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Abstract

A density functional formalism for time-dependent systems comparable to the theory
of Hohenberg, Kohn and Sham is presented. In this approach, the time-dependent
density can be obtained (in principle exactly) from a set of time-dependent single-
particle (Kohn-Sham) equations. In order to apply the time-dependent Kohn-Sham
scheme in practical calculations, an effective time-dependent single-particle potential
is needed. Given an expression for the quantum mechanical action A[¢; ... ¢y] of an
N-electron system as a functional of N time-dependent orbitals, we present a method
of constructing the variationally best local time-dependent single-particle potential
which, when inserted in a time-dependent single-particle Schrodinger equation yields
orbitals {¢;} that make A[¢;...¢on] stationary. We also propose a simplification of
this scheme leading to a time-dependent generalization of the static optimized effective
potential recently introduced by Krieger, Li and Iafrate [Phys. Lett. A 146, 256 (1990)].
Applications of this scheme to the case of a beryllium atom in a strong laser pulse are
presented.



1 Introduction

The response of an interacting many-particle system to a time-dependent external
field can usually be treated within linear response theory. Due to rapid experimental
progress in the field of laser physics, however, ultra-short laser pulses of very high
intensity have become available in recent years. The electric field produced in such
pulses can reach the strength of the electric field caused by atomic nuclei. If an
atomic system is placed in the focus of such a laser pulse one observes a wealth of new
phenomena [1] which cannot be explained by traditional perturbation theory. The
non-perturbative quantum mechanical description of interacting particles moving in a
very strong time-dependent external field therefore has become a prominent problem
of theoretical physics. In principle, it requires a full solution of the time-dependent
Schrodinger equation for the interacting many-body system, which is an exceedingly
difficult task. In view of the success of density functional methods [2] in the treatment
of stationary many-body systems and in view of their numerical simplicity, a time-
dependent version of density functional theory appears highly desirable, both within
and beyond the regime of linear response.

The first steps towards a time-dependent Kohn-Sham (KS) scheme were taken by
Peuckert [3] and by Zangwill and Soven [4]. These authors treated the linear density
response of rare-gas atoms to a time-dependent external potential as the response
of non-interacting electrons to an effective time-dependent potential. In analogy to
stationary KS theory, this effective potential was assumed to contain an exchange-
correlation (xc) part, v,.(rt), in addition to the time-dependent external and Hartree
terms:

/

t

vs(rt) = v(rt) + /d37"' ‘n(r ),‘ + Vge(rt) . (1)
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Peuckert suggested an iterative scheme for the calculation of v,., while Zangwill and

Soven adopted the functional form of the static exchange-correlation potential in LDA,

1. e.

d hom
Vye(Tt) = dege™(n) ’ (2)
dn n=n(rt)
where €9™(n) is the xc energy per volume of the homogeneous electron gas. This

approximation can be expected to be good only if the time dependence of n(rt) is
sufficiently slow. In practice, however, it gave quite good results even for the case of
rather rapid time dependence.

The approach of Zangwill and Soven is valid under the assumption that a time-
dependent KS theorem exists. Significant steps towards a rigorous foundation of time-
dependent density functional theory were taken by Deb and Ghosh [5]-[8] and by
Bartolotti [9]-[12] who formulated and explored Hohenberg-Kohn (HK) and KS type
theorems for the time-dependent density. Each of these derivations, however, was
restricted to a rather narrow set of allowable time-dependent potentials (to potentials
periodic in time in the theorems of Deb and Ghosh, and to adiabatic processes in
the work of Bartolotti). A general formulation covering essentially all time-dependent
potentials of interest was given by Runge and Gross [13]. A short description of
the time-dependent density functional formalism will be presented in section 2. The
central result is a set of time-dependent KS equations which are structurally similar to
the time-dependent Hartree equations but include (in principle exactly) all many-body
effects through a local time-dependent exchange-correlation potential. In practice, this



potential must be approximated.

In section 3, we present a new method of constructing approximations of the time-
dependent xc potential. Finally, in section 4, the formalism is applied to the case of a
beryllium atom in a superintense laser pulse.

2 Time-Dependent Density-Functional Formalism

In this section we deal with many-electron systems moving in an explicitly time-
dependent potential
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The total Hamiltonian is given by

H)=T+U+V() (4)
where T is the kinetic energy of the electrons
. . v2\ .
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and U is the mutual Coulomb interaction
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(atomic units are used throughout). The number of electrons, N, is fixed.

Ordinary time-independent density functional theory is based on the existence of
an exact mapping between densities and external potentials. In the ground state for-
malism, the existence proof relies on the Rayleigh-Ritz minimum principle for the
energy. Straightforward extension to the time-dependent domain is not possible since
a minimum principle is not available in this case. The existence proof for a 1-1 map-
ping between time-dependent potentials and time-dependent densities, first given by
Runge and Gross [13], is somewhat more involved. Starting from the time-dependent,
Schrodinger equation

0 A
i, 2(t) = H{t)2(t) (7)

the densities n(rt) of electronic systems evolving from a fized initial (many-particle)

state
®(ty) = @0 (8)

under the influence of different external potentials v(rt) are investigated. For each
fixed initial state ®q, formal solution of the Schrédinger equation (7) defines a map

A o(rt) — o) 9)

between the external potentials and the corresponding time-dependent many-particle
wave functions and a second map

B:®(t) — n(rt) = (®(t)|n(r)|®(t)) (10)



between the many-particle wave functions and the time-dependent densities. The aim
is to prove invertibility of the complete map

G :v(rt) — n(rt) . (11)

Runge and Gross have demonstrated [13] that if the potentials v(rt) are required to
be expandable in a Taylor series with respect to the time coordinate around the initial
time tg, then the map G is indeed invertible up to within an additive, merely time-
dependent function in the potential. In other words, two densities n(rt) and n'(rt)
evolving from a common initial state ®; under the influence of the potentials v(rt) and
v'(rt) are always different provided that the potentials differ by more than a purely
time-dependent function:

v(rt) # o'(rt) + c(t) . (12)

Having established the existence of the inverse map
G i n(rt) — v(rt) +c(t) (13)

subsequent application of the map A tells us that the many-particle wave function is a
functional of the time-dependent density, unique up to within a purely time-dependent
phase a(t):

() = e OW[n](t) . (14)

As a consequence, the expectation value of any quantum mechanical operator Q(t) is
a unique functional of the density:

QInl(t) = (Y[ (1) Q) Y[ (1)) - (15)

The ambiguity in the phase cancels out.

The 1-1 correspondence between time-dependent densities and time- dependent po-
tentials can be established for any given interaction U in particular also for U= 0,
i. e. for non-interacting particles. Therefore the external potential v,[n|(rt) of a non-
interacting system reproducing a given density n(rt) is uniquely determined. However,
the 1-1 correspondence only ensures the uniqueness of vs[n] for all v-representable
densities but not its existence for an arbitrary n(rt). In order to derive a time-
dependent KS scheme we have to assume, similar to the static case, non-interacting
v-representability, i. e., we have to assume that v, exists for the time-dependent den-
sity of the interacting system of interest. Under this assumption, the density of the
interacting system can be obtained from

rt) = ; [0 (xt)[? (16)

with orbitals ¢;(rt) satisfying the time-dependent KS equation

2
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As usual, the single-particle potential v, is written as

vs[n](xt) = v(rt) + / d*r' +vxc[n](rt) , (18)



where v(rt) is the external time-dependent field. The second term on the right-hand
side of Eq. (18) is the time-dependent Hartree potential while the third term is the
xc potential which, in practice, has to be approximated. As in the static case, the
great advantage of the time-dependent KS scheme lies in its computational simplicity
compared to other methods such as time-dependent configuration interaction [14]-[19].

The time-dependent density functional formalism described above has been ex-
tended to a number of physically different situations. Those include spin-polarized
systems [20], multicomponent systems [21], time-dependent ensembles [22, 23], exter-
nal vector potentials [24, 25] as well as superconducting systems [26].

To date, most applications of the formalism fall in the regime of linear response
[27]-[31]. The linear response limit of time-dependent density functional theory has
been discussed in great detail in a review article by Gross and Kohn [32]. For a
broad overview of applications the reader is referred to the textbook by Mahan and
Subbaswamy [33].

3 Time-Dependent Optimized Effective Potential

Beyond the realm of linear response theory, the only approximation of v,. used un-
til today is the adiabatic approximation given by Eq. (2). In the following, a new
approach to the construction of v,.(rt) will be developed which can be viewed as a
time-dependent version of the so-called optimized potential method (OPM) [34]-[49].
The approach leads to v,. as a function of (rt) rather than to v,. as an explicit func-
tional of the density. The OPM of stationary systems [34, 35] takes as starting point
a given expression for the total energy E[y; ... @n| of an N-electron system as a func-
tional of a set of single-particle orbitals {¢;(r)} (e. g. the Hartree-Fock (HF) total
energy functional in the exchange-only case). Then, the variationally best local effec-
tive potential is determined such that, when inserted in a stationary single-particle
Schrodinger equation, it yields the set of N eigenfunctions (corresponding to the N
lowest eigenvalues) that minimize Elp; ...@y]. In practice, the full OPM scheme is
computationally quite involved since it requires the numerical solution of an integral
equation for v,.(r). As a consequence, complete OPM calculations have been per-
formed mainly for problems where the potential is a function of a single variable,
e. g. for spherically symmetric atoms [35]-[40]. There exists, however, an approximate
OPM scheme, recently proposed by Krieger, Li, and lafrate (KLI) [41]-[49], which is
numerically as easy to handle as the ordinary KS scheme. This simplified OPM has
been applied very successfully to the calculation of atomic properties.

In order to derive a time-dependent generalization of the OPM we consider an N-
electron system at some finite time ¢y, which, for all times up until £y, has been in the
ground state associated with an external potential vy(r) (e. g. a nuclear Coulomb po-
tential). We assume that the corresponding stationary OPM problem has been solved
for that system, i. e. a local effective potential and a set of NV single-particle orbitals
{¢;} (with energy eigenvalues ¢;) minimizing a given energy functional E[p; ... ¢y]
are assumed to be known. At ¢t = ¢, an additional time-dependent potential v;(rt)
is switched on. Our goal is to determine the time evolution of the system under the
influence of the total external potential v(rt) = wvg(r) + v1(rt) from t; up until an
arbitrary later time t;. To construct an optimized local effective potential we start



with the quantum mechanical action
N g 2
Alpy... o8] = Z/_t dt/d?’r 5 (rt) (z % + V2 ) ¢;(rt)
—/ dt/d3r n(rt)v(rt) — —/ dt/d3 /d3  irtn(rt) Agelpr - on]  (19)

v —

written as a functional of N time-dependent single-particle orbitals {¢;(rt)} where
n(rt) = XY |¢;(rt). In the following no specific approximation is used for the
exchange-correlation functional Ag.[¢; ... ¢y], but we mention that in an exchange-
only theory A,. would be replaced by the time-dependent Hartree-Fock (TDHF) ex-
pression

1Y ¢; (x't)g; (x't) ¢ (rt) 45 (rt)
A= 5(,,(,./ Cdt[d'r [ 7 20
Zz 2 % [ ‘r _ r[‘ ( )
(0, denotes the spin orientation of the jth orbital). The orbitals are solutions of the
time-dependent Schrodinger equation

2

2% ¢;(rt) = (—% —i—vs(rt)) ¢;(rt) j=1,...,N (21)

with ¢;(rt) = ¢;(r) exp[—ic;(t — to)] for —oo <t < t;. The local effective potential is
given by
vs(rt) = v(rt) + vu(rt) + vee(rt) (22)

where vy(rt) = [d®r'n(r't) /|r —1'| denotes the time-dependent Hartree potential. The
total potential v,(rt) has to be determined in such a way that the {¢;(rt)}, resulting
from Eq. (21), render the total action functional A[¢; ...¢x| stationary. Therefore,
we have to solve the following variational problem:

0A[p1...on] Z/ gt /d3 ,<5A $1...0N] 00;(x't)) n 0A[py ... PN] (5¢;(r’t’)>

0vs(rt) dp;(x't")  dus(rt) o5 (r't')  duy(rt)
=0 . (23)
We first compute the functional derivatives 6A/d¢; and 0A4/¢3: defining
1 6Au[dr ... on]
Ugei (TT) = , 24
0 =Gt o (et) 2y
we obtain
5A[¢1¢N]_ 0 v 11 1yt I Yo /
S t) el B F (') + v (2t) + g (2't) | | 65 (x't) O(t1 — 1)

(25)
and an analogous expression for 04 /d¢? which, for all reasonable (i. e. real) functionals
Alp; ... dn], is the complex conjugate of (25). #(x) denotes the usual step function
(1 for z > 0, 0 for z < 0). To arrive at Eq. (25) the first term of Eq. (19) has to
be integrated by parts with respect to the time coordinate. We impose the usual
boundary condition on ¢;(rt) at ¢t = 1, i. e. d¢;(rt;) = 0, thus obtaining a zero
boundary contribution. The other boundary contribution at ¢ = —oo vanishes, too,

6



because the action functional (19), in order to be well-defined, is to be calculated
by introducing the usual factor e in the integrand and taking lim, o+ after the
integration. Substituting Eq. (22) into (25) and making use of the fact that ¢} solves
the complex conjugate of the Schrédinger equation (21), we find

Alpy ... oN]

Toet) [Vae (X)) = waes (x't)] 95 (r'8) O(t1 — ¥) . (26)
In order to evaluate A/dv, from Eq. (23), we further need the functional derivatives
d¢;/0vs and §¢%/6v,. The stationary OPM eigenfunctions {g;(r), j = 1, ... , 00}
form a complete orthonormal set, and so do the time-evolved states {¢;(rt), j =
1, ... ,00} for any time ¢ € [—o00,t;], and we denote this set by ®;. Now consider

®, as unperturbed states, remembering that at ¢ = ¢; the orbitals are held fized with
respect to variations in the total potential. We therefore start from ¢ = t;, subject the
system to an additional small perturbation dv,(rt) and let it evolve backward in time.
The corresponding perturbed wave functions ¢}(rt) are determined by the backward
Schrodinger equation

8at ¢;(rt) = (— %2 + vy (rt) +5v3(rt)) ¢;(xt) j=1,... ,N (27)

with the initial condition ¢/(rt;) = ¢;(rt;). This problem cannot be treated directly
with time-dependent perturbation theory as described in standard text books because
the unperturbed Hamiltonian is already time-dependent. Nevertheless, Dirac’s method
of variation of constants can be applied in a straightforward manner. We expand, at
each given ¢, the perturbed wave function ¢(rt) in terms of the set ®;,

chk )i (rt) (28)

and insert this expansion in (27), utilizing Eq. (21). The resulting equation
i Z Cik(t)Pr(re) Z cjk(t)ovs(rt) P (rt) (29)

is then multiplied by ¢;(rt) and integrated over all space; the orthonormality of ®,
yields

) 1 & .
ealt) = = 3 canlt) [ dr g7 (xt)ou,(xt)u(xt) (30)
k=1
We now make the usual ansatz for a perturbation expansion,
ciplt) = () + e () + ... (31)

and collect corresponding orders on each side of Eq. (30). This yields

& =0
() = %icﬁ)(t) [ 67 (xt)ou, (xt) i (rt (32)



Since, in our case, the wave function evolves backward from the fixed state ¢;(rt;) we
find cg-(,)c) (t) = d;x and cﬁ) (t1) = 0, leading to

() = % /:dt’ [ 6 )bt )y (et (33)

It follows that the first-order correction to the wave function ¢;(rt) under the influence
of duvs(rt) is given by

5 (xt) z ) (1) s (xt) —zz / dt’ /d3r'¢k ('t') 00, (£t (x't ) po(xt) . (34)

Therefore, the desired functional derivative is

(5¢j(1‘ltl i .
Sus(rt) Z o1 (xt)d;(vt) pi(r't)) Ot — 1) O(t — 1) . (35)

Once again, 0¢; /v, leads to the complex conjugate expression. We can now insert
(26) and (35) in the variational equation (23), and the result is the time-dependent
OPM (TDOPM) integral equation for the local exchange-correlation potential v,.(rt):

iZ/t;dt'/d37“' [’Umc(r't um]( 1y )] ¢](I‘t)(b( t)K(rt,r’t') Toce =0 . (36)

The kernel -
K(rt,x't") =Y ¢i(xt)gp(r't') 6(¢t — t') (37)
k=1

can be identified with the Green’s function of the system, which satisfies the differential
equation

l % - <_V7'2 + v, (r t))]K(rt r't') = —id(r —x')o(t — t) (38)

with the initial condition K (rt,r't') = 0 for ¢ > t. The TDOPM scheme is now
complete: the integral equation (36) has to be solved for v,.(rt) in combination with
the Schrddinger equation (21) and the differential equation (38) for K(rt,r't'), both
with the appropriate initial conditions. It is easy to show that in the time interval
[—00,t1] the exchange-correlation potential v,.(rt) is only determined up to within
an additive, purely time-dependent function c(t) (as expected in view of the time-
dependent HK theorem discussed in section 2).

We now demonstrate that for t < ¢y or for a time-independent external potential
(vi(rt) = 0) the TDOPM reduces to the stationary OPM. For this purpose we rewrite
Eq. (36) in the following way (using the fact that v, is real):

12/ dt'/d?"vu (X't') = Uge;(x't')] 5 (xt) 3 (x't) E(pk (rt)pr('t) Ot —t') + cc

= ZZ@ (rt)¢; (xt /_toodt,/d%, (umj(r’t,) Ui (' )) ¢;(r't) g3 (r't) . (39)

In the static case, the orbitals {¢;(rt)} are replaced by {¢;(r) exp[—ic;(t —to)]}. It is
reasonable to assume that the exchange-correlation functional A,. then becomes

Apebr ... dn] — /t ;dt’ Enti(t) ... on(t)] (40)

8



where E.[¢;...@n] is the corresponding ground state exchange-correlation energy
functional. Definition (24) then yields

. 1 0E.[pr1--- @N]]
uisvtca.tzc rt) = l~ _ . 41
7 ( ) (p;f(l') (5(pj(l‘) —iej (t—tg) ( )

@j(r)=pj(r)e

We assume that the value of E,.[¢; ... ¢n] remains unchanged if the arguments {¢;(r)}
are multiplied by phase factors e’ . If this is the case, we can use the identity

t / I‘t * I‘t iarg(¢;(rot)) 49
I' (b] d) | r()t | € ( )

(where r is an arbitrary reference point) and write E,. in Eq. (40) as a functional of the
combinations ¢;(rt)¢;(r't). Then it is not difficult to show that 3 is independent

xcy

of time and that the right-hand side of (39) is zero. We therefore obtain

N t1 S o ’ '

i [t @ o) — )] 0i(r)e; () Y el )e g (e - )
j —00 k=1
k#j

+ cc. = 0 . (43)

Performing the integration over ¢’ we find the stationary OPM integral equation [35]

lim Z/dST' [’ch(l'l) —u;i‘;tic(r')] Z Pi(r)er(r) + cc. =0 . (44)

0t & —ep — i

k#]
The derivation of Eq. (44) shows that in order to recover the static limit from the
time-dependent formalism one had to extend the time integral in Eq. (19) to —oo; a
finite lower time boundary does not correctly account for memory effects in v,. and
therefore results in an unphysical time dependence even in the static case.

The numerical implementation of the full TDOPM is an extremely demanding
task. It is therefore most desirable to obtain a simplified scheme. To this end we
shall perform a transformation of Eq. (36) similar to the one proposed by KLI in the
stationary case [46, 49]. This will lead to an alternative but still exact form of the
TDOPM scheme which allows one to construct approximations of v,.(rt) which are
explicit functionals of the orbitals {¢;}, thereby avoiding the need to solve the integral
equation. Following Refs. [46] and [49], we define

pj(rt) ¢*( ) / dt,/d3 I[vm( Itl) - umcy( Itl)] (b ( Itl) §¢Z(rt)¢k(rltl) 0(t - tl)
’ (45)
and
Taei(t) = / %7 (0t tge; (x1) (46)

where n;(rt) = |¢;(rt)|>. Eq. (39) can then be written as

N

Yoni(et)pi(xt) + coo = =i myrt) /_ 0t (ei (1) = Wy (¢)) . (47)

J



and it is easy to show that

/d37" n;j(rt)p;(rt) =0 . (48)
Evaluating ¢;(rt)[—i /0t + V?/2 — v,(rt)]¢5(rt)p;(rt) we find after some straightfor-
ward algebra that p,(rt) satisfies the following differential equation:
1 . 0 :
EV - (nj(rt)Vp,(rt)) — in;(rt) 5P (rt) — i J;(rt) - Vp,(rt)
= =1 (0t) [ve(rt) =t (1) — (T (t) = Thaes (1)) (49)

with the current density J;(rt) = (2i)7" (¢;(xt)Ve;(xt) — ¢;(rt) V3 (xt)) and Ty (t)
= [d®r n;(rt)v,(rt). Finally, operating with V? on Eq. (47) and using Eq. (49) we
find

he(rt) = o) 5 (1o (1) + (1))

+ 4nzrt) ;v%j(rt) [t (faes(t) = e (8)) (50)
where
uzccj(rt) = Uge;(rt) + " (1”) [%V (pj(rt)Vn,(rt)) +in;(rt) %pj(rt) +iJj(rt)-ij(rt)] _

(51)
Egs. (50) and (51) together with the differential equation (49) for p;(rt) and the
condition (48) (which can be used to fix the constant left undetermined by Eq. (49))
represent an exact alternative formulation of the TDOPM scheme. The advantage of
Eq. (50) lies in the fact that it is a very convenient starting point for constructing
approximations of v,.(rt) as explicit functionals of the {¢;(rt)}: it is only necessary
to approximate p;(rt) in Eq. (51) by a suitably chosen functional of the orbitals. We
can then readily solve Eq. (50) analytically for v,.(rt), as we shall show below.

We expect an approzimate potential 0,.(rt) defined in this way to be close to the
exact vg(rt). This conjecture is based on the observation that the difference between
Uze and v, is entirely accounted for by the differences uf,ccj — Uge; Which are zero if
averaged over the jth orbital, as will be demonstrated in the following. From Eq. (51)
we obtain

ﬂ;cj (t) — Usgj (t) =

1 , 0

5 /d3r V - (pj(rt)Vn,(rt)) + Z/d?’?” [nj(rt)apj (rt) + J;(rt) - Vp;(rt)| . (52)
Using the divergence theorem, the first term on the right-hand side can be trans-
formed into a surface integral which vanishes if the time-dependent orbitals decrease
exponentially for 1 — co. The contribution to the second integral containing J; - Vp;
is then integrated by parts. The surface term vanishes due to the same argument as

10



before, and the remaining term is transformed using the continuity equation for the
jth orbital to replace —V - J;(rt) by dn;(rt)/0t. Hence we find

H;cj(t) — Tyej(t) =4 % /d3r n;(rt)p;(rt) =0 (53)

where the last equality follows from Eq. (48).

The simplest approximation is obtained by replacing p; by its average value, i. e. by
setting p;(rt) = 0. The resulting approximate potential ,. is determined by the
equation

Bro(rt) = Sy (xt) ; (thaeg (x1) + 13 (1))

e & V(0 /_ At (Toes (') = Ty (1)) - (54)

This equation is still an integral equation for v,.. It can, however, be solved analytically
[45]: multiplying Eq. (54) by ng(rt) and integrating over all space yields

5acck(t) = macch(t) + Z Mkj (t)awj (t) ) (55)
where we have defined
wwwzmggmmﬁww+mw)
ey 2 5 () 4 50)
+ o > V(e [t (st ~ 20y (0)) (56)
and
My;(t) / gy "J (x) (57)

Solving Eq. (55) for U,.;(t) requires inversion of the N x N matrix
Agj(t) = Okj — My;(t) (58)
and leads to

Boej (1) = 22 (A7), Boen(t) - (59)

When Eq. (59) is substituted into Eq. (54), one obtains v,.(rt) as an explicit functional
of the orbitals {¢;(rt)}. As the exact v,.(rt) which follows from Eq. (36), Uy.(rt) is
determined by Eq. (54) only up to within an additive, purely time-dependent function
c(t).

The last term of Egs. (54) and (56) vanishes identically for a large class of exchange-
correlation functionals A,.. This class includes all functionals depending on {¢;} only
through the combinations ¢;(rt)¢3(r't) (such as the TDHF functional, Eq. (20)).

11



The time-dependent KLI (TDKLI) approximation consisting of Eq. (54) combined
with the Schrédinger equation (21) represents a time-dependent scheme which is nu-
merically less involved than, e. g., the TDHF method because the optimized effec-
tive potential is local in configuration space. From experience with the static KLI
scheme in the exchange-only limit [40], [45]-[49], we expect the results of the full
TDOPM scheme, the TDKLI approximation and the full TDHF method to agree very
closely with each other. Given an approximate functional for the correlation part of
Age[@r - . . ¢n], the principal advantage of the TDOPM and TDKLI schemes is that the
inclusion of time-dependent correlation effects does not increase the numerical effort
involved in the exchange-only case.

4 Application to Atoms in Strong Laser Pulses

As an example, we simulate the ionization process that a neutral beryllium atom,
initially in its ground state, undergoes when irradiated by a linearly polarized laser
pulse with wave length A = 227.8 nm (5.44 eV photon energy) and peak intensity
I =1.75 x 10" W/cm?. In this intensity regime, a non-perturbative treatment of the
system is mandatory [1]. The total external potential seen by the electrons is given by

v(rt) = —% — Eof(t)zsin(wt) (60)

where the nuclear charge Z equals 4 in the case of Be. The second term on the right-
hand side of Eq. (60) is the potential due to the laser field in dipole approximation,
written in the length form. Since the wavelength of currently used lasers is almost
always very large compared to any characteristic length associated with an atomic
system, the dipole approximation usually turns out to be very good in practice [50].
Ey denotes the peak electric field strength and f(¢) characterizes the envelope function
of the pulse, which in our calculations is linearly ramped to its peak value over the
first 10 cycles and then held constant (one cycle corresponds to 0.76 fs). The field is
assumed to be polarized along the z-direction.

In the following, we compare the results of a TDKLI calculation using the approxi-
mate potential (54) with an adiabatic LDA (ALDA) calculation using the potential (2),
both for the exchange-only case. The numerical procedure to solve the single-particle
equations for the Be 1s and 2s spin orbitals in TDKLI (21) and ALDA (17) is similar
to the one presented in the pioneering work by Kulander [51, 52], who solved the time-
dependent Schrodinger and TDHF equations for a hydrogen and helium atom in a laser
pulse, respectively. The spin orbitals are expressed in cylindrical coordinates and, due
to the linear polarization of the field, the spin as well as the angular part of the orbitals
are preserved. Consequently, a fully three-dimensional treatment only requires a two-
dimensional grid for the numerical integration and ¢ (rt) = ¢15)(rt) = ¢15(rt) and
Post(rt) = os) (rt) = ¢Pos(rt) for all ¢. The integration of the single-particle equations is
performed using a finite-difference representation of the kinetic energy operator. The
algorithm employed [53] ensures that the time propagation of the orbitals is always
unitary.

In order to simulate ionization, the grid contains an absorbing boundary to re-
move the flux leaving the domain of the calculation. When some portion of the wave
function propagates to the outer edges of the grid it is absorbed. We assume this
flux corresponds to that part of the wave function which is in the continuum. Strictly
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speaking, such a criterion is meaningful only after long times when the respective
contributions have propagated very far away from the nucleus. For the wave length
considered here, the probability to remain in a finite volume of space has nevertheless
proven to be a useful definition of bound-state occupation probability which has been
used in many successful applications [51, 52], [54]-[59], e. g., to extract single-particle
ionization rates from the time change of the norm of the wave function [51].

The norm of the single-particle orbitals

p(t)= [drig;E j = (15), (29) (61)

finite
volume

has been calculated in each time step (about 600 per cycle) by integrating the single-
particle densities |¢;(rt)|? over the finite volume of a cylindrical box (with a maximum
radius of about 20 a.u. and a height of about 60 a.u.). Figs. 1 and 2 show the so defined
norm of the Be 1s and 2s orbitals versus time. For pi(t), the numerical integration
from Eq. (61) yields oscillations with an amplitude of approximately 5 x 107°. These
oscillations have been smoothed out in Fig. 1 because the numerical accuracy of our
integration routine is of the same order of magnitude. For both orbitals it can be seen
how the norm stays nearly unchanged during the first few cycles of the rise time of
the pulse. Somewhat surprisingly, the ionization of the inner orbital seems to set in
first (after the second cycle). However, this impression is due to the different scales
used in Figs. 1 and 2, respectively. If we examine the first 3 cycles only and use the
scale of Fig. 1 to plot both the 1s and 2s norm, we find a noticeable decrease for both
orbitals after the second cycle. This delay between the switch-on of the pulse and the
beginning of the decrease can be attributed to the finite time it takes the electrons
which are released near the nucleus to reach the boundary of the grid.

In the following, the 1s norm decays steadily, until the ionization nearly saturates
at about the 10th cycle. Parallel to this, the 2s orbital starts to ionize rapidly at the
5th cycle, the decrease then being almost four orders of magnitude faster than for
the 1s orbital. The degree of ionization of the 2s orbital is about 90% after 19 cycles
compared to only about 0.025% for the 1s orbital. This was to be expected, because
the 1s orbital is much stronger bound on the scale of the applied photon energy.

In Table 1, the Be 1s and 2s binding energies in the KLI approximation and in LDA
are compared with the HF orbital energies [60]. In LDA, the 1s and 2s binding energies
are only 92% and 58%, respectively, of the HF value, whereas the KLI binding energies
deviate from HF only by about 0.7% and 5%, respectively. The LDA and KLI orbital
energies have been calculated using our two-dimensional grid in cylindrical coordinate
representation. Since the grid must cover a very large region of space (20 a.u. x 60 a.u.)
the grid spacing has to be chosen relatively coarse (in the order of 0.1 a.u.) even close
to the nucleus in order to keep the computational effort manageable. The resulting
grid then has more than 30000 grid points. Compared to results in the literature [45],
our LDA and KLI ionization potentials are therefore slightly too deep (by about 0.2
and 0.4 eV, respectively).

The differences between the TDKLI and ALDA results in Figs. 1 and 2 (in ALDA
the atom can be seen to ionize faster) are due to the fact that in LDA the orbitals
are generally much too weakly bound. Considering the photon energy of 5.44 eV
which lies in between the TDKLI and ALDA ionization potentials of 8.85 and 4.85 eV,
respectively, one would have expected a much larger difference of the two ionization
rates, because in TDKLI the ionization requires at least two photons, whereas in ALDA
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one photon is already sufficient to ionize the atom. The results of our calculations
indicate, however, that in the intensity regime considered here this perturbative picture
of the ionization process is no longer applicable.

In Fig. 3 we display how the differently charged states are populated during the time
evolution of the system. To obtain these results, we have used the time dependence of
the norm pog(t) of the Be 2s orbital given by the TDKLI curve in Fig. 2, neglecting the
very small decrease of the norm of the 1s orbital (and therefore higher than doubly
ionized states). Keeping in mind that this time-dependent norm refers to spin (i. e.
singly occupied) orbitals, the probabilities for the population of the differently charged
states can be expressed as [61]

P(Be) = pa(t)’ (62)
P(Be™) = 2pay(t)(1 - pas(t)) (63)
P(Be2+) = (1—pas(t)? . (64)

It can be seen in Fig. 3 that, as the probability for the atom to stay neutral continuously
decreases to nearly zero, first the number of singly ionized atoms rises. During the
course of the pulse, however, this number saturates and goes down again as, beginning
at about the 5th cycle, the probability for the atoms to suffer a second ionization starts
to grow rapidly and finally dominates.

In conclusion we point out that our results have been obtained by performing
non-perturbative time-dependent all-electron calculations in contrast to computational
schemes [54, 55], [57]-[59] for multielectron systems where only one active electron is
considered and all the others are kept frozen in their initial configuration. Calculations
on other atomic systems with different laser parameters using the TDKLI and ALDA
schemes are in progress.
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Figure and Table Captions

Fig. 1. Time evolution of the norm pis(¢) of the Be 1s orbital subject to an intense
laser pulse (A = 227.8 nm, [ = 1.75 x 10 W /cm?)

Fig. 2. Time evolution of the norm pss(t) of the Be 2s orbital (same laser parameters
as in Fig. 1)

Fig. 3. Population of the differently charged states of the Be atom during the course
of the pulse (calculated with TDKLI)

Table 1. Comparison of calculations of the Be 1s and 2s orbital energies 15 and €a4
(in eV), in various exchange-only approximations
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HF KLI | LDA
—€15 | 128,78 [ 129.74 | 118.34
—e9g | 842 | 8.85 | 4.85
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