Many-electron atoms in strong
femto-second laser pulses:
a density-functional study

Abstract

The fundamental concept of time-dependent density functional theory is to describe the
dynamics of an interacting many-particle system exclusively and completely in terms of
its time-dependent density. We give a short overview of the basic theorems including an
extension of the formalism to a unified treatment of electronic and nuclear motion. The
density-functional approach is then applied to describe neon atoms in strong laser fields
on a non-perturbative all-electron level, i.e. beyond the so-called single-active electron ap-
proximation. We study multiphoton ionization and harmonic generation from 248-nm KrF
laser pulses in neon and compare calculated harmonic spectra with recent experimental
data.
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1 Introduction

The great variety of new and often unexpected phenomena observed in experiments on
atoms interacting with very strong laser pulses has stimulated a large number of theoret-
ical studies in the last years.l>2 In the high-intensity regime, perturbation theory must
necessarily fail, so that one in principle has to solve the full time-dependent many-particle
Schrodinger equation in order to arrive at a correct description of the electron dynamics
of an atomic system in a strong laser field.

To date, most of the theoretical activity in this area has focused on the simplest system,
the hydrogen atom, where the complications due to electron-electron interaction are absent
and fully numerical solutions of the time-dependent Schrodinger equation can be obtained
with comparatively low effort.3:4 Such a strategy becomes of course tremendously involved
as soon as one deals with atoms having more than one electron; some progress® has been
made very recently, however, in propagating the full two-electron wave function of helium
in all three spatial dimensions.

All other studies dealing with many-electron atoms in strong laser fields have made
use of more or less severe approximations to reduce the problem to a tractable size. In
the single-active electron (SAE) model,*:%:7 for example, the time-dependent Schrodinger
equation is solved for only one “active” electron while the remaining electrons are frozen in
their initial configuration, their influence on the active electron being simulated by a static
model potential. This strategy successfully models the screening of the nuclear charge by
the inner electrons, but cannot describe collective effects arising from electronic correlation.
More sophisticated methods such as the R-matrix Floquet formalism® allow for systematic
improvement by including more field-free atomic basis states. Floquet methods, however,
are only applicable to long laser pulses. Time-dependent configuration-interaction (CI)
methods™? are applicable to arbitrarily short pulses but they are limited by the speed
and storage capacity of present-day computers to very small atoms. Other approaches
reducing the complexity of the many-electron problem consist for example in the study of
model systems with lower dimensionality'® or a classical or semiclassical treatment of the
electronic motion.1112

In this paper we present an approach to study the electron dynamics of many-electron
atoms in strong laser fields which is based on time-dependent density functional theory
(TDDFT). The method allows for the interaction of all atomic electrons with the laser
field and as such has some similarities with the time-dependent Hartree-Fock (TDHF)
method.13:1%15 In contrast to the latter, however, the TDDFT approach is embedded
in a formal framework which makes it in principle exact and, besides that, it is also
numerically easier to implement than TDHF. Density functional theory (DFT) is based
on the insight16 that an interacting many-particle system, usually characterized by its full
many-body wave function, may as well be exclusively and completely described in terms of
its density. The key point is that the latter can be obtained without solving the full many-
body Schrodinger equation but rather as density of an auxiliary system of non-interacting
particles moving in an effective local single-particle potential (the so-called Kohn-Sham!7
potential). In the original work of Hohenberg, Kohn and Sham!6:17 these theorems were



proven for the ground-state density of static many-body systems. On the basis of these
theorems, DFT has provided an extremely successful description of ground-state properties
of atoms, molecules and solids.!8:19 The accuracy of approximations for the Kohn-Sham
potential has steadily improved over the years and the currently best functionals yield
ground-state properties in very close agreement with configuration interaction results.2

DFT of time-dependent systems is of more recent origin.2!-24 The important theorems
stated above have been shown to hold true for the time-dependent density as well.2l An
overview of the formal framework of TDDFT will be given in section 2. As a promising
new development we include the extension of the formalism to treat electronic and nuclear
motion in a unified way.

So far, TDDFT has been applied almost exclusively in the regime of linear response
(for recent reviews see Refs. 22-26). There is, however, a growing activity in the field of
cluster physics where non-perturbative TDDFT methods are used to describe effects such

27-29 and electron escape.? In section 3, we present numerical

as collective oscillations
results for multiphoton ionization and harmonic generation of the neon atom in intense

248-nm KrF laser fields obtained from non-perturbative all-electron TDDFT calculations.

2 Time-dependent density functional formalism

2.1 One-to-one mapping between time-dependent densities and poten-
tials

The time evolution of a system of N electrons is governed by the time-dependent
Schrodinger equation
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(atomic [Hartree] units are used throughout) with the total Hamiltonian H(t) composed
of the kinetic energy 7' of the electrons, their mutual Coulomb interaction W and an
explicitly time-dependent external potential V (£):
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If we describe for example an atom in a strong laser field, vext(rt) consists of the static
Coulomb potential of the nucleus plus a time-dependent part caused by the laser.
TDDFT is based on the existence of an exact one-to-one mapping between time-
dependent densities and external potentials. We investigate the densities n(rt) of electronic
systems evolving from a fized initial (many-particle) state ®(ty) = @ under the influence
of different external potentials veyt(rt). Each external potential leads, via solution of the
Schrodinger equation (1), to a time-dependent many-body wave function ®(t). For a fixed
initial state ®, this defines a map

A ¢ Vext (rt) — D(2) (3)

between the external potentials and the corresponding time-dependent many-particle wave



functions. By virtue of the density operator

n(r) = gé(r -r;) (4)

a second map

B: ®(t) — n(rt) = (B(t)[A(r)[ (1) (5)

is established between the many-particle wave functions and the time-dependent densities.
The heart of TDDFT is the proof of invertibility of the combined map G = B o A:

G : Vext(rt) — n(rt) . (6)

The invertibility of this map was first proven by Runge and Gross.?! Accordingly, two

densities n(rt) and n'(rt) evolving from a common initial state ®; under the influence

!

vt (rt) always become different infinitesimally later than

of two potentials vext(rt) and v
to, provided that the potentials differ by more than a purely time-dependent function
c(t). The set of potentials for which invertibility can be shown comprises all potentials
expandable in a Taylor series with respect to the time coordinate around the initial time

to- Having established the existence of the inverse map
G in(rt) — Ve (rt) +c(t) (7)

subsequent application of the map A tells us that the full many-particle wave function is
a functional of the time-dependent density, unique up to within a purely time-dependent
phase a(t):

o(t) = e Oun)(t) . (8)

As a consequence, the expectation value of any quantum mechanical operator Q(t) is a
untque functional of the density:

QI(t) = (T[)(1)IQ®)T[n](1) (9)

The ambiguity in the phase cancels out (provided that Q(t) contains no time derivatives).
Moreover, any transition amplitude, i. e. any S-matrix element

(@15]@:) (10)

between some initial many-body state ®; and some final many-body state @ is a functional
of the time-dependent density once the states ®; and ®; are specified. This is because
the S-operator is uniquely determined by the Hamiltonian (2), i. e. S = S[H], and the
Hamiltonian, by virtue of the map (7), is uniquely fixed by the time-dependent density,
so that

S =S[H[q]] . (11)

In practice, some quantities may be easily calculated from the density, while other observ-
ables are more difficult to extract. Examples for both cases will be found in section 3. But,
as a matter of principle, all physical observables are determined by the time-dependent
density alone.



2.2 Time-dependent Kohn-Sham scheme

The 1-1 correspondence between time-dependent densities and time-dependent potentials
can be established for any given interaction W, in particular also for W = 0, i. e. for
non-interacting particles. Therefore, if n(rt) is a given density, the potential v(rt) of
non-interacting particles that reproduces n(rt) is uniquely determined, v(rt) = v[n](rt),
i. e. the given density n(rt) can be calculated from

N
n(rt) = 2_: |9;(rt)[? (12)

with the single-particle orbitals ¢;(rt) satisfying
2

i%(ﬁj(rt) = <—V7 + U[n](rt)> pj(rt) . (13)

Whether or not v(rt) actually ezists for an arbitrary given density n(rt) is an open question
in the time-dependent case*. But if it exists it is unique. If one chooses for n(rt) the density
of the interacting system of interest [i. e. the density of Coulomb-interacting particles
moving in the external potential wvey(rt)] then the potential v[n] is termed the time-
dependent Kohn-Sham (TDKS) potential. The latter is usually decomposed into the
external potential, a time-dependent Hartree part and the so-called exchange-correlation
(xc) potential:

n(r't)

0[] (£t) = vext (t) + / B S ) (14)

The xc potential is a universal functional of the density, i. e. it has the same functional
dependence on n for all Coulomb systems, independent of the particular external potential
Vext Of the system at hand.

As in the static case, the great advantage of the TDKS scheme lies in the fact that
one can avoid solving the full Schrodinger equation (1) but still in principle obtains the
exact n(rt). Besides, compared to other methods such as TDHF or time-dependent CI,
the TDKS approach is computationally relatively simple due to the fact that vy is a local
potential in configuration space.

The basic formalism is easily extended to spin-polarized systems.31 In that case the
xc potential depends on the spin densities

No
na(rt) = Z |¢ja(rt)|2 , o =1l (15)
j=1
with N =} N,, and the spin orbitals ¢;,(rt) satisfy the single-particle equations
.0 Vv?
Za‘/ﬁja(rt) “\ T + vo[ny, ny](rt) | ¢jo(rt) (16)

*This question is termed the v-representability problem. In the static case, the question could be
answered in a satisfactory way. For a review of the static v-representability problem see, e. g., chapter 4.2
of Ref. 18.



with
nqy(r't) + ny(r't)
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Vg [ng, ny|(rt) = Vexto (Tt) + /d3r' + Uxeo[np, my](rt) . (17)

In practice, the xc potential vygcs[n4,n](rt) has to be approximated. The simplest possible
form is the so-called adiabatic local density approximation (ALDA):

delo™ (ng, my)

LALDA
Uxco [nT’ nJ,] (I‘t) an ) (18)
g Ng=ng (rt)
where eto™ (n4,my) is the xc energy per volume of the homogeneous spin-polarized electron

gas. One might expect this approximation to be good only for systems where the n4 and
n are sufficiently slowly varying in space as well as in time. However, contrary to this
expectation, it is well known!8 that in the static limit the LDA performs quite well even for
strongly inhomogeneous systems such as atoms, molecules and solids. Correspondingly, the
ALDA in practice gives quite good results even for cases of rather rapid time dependence.
In the exchange-only case (to which we shall restrict ourselves in the following), one
explicitly obtains

W=

v DA (xt) = = (6ng(rt) /7)

XO' (19)
The ALDA is local both in space and time, i. e. vy (rt) only depends on the density values
at the very same time ¢t and the very same location r. Recently, a different time-dependent
xc potential has been proposed which is tailored for the description of memory effects.24,32
In this approximation vy (rt) depends on the density values n(r't’) at other locations r’
and earlier times ¢’ < ¢. Both approximations have in common that they are based on the

homogeneous electron gas.

2.3 Time-dependent optimized effective potential

d23,24,33,34 ¢ constructing approximations of

We have recently developed a new metho
Uxeo Which also takes memory effects into account but does not make use of the theory of
the homogeneous electron gas. The approach can be viewed as a time-dependent extension
of the so-called optimized potential method (OPM). As before, the description of the time
evolution of an N-electron system with a given initial state is achieved in terms of a set
of time-dependent spin orbitals {¢;,(rt)} obeying a single-particle Schrodinger equation
(16). The difference compared to conventional density-functional schemes is that the
time-dependent xc potential appearing in Eq. (17) will now be given as a functional of the
orbitals {¢;js(rt)} rather than the spin densities. To construct it, we start with the total

quantum mechanical action

Al{djo}] = / dt /d% : (xt) ( gt V2 vexw(rt)> b5 (xt)

_ dt/d3 /d3 r rt r‘t) — Axl{$jo}] (20)

written as a functional of the spin orbitals {qﬁjg(rt)}. We associate the action functional
(20) with a system which has been in its ground state for all times up until some finite time
to- At tp, the external potential becomes explicitly time-dependent, and we follow the time



evolution of the system up to some arbitrary later time ¢1. The xc part Ax.[{¢;c}] of the
total action (20) has to be approximated in practice. If all correlation effects are neglected
(x-only case) then Ay, is constructed from the usual Fock exchange energy functional as

=——ZZ [ e[y [y ST D)

v =

We now use a stationary action principle with respect to the orbitals under the constraint?
that the orbitals satisfy the single-particle Schrodinger equation (16) featuring the local
potential v, (rt). This leads to the following variational equation:

5AL{450 ] Z [t o o) Stsle) .

dvg (rt) (r't)  dv,(rt) R ’

(22)

where c.c. denotes the complex conjugate. The first functional derivative, dA/d¢;,, is
easily obtained from the given action functional, and to calculate d¢;,/dv, one makes use

of time-dependent perturbation theory. One thus arrives at the following integral equation

for the optimized xc potential:33

zz [ [ [M 0085, (5%) ) K o1 07)

+ cc. =0 (23)

with the kernel K, (rt,r't") = Y72 ¢} (rt) o (r't") 0(t — ¢'). The numerical implementa-

tion of the full TDOPM scheme is an extremely demanding task: at each time step one

OPM

has to solve the integral equation (23) for vOFM.

For this reason, we have developed a
simplified scheme33 similar to the one proposed by Krieger, Li and Iafrate (KLI)3° for the

OPM

ol as ezxplicit functionals of the orbitals. In

static case which yields approximations to v
the x-only case, these approximations are given by

vt (rt) = wy, (rt)

/ &' njo (20K M (') (24)

with
1 No i ,¢ka(1"t) * ( ’t)
Wxo(rt) = = ne(rt) ]Zk lqﬁja(rt)%o(rt) /d3r r — r’|
_ njg'(rt) /d37‘”/d37”l ¢j0(r”t)‘ﬁza(‘i:it)_‘ﬁﬁ;r'(r,t) ;a(rlt) : (25)

where nj,(rt) = |¢;,(rt)|?. Eq. (24) still has to be solved for vXL! which is done in analogy
to the static case,3? the solution only involving the inversion of a (N, — 1) x (N, — 1)
matrix.

The full x-only OPM potential constitutes the exact x-only limit of TDDFT. It is
distinguished from TDHF by the fact that the OPM exchange potential is local and

therefore numerically favourable. We emphasize that the x-only TDOPM should not be

"Without this constraint, one arrives at the TDHF equations (using Eq. (21) for Axc).



considered as merely a local approximation to TDHF. Apart from its numerical simplicity
the x-only OPM is also physically superior to HF. This is most easily appreciated in
the static limit: The static OPM orbitals (both occupied and unoccupied ones) are self-
interaction free. By contrast, in HF only the occupied orbitals are self-interaction free
while the unoccupied ones have a serious self-interaction error which causes them to be
much too weakly bound. Since time-dependent external fields will cause transitions to
the virtual orbitals (which are poorly represented in HF) we expect the x-only OPM to
be more accurate than TDHF, even if the full OPM exchange potential is approximated
by the KLI potential (24). The KLI potential (24) is significantly more accurate but also
numerically more involved than the ALDA potential (19).

2.4 Motion of the nuclei

The formalism developed so far is adequate whenever the motion of the nuclei can be
neglected. Then the electron-nucleus interaction only enters as a static contribution to
Uext- Lhis is a good approximation for atoms in strong laser fields above the infrared
frequency regime. When the nuclei are allowed to move, the nuclear motion couples
dynamically to the electronic motion and the situation becomes more complicated.

We now present a TDDFT for systems consisting of N electrons and N4 nuclei of
charge Z4 and mass My (in a.u.), A = 1,..., K (K is the number of different nuclear
species). The configuration space vector of the ath nucleus of species A is denoted by
R 4o. Then the complete system of electrons and nuclei is described by the Schrodinger
equation

.0 . .
1 5 U(ry...ry, {Raa},t) = [He(rl .ty t) + Hy({Raa ks t)

+ﬁen(r1...rN,{RAa})]\IJ(rl...rN,{RAa},t) (26)

with the electronic Hamiltonian

NN v 1 1
He = Z (—Tl +’Uext(rit)> + 5 Z_ m 5 (27)
=1 i,j=1 J
i#j
the nuclear Hamiltonian
K Ny R 1 K N4y K Np ZAZB
n_22< Vi |y (RAQ)) 10 5 D5 ) pisece e
A=1a=1 A-1la=1B=1p=1 I vAc Bp
(Ac)#(Bp)
and the electron-nucleus interaction
N K Ny
) (29)
2 2PN v

Li and Tong3® have extended the Runge-Gross theorem discussed in section 2.1 to arbitrary
multicomponent systems. In the following we apply this work to the coupled system of
electrons and nuclei described above. First of all, there exists a rigorous 1-1 mapping



between the set of external potentials and the set of electronic and nuclear densities:
{vext (xt); Vo (RE), ..., VISR } 45 {n(rt); m(Re), ... ,nc(RY)} . (30)

Once again, this 1-1 correspondence is valid for a fixed initial many-body state
U(ry...rn,{Raa},t0). It is then possible to derive the following set of coupled TDKS
equations featuring electronic and nuclear single-particle wave functions ¢; and ¥ 44:

) V2 .
i 05(rt) = <—7 +v[n, {ns}](rt)> ¢j(rt) , j=1,...,N (31)
) V2 A=1,.. K

2 aa(RE) = ( i+ Vi, {nB}](Rt)> vaaRe), {J710 @)

with the electronic density (12), the nuclar densities

Na
= > n4a(RE), naa(RE) = [aa(RE)P (33)
and the KS potentials

oln, {5 }](et) = v (x0) + [’ 2 Z [ Z ) el e 34

VA, {np}](Rt) = Vi (Rt) — Za / d*r’ |£(i?,|
+Z4 Z / d3R'ZB"B fli’lt) + Vi, {ns}](RY) . (35)

Clearly, a complete numerical solution of the coupled KS equations (31), (32) will be
rather involved. As a first simplification, one could reserve a fully dynamic treatment
to the valence electrons only and take the core electrons into account by suitably cho-
sen pseudopotentials.3” This procedure reduces the number of electronic KS equations
considerably.

Further simplification can be achieved by treating the nuclear motion classically. Nu-
merical schemes of this type have been derived in various wa,ys.24’37'40 One obtains a
set of TDKS equations for the electrons coupled to a set of classical Newton equations
describing the nuclear motion.

Regardless of the obvious numerical advantages one has to keep in mind that a classical
treatment of nuclear motion is justified only if the probability densities n4,(R%) remain
narrow distributions during the whole process considered. The splitting of the nuclear
wave packet as observed, e. g., in pump-probe experiments*!-44
of Hy in strong fields 45,46

or during the dissociation
cannot properly be accounted for by treating the nuclear motion
classically. In this case, one has to face the complete system (31)—(35) of coupled TDKS
equations for electrons and nuclei.



3 Neon: beyond the single-active electron approximation

3.1 Numerical method

In this section we present the results of full TDDFT calculations for the neon atom in a
strong laser field. We have solved the TDKS equations (13) for the Ne valence electrons
using the TDKLI and ALDA xc potentials in the x-only approximation. The external
potential is given by

10

vext (rt) = Ey f(t) z sin(wgt) — " (36)

The laser field, assumed to be linearly polarized along the z direction, has been written in
dipole approximation in the usual length form, with peak field strength Ey and frequency
wp. The envelope function, f(¢), is such that the laser is linearly ramped to its maximum
amplitude and then held constant.

Due to the linear polarization of the laser field, rotational symmetry of the system
around the z-axis is preserved for all times. We thus solve the TDKS equations in two
dimensions, using a finite-difference scheme in cylindrical coordinates following Kulander.3
The calculation is done on a finite non-uniform grid (mesh spacings between 0.035 and
0.28 a) similar to Pindzola et al.1® The spatial extent of the mesh is about 20a.u. X 60a.u.,
the number of grid points is 32010.

In Table 1 we give the energy eigenvalues resulting from a diagonalization of the sta-
tionary KS equations on our two-dimensional grid. We first note that there is a slight
difference (about 3 mHartrees) between the eigenvalues of the 2py and 2p; orbitals due
to their different orientations on the grid: the 2pg orbital is oriented along the z-axis, the
2p; orbitals perpendicular to it. By choosing a larger grid size and smaller mesh spacings,
this energy difference can be further reduced. A comparison with the exact values from
the literature3®47 shows that the average of the 2p orbital energies is too small by 4.9%
(41 mHartrees) for KLI and 6.5% (29 mHartrees) for LDA. The 1s and 2s electrons, on
the other hand, are overbound by about 12%. These deviations are due to the relative
coarseness of the grid in the vicinity of the nucleus which keeps the number of grid points
manageable.

For the case of neon and also in general, the KLI eigenvalues are found to be much
closer to the HF results than the LDA eigenvalues. This difference is most important for
the energy of the highest occupied orbital, which, in exact DFT, is identical with the first
ionization potential.!® The 2p LDA eigenvalue of Ne is too small by almost 50%, whereas
the exact KLI result agrees with the HF ionization potential within 1 mHartree (0.1%).
This is a direct consequence of the self-interaction error in LDA. We mention that the
experimental ionization potential is 0.792 Hartrees.

The grid has an absorbing boundary which keeps the propagated orbitals from be-
ing reflected at the edges. The finite boundary also allows us to simulate ionization by
calculating the number of electrons

N(t) = / &r n(rt) (37)

finite
volume

10



found at time ¢ within the finite volume of the grid. Assuming that the electron flux ab-
sorbed at the grid boundary corresponds to the continuum part of the full time-dependent
wave function, the quantity N (¢) can be identified with the number of electrons remaining
in a bound state at time ¢. This identification has proven to be a useful definition of the
bound-state occupation probability in a number of applica,tions.3’4’48

In the following, we label the TDKS single-particle orbitals in Eq. (13) by their ground
state quantum numbers at the initial time ¢ = 0. To simplify the calculation, the 1s
electrons have been frozen, i. e. we propagate only the 2s and 2p electrons by solving the

TDKS equations, whereas the time evolution of the 1s electrons is given by

1s(rt) = ¢rs(rtg) e Fert0) (38)

We emphasize that the only approximation made in this frozen-core prescription is to
write the frozen orbitals in the form (38). The exchange between the frozen orbitals and
the other orbitals is fully included in the TDKLI or ALDA potentials. In this respect,
our scheme differs from other frozen-core prescriptions such as, e. g., used in the SAE
approach.®%7 In view of the high binding energy of the 1s electrons compared to the
other electrons (see Table 1), freezing only the 1s electrons is expected to be a very good
approximation for the neon atom. Later we shall discuss the effect of additionally freezing
electrons of the valence shell and only propagating the most loosely bound, i. e. the 2pg
orbital.

3.2 Ionization

Fig. 1 shows the time-dependent norm

N;(t) = / &r |¢;(xt)|? (39)

finite
volume

of the Ne orbitals initially in the 2s, 2pg and 2p; states for the laser wave length A = 248nm
and intensity 7 = 3 x 10'® W/cm?. The pulse has been linearly ramped over the first ten
cycles and is then kept constant for another 15 cycles. As expected, the 2s orbital is the
least ionized of the three orbitals (only 0.3% ionization for TDKLI and 1.9% for ALDA
at the end of our calculation). A little surprising at first sight, the 2py and 2p; orbitals
differ by about an order of magnitude in their degree of ionization (60% for the 2py orbital
compared to only 4.75% for the 2p; orbital within TDKLI, and 56% for the 2pg compared
to 7.7% for the 2p; orbital within the ALDA). This difference has been observed before
by Kulander549 for the case of xenon (within the SAE model). It is due to the fact that
the 2pg orbital is oriented along the polarization direction of the laser field, which makes
it easier for the electrons to escape the nuclear attraction than for the case of the 2p;
orbital, which is oriented perpendicularly to the field polarization.

To explain the difference between the results obtained within the TDKLI and ALDA
schemes shown in Fig. 1, let us again consider Table 1. Interpreting the KS energy eigen-
values in the spirit of Koopmans’ theorem (though this is not rigorously justified except
for the highest eigenvalue), we observe that it takes 5 photons to ionize the 2p orbitals in
TDKLI compared to only 3 photons in ALDA. Similarly, it takes 11 photons to ionize the

11



2s orbital in TDKLI and only 9 in ALDA. The difference between the curves in Fig. 1A
and C is thus hardly surprising. On the other hand, it seems quite unexpected that the
ALDA and TDKLI curves cross in Fig. 1B so that the ALDA curve ends up lying above
the TDKLI curve. This behaviour can be attributed to the fact that the other orbitals
are ionized much more strongly in ALDA than in TDKLI, so that their electron density
near the nucleus (and therefore their screening of the nuclear charge) is decreased. This
makes it slightly more difficult for the 2pg electrons to escape within the ALDA scheme.

To establish a link with experiment, one wants to calculate probabilities of finding the
neon atom at a time ¢ > tg in one of the possible charge states k to which it can ionize.
According to the basic theorems of TDDFT stated in section 2.1, these probabilities P*(t)
are unique functionals of the total time-dependent density n(rt),

P*(t) = P*n)(1), E=0,...,+8 . (40)

Yet, these probabilities cannot be straightforwardly written as explicit functionals of n(rt)
except for simple cases such as the helium atom*® with only one occupied orbital. In-
stead, it is possible to derive explicit expressions for the P¥(t) in terms of the orbital
densities n;(rt). Since the Kohn-Sham single-particle orbitals have no rigorous physical
meaning, one must consider these P¥[{n;}](¢) only as a reasonable approximation to the
exact probabilities (40). To obtain these expressions, we make use of some combinatorial
considerations which, for closed-shell systems, lead us to the following identification:

S P =T [V + 0 - Nw)] (41)
k

j

The summation index k on the left-hand side of Eq. (41) runs over all possible charge states,
and the index j in the product runs over all (doubly occupied) Kohn-Sham orbitals. It
is easy to see that both sides of Eq. (41) are separately equal to unity. The factors
[N;(t) + (1 — N;(t))]? of the product account for the fact that each orbital represents
two particles which, independently of each other, are either bound (probability N;(t)) or
ionized (probability 1 — N;(t)). For our case of the neon atom, we thus have (omitting the
time argument of the N;)

+8 2 2 4
SOPE(t) = [Nag+ (1= Nay)| " [Napg + (1= Nagg)| [Nap, + (1= Nop,)|” (42)
k=0

(remember that the 1s orbital is kept frozen). We then work out the right-hand side of
Eq. (42) and rearrange the resulting terms, collecting terms containing k factors (1 — N;)
and (8 — k) factors N;. These are then associated with the probabilities P*(¢), and we
obtain:

PO(t) = N3 N3y Nop, (43)
+1 _ 2 4 2 4
P (t) = 2Ny(1-— Ngs)N2p0N2p1 + 2NQSN2p0(1 — szo)NQDI
+ 4N225N22p0N§p1 (1 - N2P1) (44)
PH8(t) = (1= Nas)*(1 — Napy)*(1 — Nap,)* . (45)

12



The populations of the charge states as calculated using TDKLI are displayed up to Net3
in Fig. 2 (same laser parameters as in Fig. 1) and up to Net? in Fig. 3 (higher laser
intensity, I = 5 x 10> W /cm?, linear ramp over the first 5 cycles). Higher charge states
are not visible due to the linear scale of the plots. The results of the ALDA calculations are
very similar to the TDKLI results. In Table 2 we give for both schemes the probabilities
of finding the Neon atom in one of the charge states 0 through 48 for both sets of laser
parameters after 25 and 20 optical cycles, respectively. We see that the values extend over
more than 10 orders of magnitude. For the laser parameters used, a complete stripping of
the valence shell is of course extremely unlikely.

Let us now consider Fig. 2. We see that the probability for Net! has reached its
maximum at about the 14th cycle and then slowly decreases, while the probability for
Net?2 is still growing. At the 25th cycle, P*! is slightly higher than P72 (0.419 compared
to 0.378), and both are higher than P° = 0.130. The lowest probability visible on a
non-logarithmic scale is P*3, which is 0.0673 at the 25th cycle.

The distribution of the charge states is different at the higher laser intensity of I =
5 x 10'° W/cm?, see Fig. 3. We have to keep in mind, however, that the switching-on of
the pulse was performed with a shorter, 5-cycle ramp. PT! reaches its maximum between
the 6th and 7th cycle and then goes down again. In contrast to Fig. 2, the curves for
Pt and P12 cross after about 9.5 optical cycles, and at the end of the simulation after
the 20th cycle the doubly charged Ne ions clearly dominate: P2 = 0.510 compared to
Pt =0.291 and P*3 = 0.138. The probability for the Ne atom to stay neutral is only
0.0452 at the end of the calculation. The lowest visible charge state in our plot is now the
+4 state with P4 = 0.0151 at the 20th cycle. Of course, for the parameters of Fig. 2, a
cross-over between P*! and P*2 will also occur, but for much later times (¢ > 25 optical
cycles).

In order to make contact with experimental ion yields??:°!1 the above probabilities
Pk(t) have to be calculated for various intensities and then folded with a realistic spatial
pulse profile.

3.3 Harmonic generation

To simulate harmonic generation of the neon atom, we calculate the induced dipole mo-
ment d(t) = [d3r zn(rt) which is then Fourier transformed over the last 5 cycles of the
constant-intensity interval. The square of the resulting Fourier transform, |d(w)|?, has
been shown®? to be proportional to the experimentally observed harmonic distribution to
within a very good approximation.

We have calculated the harmonic spectra for both sets of laser parameters (Figs. 4A
and B). We see that for the lower intensity, I = 3 x 10! W/cm?, the plateau extends up
to the 23rd harmonic, whereas for I = 5 x 10! W/cm? it goes up to the 33rd harmonic,
both within ALDA and TDKLI.

We compare our calculated harmonic distributions with experimental data by Sarukura
et al.3 The experiment was performed with a KrF laser (A = 248 nm) at a pulse duration

of 280 femtoseconds and a peak intensity of 4 x 107 W/cm?. The experimental peak
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intensity is two orders of magnitude higher than the intensities used in our calculations.
It is to be expected, however, that the atoms have become completely ionized by the time
the pulse reaches its maximum. The detected harmonic radiation must therefore have
been induced during the rise time of the pulse, probably in an intensity range close to the
intensities used in our calculations.

The experimental data points shown in Figs. 4A and B have both been normalized
to the value of the 17th harmonic (within TDKLI) in Fig. 4A. At 3 x 10' W/cm?, we
see that the calculated spectra can explain the measured harmonics 15 to 21, whereas
the harmonics 17 to 25 (with the exception of the strongly suppressed 25th harmonic
for ALDA and the a little less strongly suppressed 21st harmonic for both schemes) are
explained by the spectrum at 5 x 10> W/cm?
generation of the harmonics 15 to 25 is dominated by the intensity range covered in our

. Hence, our calculations show that the

calculations. We can match this part of the experimental harmonic distribution pretty
well by a superposition of the two TDKLI spectra with equal weights. This corresponds to
the experimental situation where the harmonic photons generated on different positions
in the laser focus (and, therefore, coming from regimes with different laser intensities) are
superimposed in the detector. An equal-weight superposition of the two ALDA spectra
agrees somewhat less accurately with the experimental spectrum.

In order to explain the same experimental data, Kondo et al.>* have performed numer-
ical simulations based on a simple atomic model (a single electron in a short-range model
potential). They calculated the harmonic spectrum for neutral Ne at 4.5 x 1014 W /cm?, for
Net! at 1.8 x 10 W/cm? and for Net? at 4.8 x 1015W /cm?. By a suitable superposition of
these single-electron spectra, they reproduced the qualitative features of the experimental
harmonic distribution. The authors attributed the harmonics above the 11th to Ne*! and
the harmonics above the 21st to doubly charged Ne.

We come to a similar conclusion by considering the populations of the ionized states of
the Ne atom as given in Figs. 2 and 3 and in Table 2. For the intensity 3 x 10> W /cm?, we
find a slightly higher probability for Net! than for Ne*2. Thus, the harmonics up to the
21st are most probably caused by Net!. At the higher intensity, we find that the doubly
charged Ne ions are prevailing. We can therefore attribute the harmonics above the 21st
to NeT2, in accordance with Ref. 54.

The results of this section have received additional support by a very recent experi-
mental study®® performed under very similar conditions as in Ref. 53 but with improved
detection techniques. A theoretical model of these experimental data based on the one-
dimensional SAE approximation again ascribes the harmonics above the 21st to Net2.

3.4 A “single-active orbital” scheme

We found that the harmonic spectra displayed in Figs. 4A and B are dominated by the
contribution of the 2pg orbital to the total dipole moment. This leads us to the following
question: To what extent is the harmonic motion of the 2py electrons influenced by the
motion of the other electrons? In order to study this question, we have performed an
additional TDKLI calculation with the same laser parameters as in Fig. 4A, this time
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with all but the 2pg electrons frozen in their initial states. Fig. 5 shows a comparison
of the time-dependent norm of the 2pg orbital calculated in the original scheme (i. e. all
electrons are propagated under the influence of the laser except the 1s electrons) and in
the new frozen-core scheme (i. e. propagation of the 2py orbital only). The difference
between the two curves is very slight, implying that the ¢onization of the 2pg orbital can
reliably be calculated with the new frozen-core prescription.

However, if we calculate the harmonic spectrum in the new frozen-core scheme, we find
a strong deviation from the spectrum calculated in the original scheme. Comparing the
two spectra in Fig. 6, we see that the effect of freezing the 2s and 2p; electrons is twofold:
First of all, the whole spectrum is slightly shifted towards lower values of |d(w)|?>. The
second, more drastic effect is the appearance of a pronounced Lorentz-profile resonance
peak just below the 7th harmonic at an energy of 1.18 Hartrees. This energy is very
close to the difference of the Ne 2s and 2py KLI orbital eigenvalues given in Table 1 (1.14
Hartrees) which suggests that the peak in Fig. 6 is due to a resonance of the 2s and 2pg
KS orbitals.

This resonance is also present when all valence electrons are fully propagated, but it
does not show up in the total harmonic spectrum. This is because the oscillating dipole
moment of the 2s orbital has a component with the same resonance frequency, but phase-
shifted by 7 with respect to its counterpart in the 2py orbital dipole moment. When
summed up to the total dipole moment, these frequency components therefore cancel each
other. The appearance of the resonance peak in the harmonic spectrum obtained with the
“single-active orbital” approximation thus appears to be an artefact of the method.

This leads us to the conclusion that a reliable density-functional calculation of har-
monic spectra requires simultaneously treating the time evolution of all electrons belonging
to the outermost atomic shell. We claim that this observation is also relevant for the widely
used SAE model, since a very similar resonance phenomenon has been observed by Kulan-
der and Shore?? for the case of Xenon, where a single 5pg electron was propagated only.
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HE(exact) [T J(exact) T Al(exact) K71 1erid) 1A (erid)
—€1s 32.77 30.80 30.24 35.13 34.47
—€9g 1.930 1.707 1.266 1.951 1.522
—€2p 0.8504 0.8494 0.4431 0.8098 0.4159
—€2p, 0.8504 0.8494 0.4431 0.8065 0.4126

Table 1: Ne orbital energies (in Hartrees) calculated in various exchange-only schemes:
Hartree-Fock (HF), optimized potential method (KLI), local density approximation
(LDA). The values calculated on the finite grid are compared with the exact values from
the literature.3>47

I=3x 10" W/cm? I=5x 10" W/cm?

charge TDKLI ALDA TDKLI ALDA
0 0.130 0.135 452 x 1072 5.46 x 1072

+1 0.419 0.394 0.291 0.288

+2 0.378 0.355 0.510 0.447

+3 6.73 x 102 0.101 0.138 0.177
+4 5.04 x 1073 1.36 x 1072 | 1.51 x 1072  3.03 x 1072
+5 1.80 x10% 953 x107% | 776 x 10°* 244 x 1073
+6 282x10% 350x10°| 1.67x10°° 812x10°°
+7 128 x 1078 6.12x 1077 | 7.57 x 1078 471 x 1077
+8 | 1.75x1071 398 x107? |9.74 x 10711 753 x10°10

Table 2: Probabilities of finding the neon atom in one of the charge states 0 through
+8 after 25 optical cycles (for I = 3 x 10'® W/cm?) and 20 optical cycles (for T =

5 x 101> W/cm?2), respectively.
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Abbreviations

ALDA
CI

DFT
HF

KLI

KS

LDA
OPM
SAE
TDDFT
TDHF
TDKLI
TDKS
TDOPM
X

xc

adiabatic local density approximation
configuration-interaction

density functional theory

Hartree-Fock

Krieger-Li-Tafrate

Kohn-Sham

local density approximation

optimized potential method

single-active electron

time-dependent density functional theory
time-dependent Hartree-Fock
time-dependent Krieger-Li-lafrate
time-dependent Kohn-Sham
time-dependent optimized potential method
exchange

exchange-correlation
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Figure Captions

Figure 1: Time evolution of the norm of the Ne 2s orbital (A), the Ne 2pg orbital (B)
and the Ne 2p; orbital (C), calculated in the x-only TDKLI and ALDA schemes.
Laser parameters: A\ = 248 nm, I = 3 x 10> W/cm?, linear ramp over the first 10
cycles. One optical cycle corresponds to 0.82 femtoseconds.

Figure 2: Population of the ionized states of Ne calculated with TDKLI. Laser param-
eters as in Fig. 1 (A = 248 nm, I = 3 x 10'® W/cm?, linear ramp over the first 10
cycles).

Figure 3: Population of the ionized states of Ne calculated with TDKLI. Laser parame-
ters: A =248 nm, I = 5 x 10'® W/cm?, linear ramp over the first 5 cycles.

Figuree 4: Harmonic distributions for Ne (A = 248 nm), calculated within the TDKLI
and ALDA schemes at I = 3 x 10> W/cm? (A) and I = 5 x 10*® W/cm? (B). The
experimental data®® were taken using 280 fs pulses at the same laser wave length
but with 7 =4 x 1017 W/cm? peak intensity.

Figure 5: Time-dependent norm of the 2py orbital, calculated with TDKLI in two dif-
ferent schemes (propagation of all valence electrons and of the 2pgy orbital only,
respectively). The laser parameters are A = 248 nm and I = 3 x 10> W/cm?.

Figure 6: Line: harmonic spectrum of Ne calculated by propagating the 2pg orbital only.
Squares: harmonic distribution calculated by propagating all valence electrons (both
calculations were done using TDKLI). Laser parameters as in Fig. 5.
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