconductors. The first step has already been
made in section 5, where we performed a semiclassical expansion of the density matrix v
and the anomalous density A, Egs. (158) and (159), with the results for 7, and A,, given
by Eqs. (184)—(189). We note that in these expansions the powers of & (i. e., the indices
n) correspond to the orders of derivatives with respect to R and p of A and D. In analogy

to Eq. (52) we have:

A(R,p) = Alu, D, 0ip, 0; D, 0;0kp, 0i0i D, .. J(R,P) . (206)

It is obvious that, in contrast to the normal-state case described in 3.2, v and A now
have a twofold functional dependence, on u(R) and D(R,p), and we must find a way
to eliminate both quantities to obtain the density functional Ts[n, A]. Consequently, the
next step has to be the inversion of the functionals n[u, D] and Ay, D] to determine the

density functionals
/j,(R) = u[n, A, Bin, 6,-A, 6Z8kn, 8,8kA .. ] (R) (207)

and insertion of these functionals into the expression (150) for the kinetic energy density
ts[p, D]. During the whole procedure we have to watch for consistency up to second order
in the derivatives.

Obviously, the contribution %V{n(R) to the kinetic energy density (150) is a density
functional already, so it does not take part in the elimination process indicated above. We

therefore write the kinetic energy density as

2 2
1ol D] = 2 Von(R) + 7{p, D] (209)
where , \
T DYR) =2 [ s 2ol DIR.p) (210)

We now want to execute a few preliminary calculations and consider only the zero-order

densities:

3
no[u, D](R) = /(2617;;)3 (1 - ﬁ) (211)
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D

1
Ao[p, DI(R,p) = 2 JIZr DR (212)
There is no difficulty in solving Eq. (212) for D:
2A0/h|
Dlu, Ao] = T4 (213)
Insertion into (211) results in
d®p .
o Al(R) = [ s (1= sign()y/1 =4 Ao(R.p)P ) (214)

where h = % — 1(R). Obviously, Eq. (214) cannot be solved analytically for u(R). We
emphasize, however, that the right-hand side of Eq. (214) is a simple function of y which
can easily be tabulated and inverted numerically. In the following, the inverse function is

assumed to be known and we write

—1
1lno, Ao](R) = ( / (2f§)3 (1 _ sign(h)\/1 —4|A0|2>> . (215)

If all higher orders are neglected, ng and Ay can be replaced by n and A. This leads

to the final result for the zero-order kinetic energy:

2

3 2
7O, A] = /d3R/(2i£’)3 2p—m (1 — sign (QP—m _ ,u[n,A]) J1— 4|A|2) . (216)

In the next section we present the method how to obtain the functional T[n,A] up to

second order. Explicit results will be given in 6.3. Finally, in section 6.4 we shall discuss

the normal-state limit.

6.2 Method for the inversion

Starting point of the inversion procedure are the normal and anomalous densities,
n(R) = nolu, D)(R) + h2na[u, D(R) + ... (217)

A(Rv p) = AO[Ma D](Ra p) + 52A2[/‘7 D](Rv p) +-... (218)

In order to execute the next step of the gradient expansion procedure, we now have to

invert the functionals (217) and (218) and establish the expansions
pln, Al(R) = po[n, AJ(R) + pa[n, Al(R) + p2ln, A](R) + ... (219)

Din,Al(R,p) = Do[n, Al(R,p) + Di[n, Al(R,p) + D2[n,Al(R,p) + ... (220)

where the indices again denote orders in the derivatives.
To explicitly derive the unknown functionals in (219) and (220) we start with the

zero-order results from section 6.1. From Eq. (213) we have

QAO p2

VI—4[AP |2m
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Dlno, Ao)(R,p) = — p[no, Ao](R)| (221)



and p[ng, Ag] is given by Eq. (215).

The crucial idea is to rewrite the zero-order densities in (215) and (221) as
no(R) = n(R) — i%na(R) (222)

A0(]-:{'a p) = A(Ra p) - thZ(Ra p) (223)

which is correct up to the second order in h. This is because n(R) and A(R,p) are the
exact densities given by Egs. (217) and (218), i. e., they contain all orders of % of the
semiclassical expansion. If we subtract the second-order contributions h%ne and A2Ao,
then Eqs. (222) and (223) will give the correct zero-order densities plus terms of higher
than second order which we do not worry about.

We then make an analogous ansatz for ug and Dy:
po[n, AJ(R) = p[n, A](R) — pz[n, Al(R) (224)

Doln, Al(R,p) = Din, A|(R,p) — D2[n, A](R,p) - (225)

The functionals pg[n, AJ(R) and Dy[n, A](R, p) are correct up to the second order in the
derivatives. They are calculated using Eqgs. (222) and (223) in the functionals (215) and
(221):

po[n, Al(R) = p[n — h?ng, A — K2 As](R) (226)

Do[n, Al(R,p) = D[n — h’ng, A = h*A5)(R,p) - (227)

To cast Egs. (226) and (227) in the form (224) and (225), respectively, we have to perform
a Taylor expansion for functionals: p[ng,Ag] and D[ngy, Ag] have to be expanded about

n(R) and A(R,p). The first two orders of the Taylor expansion of yg can be written as

mo(R) = pln, A)(R)
+ /d3R' ?Z;A];})( ) - (no(R’) — n(R))
+ /d3R1/d3 / 5/{;’Zlé)a§/0](f;) ‘Z ) (Ao(Rl,pl) . A(lepl))
+ /d3Rl/d3 ! 5?&37}?}0](?) ) (AB(RI,pI) _ A*(Rl,pl)) ) (228)

no=n
Ag=A

Dy(R,p) and D§(R,p) are expanded analogously. The functional derivatives of y and
D needed in the expansions can be calculated straightforwardly from (215) and (221).
For p[ng, Ag] we use the functional analogue of the well-known rule for the derivative of

implicitly defined functions. Results will be given in the next section.
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We now insert (222) and (223) and obtain:

po(R) = pln, Al(R)
dp[no, Aol (R)
_ 3 ! 2 !
/d R R | Wona(R)
Apg=A
— /dSRI/d3 / 5:“‘ TL(),A() ( ) h2A2(RI,pI)
(SAO p ) ng=n
Ao=
dp[no, Agl(R)
_ 3 ! 3,/ ) 2A*MR! ) 29
/d R/d SRR D) | o | D2 EP) (229)
Ag=A
For ng, Ay and A% we have to take the functionals
ﬂg[n, A] =n2 I:/,L[TL, A]? D[”v A]] (230)
Asln, A] = As[uln, A], D[n, A]| (231)

following from (188) and (189) with (215) and (221). Therefore, upon comparison with
Eqgs. (224) and (225),

dp[no, Ao](R)
3 ! ’ 2 !
pin AR) = [dR PO il Al(R)
O:A
png, Ag)(R)
3 ! 3,/ ’ 2A A 1ot
+ /dR/d SRR o) | w1 Aol AR D)
Ag=A
5:“ n07A0 (R)
3 3 1 2A* A ! ! 2 2
v PR [y S g R AIRP)  (252)
and similarly
Dofn, AJR,p) = [ar PO ONERN e AR
5”0 R) no=n
0
(5D[TL() A()](R p)
3 ! 3,/ ’ 2 A 1!
v @R [y SR B2 Aoln, Al(R, p)

no=n
Ag=A

h2A%[n, Al(R!,p') . (233)

ng=n
Ag=A

6D[n07A0](R7 p)
3 ! 3/
+ /d R/d P sar®m, p)

The final step of the gradient expansion procedure now involves insertion of the inverted
functionals p[n,A] and D[n,A] in the kinetic energy density functional (210). We write

this functional in the following manner:
T(R) = 1o[po, Do](R) + h272[u, D](R) + ... (234)

Here, 1y denotes a zero-order functional in the derivatives; therefore, we have to insert ug

and Dy. Thus,

7[n, Al(R) = 7o[uln, A] - pa[n, A], Dln, A] - Ds[n, A]| (R) + 1272 [ufn, A, Dln, A]] (R)
(235)
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The orders in the derivatives are now separated by again performing a Taylor expansion

about p and D. The final result is given by

[n, AI(R) = 7o[u[n, AL, Dln, A|(R)

0700, Do) (R)
3t Y7040
/d R (5/10 Rl)

7[00, Do) (R)
_ 3t [ 43,0 Y700
/d R/d P DR p)

d7o D]( )
B 3| 3.1 0#0, 0
Jer [or Sty

pz[n, AJ(R')

po=n[n,Al
Dg=DIn,A]

Ds[n, Al(R/, p')
wo=pln,A]
Do=D[n,A]

Di[n, A)(R', p')
po=nln,A]
Do=D[n,A]

+ 1nlu[n, Al, D, Al|(R) . (236)

This expression allows us to separate the zero- and second-order contributions, and we

define:
O, AI(R) = 7 [uln, Al, D[, A]| (R) (237)

and

", AJR) = K2ra[uln, Al Dln, Al|(R)

, 97010, Dol (R)
/d3R (5/10 R')

AR/
oy M2l AR

Do=D[n,A]

[aem [y 0o DolR) Dafn, A(R', p)

(SDO (R,, pl) no=u[n,A]
Dg=DI[n,A]
070[0, Do) (R)
d3 I/d3 / ) D* A RI ! . 2
/ R (SD* R[ ) wo= lt[n A] 2[n7 ]( 7p) ( 38)
Dg=D[n,A]

6.3 Results for the kinetic energy functional

In this section we want to derive the explicit result for the kinetic energy density functional
(236). The zero-order term 7(9[n, A](R) has already been calculated in 6.1 [see Eq. (216)].

To compute the second-order term (238), we first need the functional derivatives of

_d&p P h
which are given by
dmo[ps0, Dol (R) / &p p* Do) :
T Su(R) o I(R-—R 240
S0 (R) (27h) 2m (12 1 |Dy|2) ( ) (240)
670[”07D0](R) / d3 p2 1 hDS ) I
SDy(R’,p) o5 o o o3 R-R)i(p— . (241
0Dy (R/, p') (2wh)3 2m 2 (h2 + |D0|2)% ( )é(p—p) (241)

Insertion of (240), (241) and the complex conjugate of (241) into Eq. (238) yields
@[n, A|(R) = 5275 [u[n, A], D[n, Al| (R)
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&#p p* |DP?
- v AR
P

d3p 1 h
— [ = - ——(D*D Al(R DD3[n, Al(R . (242
[ et o 3 gy g (PP Al(RP) + DD AR ) - (212
We now need the functional derivatives of p[ng, Ag] and D[ng, Ay] appearing in (232)
and (233). We make the following observation: because of the absolute |h| and the sign
function sign(h) contained in (215) and (221), the derivative is not properly defined at

h = 0. Introducing the constant a, we can deal with this crucial restriction by writing

Ih| = lim VA2 + a2 . (243)
a—0

We see that vh? + a? can be differentiated everywhere, and we have instead of (215) and
(221):

VI 4[AP

. d®p h -
lno; Aol(R) = lim (/ @nh)? (1 VRV e 4‘A°'2)> (249)

with h = £ — p[ng, Ag).

Dlng, A)(R, p) = lim 249 (244)

At this point we anticipate that the introduction of the constant a will eventually lead
to expressions we have to interpret as distributions. Similarly to section 5.7, we generate

a series of relations by repeatedly differentiating with respect to h:

. h .
M Vesaape e (240
1 4|A|%a?
lim - [AF” sy (247)
a—=0 2 (h2 + 4|A|2a2)2
2 2
T S L i 778 (248)
a—0 2 (h2+4|A|2a2)5
4|A 2.2 4 2 —4|A 2.2
3 AAPR@R —4APR) o19)

im -

a—0 2 (h2 4 4|A|2a2)2
As usual for distributions appearing under an integral, the limiting process is not to be
performed until the integration has been carried out. Also, to simplify notation, the

i

“lim,_,¢” is implied everywhere.

For the functional derivatives appearing in (232) and (233) we then obtain:

u[no, Ao](R) IR -R)

_ (250)
(5TLO(R') / d3p 4|A0|2(12
\/1—4|Aq|2
(27h)% (B2 4 4]Ap|2a2)? 2ol
h 2A0(Rap)
J(R—-R’
(SD[no,Ao](R,p) _ ( )\/h2 + a2 \/1 — 4|A0‘2 (251)

(5’/L0(R') / d3p 4|A0|2a2
V1 —4]A¢)?
(2mh)3 (h2+4|A0|2a2)% | Aol
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(R -R)é(p —p)

/ d®p h? + a? 2hAG(R, p)
(

2rh)® (2 4+ 4|A0|2a2)% V1 —4[A 2

5/1,[7L(), A()] (R) _

- _ (252)
§A0(R/, p') / d*p 4|Ao*a?
V1= 4]Aq2
(27R)% (h2 4 4|Ag|2a2)? (2ol
§D[ng, Ag](R, p) — 2|Agf /
— oy A%0 sR _RY)s(p—p! 253
AR D) REWEE ( )é(p —P') (253)
d®p h? + a? 2hA(R, P)
=~ S(R-R)s(p—p
h 2A¢(R,p) /(2wh)3 (12 + 4| Ag|2a2) 7 /1 — 4[Ag[? ( 1 )
Ve V1 — 472 / d*p 4]Ag|*a®
V1 —4]Ag2
(277h)3 (B2 4 4] Aq|2a2)? (2ol
6D[ng, Ao)(R, p) N 4A3
. 2 VR +a2——0 _§(R-R)é(p—p’ 254
SAG(R!, p') (1 —4]Ag)?)? ( i ) 259
d®p h? + a? 2hA)(R, p)
= J(R-R)6(p-p
h 2A0(R,p) /(2wh)3 (h? + 4| Ag|2a?) 7 /1 — 4[Ao[? ( 1 )

\/h2 + a? \/1 — 4|A0|2 / dsp 4|A0\2a2 1 4|A |2
V1= 4A0
(277h)3 (B2 4 4] Aq|2a2)?

Substituting Eqgs. (232) and (233) into Eq. (242) and using Eqgs. (244) and (245), we find

after a few intermediate steps:

d3p p2 4|A|2a2
— \/1—4|Al2
d?p 2 /(27rh>3 2m (b2 + 4|A|2a2)? 1A

@n, Al(R) = 2h / 1) p_ - pE 2.2
P 4|A%a
/(271.5)3 (72 1 4AP)] V1 —4|A]2
hh*+a?)  (A*Agn, Al(R,p) + AA3n, Al(R, p)) _

(h2+4\A|2a2)% V1 —4]AJ?

(mn, AlR,p) —
(255)

To derive an explicit result for 7(2)[n, A](R), the next step consists in calculating vo[n, A]
and Ag[n, A]. For this purpose we insert Eq. (244) into (188) and (189), respectively, and
use the notations (171)—(173) defined in section 5.6. After a lenghty calculation we obtain:
yaln, AJ(R, p) = —%2 Vi 4AF {8h|A|2La223 (45— 4/A2)
(h? + 4|A|2a2) 3 (1 —4/A)?)
+2h%a?(1+ 16|A — 16|A[*) — a*(5 - 48|A]% + 32/ A[* + 64|A[*) | [AA*]?

4
(1 —4[A)2)?

[1® = h'a?(1 - 16|A]%) — 2%a*(1 - 12]A]” + 8|A[*)

+4|A2a% (3 — 12|A] + 16|A[*) |[AA*] [A[A*H] — A*[AR]

2 ha?
2h%(1 — 20|A 2 202(3 — 56| Al%2 — 80|A |4
A AP (7 g a7 121~ 2088 + 12a*(3 — 56/A — s0lA[*)

+a*(5 — 48|A — 16|A[*)] [AT2[AR]? + A[A*R]]
_ 2 ha?
(1 —4[AP)? (h? +a?

) [21A12R4(8 — 18|A + 24]A|* + 320|A[°)
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+ h2a?(1 4 22| A2 — 48| A* + 48| A|° 4 832|A[8)
T 2APGH(T ~ 161AP + 16]A* + 64]A[) [ﬂ][ﬂ]}

n J1-4]AP 5{\A|2a2h [2h2 n (3_4‘A|2)a2] (f,;;)
8 (h2 +4|A2a2)2 LB +a?
~Togap e - 4aP) —4aPat] [A*(RR) + AGA)]
(T(ZTAT;L [12(1 = 10]A] + 8|A[%) - 2|A2a?(1 + 8|A]2 - 16|A|)] (AA7)
(;‘(her"‘j))z (121 + 41AP) + (3 — 8]AP + 16/A])] [A2(AA) + A%’EE)] }

+h_2 V1 —4]A2 {2|A|%L2

6 4 24 2(q 2
8 U2 1 4aPa?)s (2 1 a2 (31 + hta?(s — 12/A2)

P
+ h2a*(4 - 8|A[2 — 16|A[%) - 4|A[2a) (hhh)

2 ha?
— A T [~ HAY) + 221~ 1A + a8l

— 4]APa4(3 - 20]AP)) [A* (RRA) + A(RRAY)]
8JA2

6(1 2\ 14 201 2 4
(1_4‘A|2)2[h (1-2|AP) — hia2(1 - 6|A]% + 16|A]*)

—N
— 4h2a*(1 — 5|A]2 + 12|A[* + 8|A[%) — 2|A a8 (3 — 8|A + 32\A|4)] (hAAT)

4 216 _ 274 279 2y 32 41 2 4 _ 6
+(1_4‘A|2)2[2IAM 2|A[2h%a?(3 — 8|A?) — h2a*(1 — 4|A]? 4 48|A* — 32|A[%)

2 6 2 4 *2 2 * A K
+2|A%a%(3 - 82|A12 + 32|A1%)| [A2 (RAA) + A2 (hATAT)]

h4(3 — 28| A%) + 2h%a%(1 — 16|A]% — 16|A[*)

1 ha?
(1 —4]A[?) (* + a?) [
—— —
— 4|APa* (3 + 4|AP)] [A*(Ahh) + A(Ahh)|
2

72A26 421—12A2 A4—2A2241— AZ— 2A4
g apy (2R + 1t (1 - 12181+ 5614 — 2APRa" (1 - SAF - 32/AL")
4 6 9 4 —N ——
+16]A[%aS (1 — 4]A + 8|A| )] [(AhA*)+ (A*hA)]
4 e o424 2\ 12 dp 2 4
SR TNGE (1€ = 2h%a®(1 — 10]A %) = B2a*(5 — 40]A]” + 32/A[*)
+ 32| A[%S(1 - 2|A|2)] [A*2(AhA) + Az(A*hA*‘)]
4h(h? + a?) [, 4 ) 5 o ) .
m[ﬁ (1+4]A%) + h%a®(3 — 12|A]* + 64|A*)
2 4 9 4 —— —_——
+2]APal(1+8|A[2 +16]A1Y)] [AT(AAAT) + A(A*AAY)]
4h(h% +a?) 1,4 5 4 5 99 X )
- m[h (1 —10]A]> + 8|A[*) + 2| A[2a®h%(3 — 36|A > + 32|A[*)

—— ——
+al(5|A12 - 32|A* - 48|A° + 128|A%)| [A(AA"A") + AT(ATAL)]
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4 2 2
% [20(1 + 4|A1) + 2h%a2(1 + 4|A + 32]A[%)

4 2 4 6 3 AAR 3/ A F AT AR
— a*(5 — 48| AP + 80]A[* — 128]A[%)] [A®(AAA) + A*(A*AAT)]

(256)

" \ h? (1 — 4|AP)VRZ + a? B2 + a2
AA2[n’A]+AA2[”7A]:__( A1) I { A]? 1 —4|A2)3
8 (n2+4|ARa?)> (1—4|A[2)
[14(3 = 2|A1%) = a®h?(3 — 26|AP + 16|A1*) — 2] APa* (1 — 8|AP + 16|A[")] [AA*)
4h o
— 7(1 BYITNBE [h4 — 3a2h2(1 — 8|A|2) + 8|A|2a4] [AA¥] [A[A*h] —_A [Ah]]
4 a? 4 2 2 2 2 4 9 4
1—4AP)2 (12 + &) [h (1 —26|A%) + h%a”(3 — 16]A|" — 64[A[%) + 2[Al%a ]

i
x [AZ[ARP + A[AHP]

8|A? a®
T —‘4||A|2)2 (h? + a?) [h4(6 — 4|A] +12|A[)

T 2h%a2(1+ 2/AP — 8A[* + 24|A°) — 2|A[%a’] [ZE][A’%]}

2 (1 — 4|AIPYWVA2 2 (|Al2¢2 o~
- U RAENVE S C LR on2 — ajaat) ()
8 (h2+4|A)2a2)2 lh*+a
h

=~ ~
_ m(hﬂ _ 8|A|2a2) [A*(hA) + A(hA*)]
2(12 0,2
- %&2)2) [0~ 1A1) + [APa(1 - 4aP)] (BAY)
2 az
- A 0+ 2P — 2820 — AP a2 ED) + 2 (F R}

(1 —4|AP)VR + a2 [ 2|APd®h 1, 4 2 2 2 2 4 NI
o 2 1-6|A A 1—-4|A
+ 8 (h2+4|A|2a2)% {(h2+a2)2 [3h +2h a( 6| | )+8‘ | CI,( | | )](hhh)
2 a? 4
- 1 —4|A1%) — 4|APPh%a®(3 — 16|A)?) + 16|A[*a?
(1—4|A|2)(h2+a2)[h( |A[7) — 4|A[*h%a”(3 — 16| A7) + 16] |a]

x [A*(‘hm‘) + A(hhA*)]
A 2
% (11 = 2|A1%) - h2a?(3 — 10]A1% + 16/A[*)

—
— 2 AP (1 + 8|AP + 16]A1)] (haAT)
8A|%h
+ W [h4 — a®h?(5 — 8|AP%) + a*(5 — 40|A]* + 16|A|4)]

% [A*2(@) 4+ Az(hA*A*)]

4|A|2 a2h2 ) 2 9 ot /_:H
T A 4AR) (72 + ) [7h? + a*(5 + 8|A%)| [A*(Ahh) + A(A"R)]

4|A*h 4 2,2 2 2 1T/ AT AR L (R
S TETTNE [t = a?h2(3 — 24|AP) + 8]APa?] [ (ARAT) + (A*hA)]
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4 —— ——
R NGE 4|sz|2)2 [ = a®h?(3 — 24|A%) + 8] Pa? | [A™(ARA) + A2(A"hAY)]
8h2(h2 +CL2 . /—’H* ﬁ
W [R2(1+]AP) - |APa*(1 - 24|A1) | [A*(AAAY) + A(A*AAY)
4 2 2
- 7(1(2 JACIQ))?, (141 = 11AP + 8|A%) + |A2a2h2(11 — 80|A 2 + 64]A[*)
—N— —
+8|A1%a* (1 - 8|A2 + 16|A|Y)] [A(AATAY) + A*(A*AA))
4(h? + a?
i (1(— 4|A|2))3 (13 + 8IAP) —a’h*(3 — 16]A — 64]A")

— —_——
T 8]APa4(1 - 8] + 16]A4)] [ (BAR) + A3(A*A*A*)]}

(257)

In the final step of the evaluation of Eq. (238) for 7(?[n, A], we have to substitute
Egs. (256) and (257) into (255). The limit a — 0 is then calculated applying relations
(246)—(249).

We now give the final expressions for the kinetic energy functional up to second order.

With
2

h= o~ un, Al(R) (258)
and o B
uln, A(R) = (/ (%é’)?, (1 — sign(h)y/1 — 4|A|2)> , (259)
we have
3 2
TO[n, A] = /d3R/(2CfT;:)3 2p—m (1 — sign(h)y/1 — 4|A|2) (260)
Ts(2) [nv A] = /dsR <T(2) [TL, A] (R) + % VTQ n(R)> (261)
where
3 2 o
7@ [n, Al(R) = h? / (2‘;5)3 h{sign(h)%[AA*]Z

hé"(h) (5 — 52|A* — 16|A]Y)
4BA[* (1 -4/APR)2
hé"(R) (7 —12|A]% + 16|A|* + 64|A[°)

(AAR? + A”[AHP)

EEYINE REVINGE [AR][A*H]
+ 5 () /1 4AP ()

~ 7 sign(n) % BN

~ 7 sign(h) m [A2(RR) + A2(B°AY)]

i " ~ 5 =
+ D 0"(h) /1 4|A| (hhh)
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he"(h) 3 — 16A2 *
1 2
- Z:L ng \j% (A (BHR) + AGh)]
— sign(h) ﬂ[ *(m)+A(M)]
(1-4jAP)3
— sign(h) L [A(AA*A*) + A*(’A*-A“A)]
(1—4A]?)3
— sign ; B3 AAR S AFAEAR
gn(h) T (A3 (RAR) + A3(A"A A‘)]}

(262)
6.4 The normal-state limit

In this section we briefly check if the density functionals 7(9[n, A] and 7(®)[n, A] correctly
reduce to the known results for normal-state systems after the limiting process A — 0.

We first note that in this case we can explicitly calculate p[n]:

pnR) = Jim (/ e (1—sign<h>\/1—4|A\2))
-1
- (2/—(;:5)3 9(—h)>

- 7(3”2223)5 n(R)3 (263)

where h = £ — u[n](R). We therefore obtain:

2m

rOmR) = Aiinm/(;fig)g % (1 —sign(h)y/1 — 4\A|2)

d3p p2
- 2/(27rh)3 am /)

3h2 (372 3 5
— %n(R)s (264)

3
FOpR) = lim h?/(;frigﬁ {% he' () /1 — 4|l (3

1 " ~ =~
+ 75 ho"(h) /1 — 41AP2 (hhh)

3
_ g2 / (2d é’) { ho'(h) (AR + % ho" (h) (?JE)}

52 V2m \/Ivz +ﬁ2 V2m_ (Vpn])?

2472h3 24725 \/p[n]
o, K2 (Vn)?
_ " 2
24m vin 2m n (265)

Substituting into Eq. (209), we get the correct normal-state kinetic energy density up to

second order: ,
h2 2\ 5 h2 h2 2
ts[n] :Mn§+_v2n+_m

2
10m 6m 2m n (266)
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The first two terms of the gradient expansion (54) of T are recovered by integrating ¢
over R, see Eq. (152). Assuming that n(R) and its gradients vanish for R — oo on an
appropriate surface, one can use Green’s theorem to show that the second term on the

right-hand side of Eq. (266) gives no contribution to 7.

7 Variational principle: A Thomas-Fermi equation for su-
perconductors

We now demonstrate how the HK variational equations (133) and (134) are established
for our approximation of the kinetic energy functional Ts[n, A] under neglect of exchange
and correlation. In the following, only the zero-order term (260) is treated explicitly.
First we perform the variation with respect to n(R) in Eq. (133). Using Green’s theo-
rem, it follows that the second term under the integral on the right-hand side of Eq. (261)
gives no contribution to T [n, A]. As the gradient expansion of T[n, A] therefore contains
n(R) only implicitly via p[n, A](R), in analogy to the chain rule in elementary analysis

the prescription for the variation reads:

5T [n A 5o AJ, A] dpu[n, AJ(R)
/d R (m R’) 5n(R) (267)
where
Ouln, AJ(RY) _ S —R) , (268)
LY N e
so that
5TS(0)[n7 A] _ Al(R, 2
—Sam AR (269)

We deal in a similar way with the variation by A*(R, p) in Eq. (134). Because A*(R, p)

appears not only implicitly, but also ezplicitly in Ts[n, A], we write

0Ty[n,A] 6T, [n A partial / s OTsluln AL A] duln, AJ(R) (270)
SA*(R,p)  6A*(R, Su(R’) dA*(R,p)
With .
ST, A" 2AR,p) sign(h) p* 2r)
§A*(R,p) ~ (2nh)3\/1 —4]A? 2m
and
suln, AJ(R) — 2A(R, p) sign(h) dun, Al(R') (272)
SA*(R,p)  (27h)3/1—4AP 6nR)
we obtain up to second order:
(2) partial A 9
0Ts[n, A] 0T [n, A] 2A(R, p) sign(h) p__de[n,A] (273)
SA*(R,p)  0A*(R,p) (2nh)3\/1—4]AP2 \2m  on(R)
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The HK variational equations for superconductors, Egs. (133) and (134), then lead to
0Ts[n, A] n(R')

(STL(R) =K 'Ueact(R) - 62 /d3R, m (274)
partial .
(%h)g(m‘” [n, Al 2A(R,p) sign(h) (> OTy[n, Al
IA*(R,p) V1—4A)? 2m on(R)
d3 !
— Dout(R, p) + / PR / (%2)3 w(R,p, R, p)AR.,p) . (275)

In a Thomas-Fermi-like theory, one usually proceeds by transforming the integral equation
(274) for the normal density into a differential equation for the total electrostatic potential,
which is achieved with the help of Poisson’s equation.

For the superconducting case, it is convenient to perform an analogous transformation
and change Eq. (275) for the anomalous density into an equation for an effective pair
potential. As shown below, we will gain a formal generalization of the well-known BCS
gap equation in this manner.

We begin with the definition of two quantities: the total electrostatic potential

_ 0Ts[n, A
uR) = 5 ®R)
= K- 'Uea:t(R) —é /d3R, % (276)

and the effective pair potential

D(R,p) = %4]2)'2 <2p—m - U(R)) sign <2p—m - u(R)) . (277)

In order to express n(R) and A(R, p) as functionals of u(R) and D(R, p), we first solve
Eq. (277) for A(R,p) and obtain
D(R,p)

Alu, DJ(R,p) = - > (278)
P _ 2
2 \/ (2 -u®) - ID®R.p)
Applying Poisson’s equation to Eq. (276) we find
V2U(R) = Vz(u - ert(R)) + 47T€2n(R)
= 41e*nesn(R) 4 4me’n(R) (279)
and therefore
VZu(R
nhul(B) = S Ry (280)
In this fashion, h can be written as a functional of v and D:
P
P
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where u[u, D](R) follows from solving
d3p ) p2 5
nu](R) = /W (1 —sign( L — u(R)) /1 - 2jAL, D) (282)
for u(R), with Afu, D] given by Eq. (278) and n[u] given by Eq. (280).
We can now deduce the two equations for v and D by performing the substitution

(278) and (280) in Egs. (275) and (276), and we get

§TPn, A
u(R) =l DI(R) + oSl (283)
Z;’Z’fi,m
1 d3p' DR, p’
D(R,p) = Dewt(R,p)+§/d3R'/(2ﬂg)3 w(R,p, R, p) —— ( p)2
p
\/ (5 —u(R)) +DE
9 (2) partial
i . p__ _ 35T3 [’Il,A]
+ [1 sign(h) 51gn(2m u(R))] DR,p) — (27h) SATR.D) | oo
A=A[u,D]
(284)

If all terms of higher order than T are neglected, it is evident from (283) that u(R) =
plu, D](R), and thus % — u(R) = h. Consequently, in the zero-order case, Eq. (284)

reduces to a local version of the BCS gap equation:

1 d3p/ D(R/,p')
DR, p) = Depi(R — d3R’/ RpR.p)——1-2 285
( 7p) ea:t( 7p) + 2/ (27‘(’77,)3 w( , Ps 7p) h2 T ‘D'Q ( )

If we then take the normal-state limit of Eq. (283) and use Eq. (263), the classical Thomas-

Fermi equation emerges:

9 2
Vzu(R) — 78\/56 3u3
3mh

We note in summarizing that there are two alternative ways at our disposal to formulate

+ 4me®neg(R) . (286)

the HK variational equations for superconductors: in terms of the densities n and A or,
on the other hand, in terms of the effective potentials u and D.

As a first approach to solve these equations for a realistic superconductor, one could
use a “good” potential u(R) (which can be obtained by performing a KS-calculation in
the corresponding normal-state system) to calculate h = % — u(R) and then, given this
h, solve the gap equation (285) to determine D(R, p).

Eq. (285) can also be obtained by taking the semiclassical limit of Gorkov’s equation
for the Green’s function (Bruder 1990). Our derivation has the advantage that it allows
for the systematic inclusion of inhomogeneity corrections and of xc contributions.

An interesting application consists in setting w(R,p,R’,p’) in (284) equal to zero.
The existence of a solution of the resulting differential equation would be an indication of

purely coulombic, inhomogeneity-induced superconductivity.

51



Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft. One of the
authors (E. K. U. G.) gratefully acknowledges the hospitality of Prof. John Dobson and
his group at Griffith University where part of this work was done under a DEET/ARC
International Research Fellowship. C. A. U. wishes to thank the Studienstiftung des

deutschen Volkes for a fellowship.

LDA BLYP PWoa1 OPM CI EXACT
He 2.833 2.9071 2.9000 2.9033 2.9049 2.9037
Li 7.343 7.4827 7.4742 7.4829 7.4743 7.4781
Be | 14.446 | 14.6615 | 14.6479 | 14.6651 | 14.6657 | 14.6674
B 24.352 | 24.6458 | 24.6299 | 24.6564 | 24.6515 | 24.6539
C 37.466 | 37.8430 | 37.8265 | 37.8490 | 37.8421 | 37.8450
N 54.129 | 54.5932 | 54.5787 | 54.5905 | 54.5854 | 54.5893
O 74.521 | 75.0786 | 75.0543 | 75.0717 | 75.0613 75.067
F

N

99.108 | 99.7581 | 99.7316 | 99.7302 | 99.7268 99.734
e | 128.227 | 128.9730 | 128.9466 | 128.9202 | 128.9277 | 128.939
A 0.384 0.0108 0.0114 0.0047 0.0045

Table 1: Total absolute ground-state energies for first-row atoms from various self-
consistent calculations. CI values from Montgomery et al. (1994). A denotes the mean
absolute deviation from the exact nonrelativistic value (Davidson et al. 1991). All numbers

in Hartree units.

52



References

Antoniewicz, P. R., and Kleinman, L. (1985). Phys. Rev. B 31, 6779.

Baraff, G. A., and Borowitz, S. (1961). Phys. Rev. 121, 1704.

Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957). Phys. Rev. 108, 1175.

Barth, U. von, and Hedin, L. (1972). J. Phys. C 5, 1629.

Becke, A. D. (1986). J. Chem. Phys. 84, 4524.

Becke, A. D. (1988). Phys. Rev. A 38, 3098.

Bishop, R. F., and Lithrmann, K. H. (1978). Phys. Rev. B 17, 3757.

Bishop, R. F., and Lithrmann, K. H. (1982). Phys. Rev. B 26, 5523.

Bruder, C. (1990). Phys. Rev. B 41, 4017.

Ceperley, D. M., and Alder, B. J. (1980). Phys. Rev. Lett. 45, 566.

Chevary, J. A., and Vosko, S. H. (1988). Bull. Am. Phys. Soc. 33, 238.

Cole, L. A., and Perdew, J. P. (1982). Phys. Rev. A 25, 1265.

Colle, R., and Salvetti, D. (1975). Theor. Chim. Acta 37, 329.

Colle, R., and Salvetti, D. (1979). Theor. Chim. Acta 53, 55.

Davidson, E. R., Hagstrom, S. A., Chakravorty, S. J., Umar, V. M., and Froese-Fischer,
C. (1991). Phys. Rev. A 44, 7071.

DePristo, A. E., and Kress, J. D. (1987). J. Chem. Phys. 86, 1425.

Dirac, P. A. M. (1930). Proc. Cambridge Phil. Soc. 26, 376.

Dobson, J. F. (1991). J. Chem. Phys. 94, 4328.

Dobson, J. F. (1992). J. Phys.: Condens. Matter 4, 7877.

Dobson, J. F. (1993). J. Chem. Phys. 98, 8870.

Dobson, J. F., and Rose, J. H. (1982). J. Phys. C 15, L1183.

Dreizler, R. M., and Gross, E. K. U. (1990). ‘Density Functional Theory: An Approach
to the Quantum Many-Body Problem’ (Springer: Berlin).

Dufek, P., Blaha, P., and Schwarz, K. (1994). Phys. Rev. B 50, 7279.

Engel, E., Chevary, J. A., MacDonald, L. D., and Vosko, S. H. (1992). Z. Phys. D 23, 7.

Engel, E., and Vosko, S. H. (1990). Phys. Rev. B 42, 4940.

Engel, E., and Vosko, S. H. (1993a). Phys. Rev. A 47, 2800.

Engel, E., and Vosko, S. H. (1993b). Phys. Rev. B 47, 13164.

Fermi, E. (1928). Z. Phys. 48, 73.

Geldart, D. J. W., and Rasolt, M. (1976). Phys. Rev. B 13, 1477.

Geldart, D. J. W., and Rasolt, M. (1987). In ‘The Single-Particle Density in Physics and
Chemistry’ (Eds N. H. March and B. M. Deb) pp. 151 ff. (Academic: London).

Gell-Mann, M., and Brueckner, K. A. (1957). Phys. Rev. 106, 364.

Gennes, P. G. de (1966). ‘Superconductivity of Metals and Alloys’ (Benjamin: New York).

Gill, P. M. W., Johnson, B. G., Pople, J. A., and Frisch, M. J. (1992). Chem. Phys. Lett.
197, 499.

Ginzburg, V. L., and Landau, L. D. (1950). Zh. Eksperim. i Teor. Fiz. 20, 1064.

Gorkov, L. P. (1959). Sov. Phys. JEPT 9, 1364.

53



Grabo, T., and Gross, E. K. U. (1995). Chem. Phys. Lett. 240, 141.

Grammaticos, B., and Voros, A. (1979). Ann. Phys. New York 123, 359.

Gross, E. K. U., and Dreizler, R. M. (1981). Z. Phys. A 302, 103.

Gross, E. K. U., and Dreizler, R. M. (Eds) (1994). ‘Density Functional Theory’, NATO
ASI Series B337 (Plenum: New York).

Gross, E. K. U, and Kohn, W. (1985). Phys. Rev. Lett. 55, 2850 [erratum ibid. (1986)
57, 923].

Gross, E. K. U., and Kohn, W. (1990). Adv. Quant. Chem. 21, 255.

Gross, E. K. U., and Kurth, S. (1991). Int. J. Quant. Chem. Symp. 25, 289.

Gross, E. K. U., and Kurth, S. (1993). In ‘Relativistic and Electron Correlation Effects
in Molecules and Solids’ (Ed. G. L. Malli), NATO ASI Series B318, pp. 367 ff.
(Plenum: New York).

Gross, E. K. U., Kurth, S., Capelle, K., and Liders, M. (1994). In ‘Density Functional
Theory’ (Eds E. K. U. Gross and R. M. Dreizler), NATO ASI Series B337, pp. 431
ff. (Plenum: New York).

Gross, E. K. U., Petersilka, M., and Grabo, T. (1996). In ‘Density Functional Methods
in Chemistry’, ACS, in press.

Hanke, W., Meskini, N., and Weiler, H. (1985). In ‘Electronic Structure, Dynamics,
and Quantum Structural Properties of Condensed Matter’ (Eds J. T. Devreese and
P. Van Camp), NATO ASI Series B121, pp. 113 ff. (Plenum: New York).

Harriman, J. E. (1981). Phys. Rev. A 24, 680.

Harrison, J. G., Heaton, R. A., and Lin, C. C. (1983). J. Phys. B 16, 2079.

Heaton, R. A., Harrison, J. G., and Lin, C. C. (1983). Phys. Rev. B 28, 5992.

Hohenberg, P., and Kohn, W. (1964). Phys. Rev. 136, B864.

Hu, C. D., and Langreth, D. C. (1985). Phys. Script. 32, 391.

Hu, C. D., and Langreth, D. C. (1986). Phys. Rev. B 33, 943.

Johnson, B. G., Gill, P. M. W., and Pople, J. A. (1992). J. Chem. Phys. 97, 7846.

Johnson, B. G., Gill, P. M. W., and Pople, J. A. (1993). J. Chem. Phys. 98, 5612.

Juan, Y.-M., and Kaxiras, E. (1993). Phys. Rev. B 48, 14944.

Kalia, R. K., and Vashishta, P. (1978). Phys. Rev. B 17, 2655.

Kirzhnits, D. A. (1957). Sov. Phys. JETP 5, 64.

Kirzhnits, D. A. (1967). ‘Field Theoretical Methods in Many-Body Systems’ (Pergamon:
London).

Kleinman, L. (1984). Phys. Rev. B 30, 2223.

Kleinman, L., and Lee, S. (1988). Phys. Rev. B 37, 4634.

Kohn, W. (1985). In ‘Highlights of Condensed Matter Theory’ (Eds F. Bassani, F. Fumi,
and M. P. Tosi) pp. 1 ff. (North-Holland: Amsterdam).

Kohn, W. (1986). Phys. Rev. B 33, 4331.

Kohn, W., Gross, E. K. U., and Oliveira, L. N. (1989). J. de Physique (Paris) 50, 2601.

o4



Kohn, W., and Sham, L. J. (1965). Phys. Rev. 140, A1133.

Kohn, W., and Vashishta, P. (1983). In ‘Theory of the Inhomogeneous Electron Gas’
(Eds S. Lundqvist and N. H. March) pp. 79 ff. (Plenum: New York).

Krieger, J. B., Li, Y., and Iafrate, G. J. (1992). Phys. Rev. A 45, 101.

Langreth, D. C., and Mehl, M. J. (1981). Phys. Rev. Lett. 47, 446.

Langreth, D. C., and Mehl, M. J. (1983). Phys. Rev. B 28, 1809 [erratum ibid. (1984)
29, 2310].

Langreth, D. C., and Perdew, J. P. (1975). Sol. State Comm. 17 1425.

Langreth, D. C., and Perdew, J. P. (1977). Phys. Rev. B 15, 2884.

Langreth, D. C., and Perdew, J. P. (1979). Sol. State Comm. 31, 567.

Langreth, D. C., and Perdew, J. P. (1980). Phys. Rev. B 21, 5649.

Langreth, D. C., and Perdew, J. P. (1982). Phys. Rev. B 26, 2810.

Lee, C., Yang, W., and Parr, R. G. (1988). Phys. Rev. B 37, 785.

Levy, M. (1979). Proc. Natl. Acad. Sci. USA 76, 6062.

Lieb, E. H. (1982). In ‘Physics as Natural Philosophy’ (Eds A. Shimony and H. Feshbach)
pp. 111 ff. (MIT Press: Cambridge).

Lieb, E. H. (1983). Int. J. Quant. Chem. 24, 243.

Lieb, E. H. (1985). In ‘Density Functional Methods in Physics’ (Eds R. M. Dreizler and
J. da Providencia), NATO ASI Series B123, pp. 31 ff. (Plenum: New York).

Ma, S. K., and Brueckner, K. A. (1968). Phys. Rev. 165, 18.

MacDonald, A. H., and Vosko, S. H. (1979). J. Phys. C 12, 2977.

Mahan, G. D., and Subbaswamy, K. R. (1990). ‘Local Density Theory of Polarizability’
(Plenum: New York).

Mermin, N. D. (1965). Phys. Rev. 137, A1441.

Miehlich, B., Savin, A., Stoll, H., and Preuss, H. (1989). Chem. Phys. Lett. 157, 200.

Montgomery, J. A., Ochterski, J. W., and Pertersson, G. A. (1994). J. Chem. Phys. 101,
5900.

Nambu, Y. (1960). Phys. Rev. 117, 648.

Norman, M. R., and Koelling, D. D. (1984). Phys. Rev. B 30, 5530.

Oliveira, L. N., Gross, E. K. U., and Kohn, W. (1988). Phys. Rev. Lett. 60, 2430.

Perdew, J. P. (1979). Chem. Phys. Lett. 64, 127.

Perdew, J. P. (1985). In “Density Functional Methods in Physics’ (Eds R. M. Dreizler
and J. da Providencia), NATO ASI Series B123, pp. 265 ff. (Plenum: New York).

Perdew, J. P. (1986a). Int. J. Quant. Chem. Symp. 19, 497.

Perdew, J. P. (1986b). Phys. Rev. B 33, 8822 (erratum ibid. B 34, 7406).

Perdew, J. P. (1991). In ‘Electronic Structures of Solids 91’ (Eds P. Ziesche and H. Es-
chrig) (Akademie-Verlag: Berlin).

Perdew, J. P., and Levy, M. (1983). Phys. Rev. Lett. 51, 1884.

Perdew, J. P., Parr, R. G., Levy, M., and Balduz, J. L. (1982). Phys. Rev. Lett. 49, 1691.

Perdew, J. P., and Wang, Y. (1986). Phys. Rev. B 33, 8300.

55



Perdew, J. P., and Wang, Y. (1992). Phys. Rev. B 45, 13244.

Perdew, J. P., and Zunger, A. (1981). Phys. Rev. B 23, 5048.

Pople, J. A, Gill, P. M. W., and Johnson, B. G. (1992), Chem. Phys. Lett. 199, 557.

Rajagopal, A. K. (1978). J. Phys. C 11, L943.

Rajagopal, A. K., and Callaway, J. (1973). Phys. Rev. B 7, 1912.

Ramana, M. V., and Rajagopal, A. K. (1983). Adv. Chem. Phys. 54, 231.

Rasolt, M. and Geldart, D. J. W. (1975). Phys. Rev. Lett. 35, 1234.

Rasolt, M. and Geldart, D. J. W. (1986). Phys. Rev. B 34, 1325.

Runge, E., and Gross, E. K. U. (1984). Phys. Rev. Lett. 52, 997.

Sander, L. M., Shore, H. B., and Sham, L. J. (1973). Phys. Rev. Lett. 31, 533.

Sham, L. J. (1971). In ‘Computational Methods in Band Theory’ (Eds P. J. Marcus,
J. F. Janak, and A. R. Williams) pp. 458 ff. (Plenum: New York).

Sham, L. J. (1985). Phys. Rev. B 32, 3876.

Sham, L. J., and Schliiter, M. (1983). Phys. Rev. Lett. 51, 1888.

Sham, L. J., and Schliter, M. (1985). Phys. Rev. B 32, 3883.

Sharp, R. T., and Horton, G. K. (1953). Phys. Rev. 90, 317.

Svane, A. (1994). Phys. Rev. Lett. 72, 1248.

Svane, A., and Gunnarson, O. (1990). Phys. Rev. Lett. 65, 1148.

Szotek, Z., Temmerman, W. M., and Winter, H. (1993). Phys. Rev. B 47, 4092.

Szotek, Z., Temmerman, W. M., and Winter, H. (1994). Phys. Rev. Lett. 72, 1244.

Taruishi, K., and Schuck, P. (1992). Z. Phys. A 342, 397.

Talman, J. D., and Shadwick, W. F. (1976). Phys. Rev. A 14, 36.

Temmerman, W. M., Szotek, Z., and Winter, H. (1993). Phys. Rev. B 47, 11533.

Theis, W. R. (1955). Z. Phys. 142, 503.

Thomas, L. H. (1927). Proc. Cambridge Phil. Soc. 23, 542.

Ullrich, C. A., Gossmann, U. J., and Gross, E. K. U. (1995). Phys. Rev. Lett. 74, 872.

Vignale, G., and Rasolt, M. (1987). Phys. Rev. Lett. 59, 2360.

Vignale, G., and Rasolt, M. (1988). Phys. Rev. B 37, 10685.

Vosko, S. H., Wilk, L., and Nusair, M. (1980). Can. J. Phys. 58, 1200.

Vosko, S. H., and MacDonald, L. D. (1987). In ‘Condensed Matter Theories, Vol. 2’ (Eds
P. Vashishta, R. K. Kalia, and R. F. Bishop) pp. 101 ff. (Plenum: New York).

Wacker, O.-J., Kimmel, R., and Gross, E. K. U. (1994). Phys. Rev. Lett. 73, 2915.

Wilson, L. C., and Levy, M. (1990). Phys. Rev. B 41, 12930.

Weizsicker, C. F. von (1935). Z. Phys. 96, 431.

Wigner, E. P. (1932). Phys. Rev. 40, 749.

Wigner, E. P. (1934). Phys. Rev. 46, 1002.

Wigner, E. P. (1938). Trans. Farad. Soc. 34, 678.

Zhu, T., Lee, C., and Yang, W. (1992). J. Chem. Phys. 98, 4814.

Zumbach, G., and Maschke, K. (1983). Phys. Rev. A 28, 544 [erratum ibid. (1984) 29,

1585).

56



